forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlibrary.py
931 lines (808 loc) · 38.8 KB
/
library.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
from ._ops import OpOverload
from typing import Any, Optional, Set, List, Union, Callable, Tuple, Dict, Sequence
from typing_extensions import deprecated
import traceback
import torch
import weakref
import functools
import inspect
import re
import contextlib
import sys
from torch._library.custom_ops import custom_op, _maybe_get_opdef, device_types_t, CustomOpDef
import torch._library as _library
__all__ = [
'Library',
'impl',
'define',
'fallthrough_kernel',
'impl_abstract',
'register_fake',
'get_ctx',
'custom_op',
]
# Set containing the combination of (namespace, operator, DispatchKey) for which a new kernel has been registered
# The keys in the set are of the form `namespace + "/" + op_name + "/" + dispatch_key`.
# This set is maintained to ensure that two libraries don't try to override the exact same functionality to avoid
# libraries calling into kernels not intended to be called.
_impls: Set[str] = set()
_defs: Set[str] = set()
# prim is reserved by TorchScript interpreter
_reserved_namespaces = ['prim']
def fallthrough_kernel():
"""
A dummy function to pass to ``Library.impl`` in order to register a fallthrough.
"""
raise NotImplementedError("fallthrough_kernel() should never be called.")
class Library:
"""
A class to create libraries that can be used to register new operators or
override operators in existing libraries from Python.
A user can optionally pass in a dispatch keyname if they only want to register
kernels corresponding to only one specific dispatch key.
To create a library to override operators in an existing library (with name ns), set the kind to "IMPL".
To create a new library (with name ns) to register new operators, set the kind to "DEF".
To create a fragment of a possibly existing library to register operators (and bypass
the limitation that there is only one library for a given namespace), set the kind to
"FRAGMENT".
Args:
ns: library name
kind: "DEF", "IMPL" (default: "IMPL"), "FRAGMENT"
dispatch_key: PyTorch dispatch key (default: "")
"""
def __init__(self, ns, kind, dispatch_key=""):
if kind not in ('IMPL', 'DEF', 'FRAGMENT'):
raise ValueError("Unsupported kind: ", kind)
if ns in _reserved_namespaces and (kind == "DEF" or kind == 'FRAGMENT'):
raise ValueError(ns, " is a reserved namespace. Please try creating a library with another name.")
frame = traceback.extract_stack(limit=3)[0]
filename, lineno = frame.filename, frame.lineno
self.m: Optional[Any] = torch._C._dispatch_library(kind, ns, dispatch_key, filename, lineno)
self.ns = ns
self._op_defs: Set[str] = set()
self._op_impls: Set[str] = set()
self._registration_handles: List[torch._library.utils.RegistrationHandle] = []
self.kind = kind
self.dispatch_key = dispatch_key
# Use a finalizer to setup the "destructor" instead of __del__.
# Python __del__ can lead to weird things (globals and locals may already
# be gone when __del__ actually gets called!). finalizers help the
# situation because it lets us capture references and keeps them alive
weakref.finalize(self, _del_library, _impls, self._op_impls, _defs, self._op_defs, self._registration_handles)
def __repr__(self):
return f"Library(kind={self.kind}, ns={self.ns}, dispatch_key={self.dispatch_key})>"
def define(self, schema, alias_analysis="", *, tags=()):
r'''Defines a new operator and its semantics in the ns namespace.
Args:
schema: function schema to define a new operator.
alias_analysis (optional): Indicates if the aliasing properties of the operator arguments can be
inferred from the schema (default behavior) or not ("CONSERVATIVE").
tags (Tag | Sequence[Tag]): one or more torch.Tag to apply to this
operator. Tagging an operator changes the operator's behavior
under various PyTorch subsystems; please read the docs for the
torch.Tag carefully before applying it.
Returns:
name of the operator as inferred from the schema.
Example::
>>> my_lib = Library("mylib", "DEF")
>>> my_lib.define("sum(Tensor self) -> Tensor")
'''
# This is added because we also want to disallow PURE_FUNCTION alias analysis which is a valid
# AliasAnalysis type in C++
if alias_analysis not in ["", "FROM_SCHEMA", "CONSERVATIVE"]:
raise RuntimeError(f"Invalid alias_analysis type {alias_analysis}")
assert self.m is not None
if isinstance(tags, torch.Tag):
tags = (tags,)
name = schema.split("(")[0]
packet_name = name.split(".")[0] if "." in name else name
has_preexisting_packet = hasattr(torch.ops, self.ns) and hasattr(getattr(torch.ops, self.ns), packet_name)
result = self.m.define(schema, alias_analysis, tuple(tags))
name = schema.split("(")[0]
qualname = self.ns + "::" + name
# If the OpOverloadPacket exists already, then this means we're adding a
# new OpOverload for it. Refresh the packet to include the new OpOverload.
if has_preexisting_packet:
ns = getattr(torch.ops, self.ns)
packet = getattr(ns, packet_name)
torch._ops._refresh_packet(packet)
self._op_defs.add(qualname)
_defs.add(qualname)
return result
def _register_fake(self, op_name, fn, _stacklevel=1):
r'''Registers the fake impl for an operator defined in the library.'''
source = torch._library.utils.get_source(_stacklevel + 1)
frame = sys._getframe(_stacklevel)
caller_module = inspect.getmodule(frame)
# Can be none if you call register_fake from somewhere there isn't a module
# (e.g. __main__)
caller_module_name = None if caller_module is None else caller_module.__name__
# TODO(rzou): We're gonna need to stage this change with torchvision,
# since torchvision is github first.
if caller_module_name is not None and caller_module_name.startswith("torchvision."):
caller_module_name = None
qualname = f"{self.ns}::{op_name}"
entry = torch._library.simple_registry.singleton.find(qualname)
if caller_module_name is not None:
func_to_register = _check_pystubs_once(fn, qualname, caller_module_name)
else:
func_to_register = fn
handle = entry.abstract_impl.register(func_to_register, source)
self._registration_handles.append(handle)
def _impl_with_aoti_compile(self, op_name, dispatch_key=''):
r'''Register the operator to use the AOTI-compiled implementation.
Args:
op_name: operator name (along with the overload) or OpOverload object.
dispatch_key: dispatch key that the input function should be registered for. By default, it uses
the dispatch key that the library was created with.
Example::
>>> my_lib = Library("aten", "IMPL")
>>> my_lib._impl_with_aoti_compile("div.Tensor", "CPU")
'''
if dispatch_key == '':
dispatch_key = self.dispatch_key
assert torch.DispatchKeySet(dispatch_key).has(torch._C.DispatchKey.Dense)
if isinstance(op_name, str):
name = op_name
elif isinstance(op_name, OpOverload):
name = op_name._schema.name
overload_name = op_name._schema.overload_name
if overload_name != '':
name = name + '.' + overload_name
else:
raise RuntimeError("_impl_with_aoti_compile should be passed either a name or an OpOverload object "
"as the first argument")
key = self.ns + "/" + name.split("::")[-1] + "/" + dispatch_key
if key in _impls:
# TODO: in future, add more info about where the existing function is registered (this info is
# today already returned by the C++ warning when _impl_with_aoti_compile is called but we error out before that)
raise RuntimeError("This is not allowed since there's already a kernel registered from python overriding {}"
"'s behavior for {} dispatch key and {} namespace.".
format(name.split("::")[-1], dispatch_key, self.ns))
assert self.m is not None
impl_fn: Callable = self.m.impl_with_aoti_compile
impl_fn(self.ns, name.split("::")[-1], dispatch_key)
_impls.add(key)
self._op_impls.add(key)
def impl(self, op_name, fn, dispatch_key='', *, with_keyset=False):
r'''Registers the function implementation for an operator defined in the library.
Args:
op_name: operator name (along with the overload) or OpOverload object.
fn: function that's the operator implementation for the input dispatch key or :func:`~fallthrough_kernel`
to register a fallthrough.
dispatch_key: dispatch key that the input function should be registered for. By default, it uses
the dispatch key that the library was created with.
Example::
>>> my_lib = Library("aten", "IMPL")
>>> def div_cpu(self, other):
>>> return self * (1 / other)
>>> my_lib.impl("div.Tensor", div_cpu, "CPU")
'''
if not callable(fn):
raise TypeError(f"Input function is required to be a callable but found type {type(fn)}")
if dispatch_key == '':
dispatch_key = self.dispatch_key
if isinstance(op_name, str):
name = op_name
elif isinstance(op_name, OpOverload):
name = op_name._schema.name
overload_name = op_name._schema.overload_name
if overload_name != '':
name = name + '.' + overload_name
else:
raise RuntimeError("impl should be passed either a name or an OpOverload object as the first argument")
key = self.ns + "/" + name.split("::")[-1] + "/" + dispatch_key
if key in _impls:
# TODO: in future, add more info about where the existing function is registered (this info is
# today already returned by the C++ warning when impl is called but we error out before that)
raise RuntimeError("This is not allowed since there's already a kernel registered from python overriding {}"
"'s behavior for {} dispatch key and {} namespace.".
format(name.split("::")[-1], dispatch_key, self.ns))
if dispatch_key == "Meta":
dispatcher_op_name = name
if '::' not in dispatcher_op_name:
dispatcher_op_name = f'{self.ns}::{dispatcher_op_name}'
# Internally, we shouldn't be registering meta kernels for any operators that
# have CompositeImplicitAutograd kernels.
# Instead, we should be letting those decompositions run, and writing meta kernels
# only for the base operators.
if torch._C._dispatch_has_kernel_for_dispatch_key(dispatcher_op_name, "CompositeImplicitAutograd"):
raise RuntimeError(
f"We should not register a meta kernel directly to the operator '{name}',"
" because it has a CompositeImplicitAutograd kernel in core."
" Instead we should let the operator decompose, and ensure that we have meta kernels"
" for the base ops that it decomposes into.")
assert self.m is not None
self.m.impl(name, dispatch_key if dispatch_key != "" else "CompositeImplicitAutograd", fn, with_keyset)
_impls.add(key)
self._op_impls.add(key)
def _destroy(self):
if self.m is not None:
self.m.reset()
self.m = None
for handle in self._registration_handles:
handle.destroy()
self._registration_handles.clear()
global _impls
_impls -= self._op_impls
for name in self._op_defs:
# Delete the cached torch.ops.ns.foo if it was registered.
# Otherwise, accessing it leads to a segfault.
# It's possible that we only registered an overload in this Library
# and another library owns an alive overload.
# That's OK - the next time torch.ops.ns.foo gets called, it'll be
# recomputed to point at the right collection of overloads.
ns, name_with_overload = name.split("::")
name = name_with_overload.split(".")[0]
if not hasattr(torch.ops, ns):
continue
namespace = getattr(torch.ops, ns)
if not hasattr(namespace, name):
continue
delattr(namespace, name)
def _del_library(captured_impls, op_impls, captured_defs, op_defs, registration_handles):
captured_impls -= op_impls
captured_defs -= op_defs
for handle in registration_handles:
handle.destroy()
@contextlib.contextmanager
def _scoped_library(*args, **kwargs):
try:
lib = Library(*args, **kwargs)
yield lib
finally:
lib._destroy()
_keep_alive: List[Library] = []
NAMELESS_SCHEMA = re.compile(r"\(.*\) -> .*")
@functools.singledispatch
def define(qualname, schema, *, lib=None, tags=()):
r"""Defines a new operator.
In PyTorch, defining an op (short for "operator") is a two step-process:
- we need to define the op (by providing an operator name and schema)
- we need to implement behavior for how the operator interacts with
various PyTorch subsystems, like CPU/CUDA Tensors, Autograd, etc.
This entrypoint defines the custom operator (the first step)
you must then perform the second step by calling various
``impl_*`` APIs, like :func:`torch.library.impl` or
:func:`torch.library.register_fake`.
Args:
qualname (str): The qualified name for the operator. Should be
a string that looks like "namespace::name", e.g. "aten::sin".
Operators in PyTorch need a namespace to
avoid name collisions; a given operator may only be created once.
If you are writing a Python library, we recommend the namespace to
be the name of your top-level module.
schema (str): The schema of the operator. E.g. "(Tensor x) -> Tensor"
for an op that accepts one Tensor and returns one Tensor. It does
not contain the operator name (that is passed in ``qualname``).
lib (Optional[Library]): If provided, the lifetime of this operator
will be tied to the lifetime of the Library object.
tags (Tag | Sequence[Tag]): one or more torch.Tag to apply to this
operator. Tagging an operator changes the operator's behavior
under various PyTorch subsystems; please read the docs for the
torch.Tag carefully before applying it.
Example::
>>> import torch
>>> import numpy as np
>>>
>>> # Define the operator
>>> torch.library.define("mylib::sin", "(Tensor x) -> Tensor")
>>>
>>> # Add implementations for the operator
>>> @torch.library.impl("mylib::sin", "cpu")
>>> def f(x):
>>> return torch.from_numpy(np.sin(x.numpy()))
>>>
>>> # Call the new operator from torch.ops.
>>> x = torch.randn(3)
>>> y = torch.ops.mylib.sin(x)
>>> assert torch.allclose(y, x.sin())
"""
if not isinstance(qualname, str):
raise ValueError(
f"define(qualname, schema): expected qualname "
f"to be instance of str, got {type(qualname)}")
namespace, name = torch._library.utils.parse_namespace(qualname)
if lib is None:
lib = Library(namespace, "FRAGMENT")
_keep_alive.append(lib)
if not NAMELESS_SCHEMA.fullmatch(schema):
raise ValueError(
f"define(qualname, schema, ...): expected schema "
f'to look like e.g. "(Tensor x) -> Tensor" but '
f'got "{schema}"')
lib.define(name + schema, alias_analysis="", tags=tags)
@define.register
def _(lib: Library, schema, alias_analysis=""):
"""The old torch.library.define.
We're keeping this around for BC reasons
"""
def wrap(f):
name = lib.define(schema, alias_analysis)
lib.impl(name, f)
return f
return wrap
@functools.singledispatch
def impl(qualname, types, func=None, *, lib=None):
"""Register an implementation for a device type for this operator.
You may pass "default" for ``types`` to register this implementation as the
default implementation for ALL device types.
Please only use this if the implementation truly supports all device types;
for example, this is true if it is a composition of built-in PyTorch operators.
Some valid types are: "cpu", "cuda", "xla", "mps", "ipu", "xpu".
Args:
qualname (str): Should be a string that looks like "namespace::operator_name".
types (str | Sequence[str]): The device types to register an impl to.
lib (Optional[Library]): If provided, the lifetime of this registration
will be tied to the lifetime of the Library object.
Examples:
>>> import torch
>>> import numpy as np
>>>
>>> # Define the operator
>>> torch.library.define("mylib::mysin", "(Tensor x) -> Tensor")
>>>
>>> # Add implementations for the cpu device
>>> @torch.library.impl("mylib::mysin", "cpu")
>>> def f(x):
>>> return torch.from_numpy(np.sin(x.numpy()))
>>>
>>> x = torch.randn(3)
>>> y = torch.ops.mylib.mysin(x)
>>> assert torch.allclose(y, x.sin())
"""
if isinstance(types, str):
types = (types,)
keys = set({})
for typ in types:
is_dispatch_key = torch._C._parse_dispatch_key(typ)
if is_dispatch_key:
# We also support passing a DispatchKey to impl. Please prefer using
# the higher-level torch.library APIs and only pass DispatchKey to
# torch.library.impl with caution (or even better, don't use this
# option and file an issue on GitHub for what you need).
# We don't advertise this to users because
# it is very easy to shoot yourself in the foot.
keys.add(typ)
else:
keys.add(_device_type_to_key(typ))
def register(func):
namespace, _ = torch._library.utils.parse_namespace(qualname)
if lib is None:
use_lib = Library(namespace, "FRAGMENT")
_keep_alive.append(use_lib)
else:
use_lib = lib
for key in keys:
use_lib.impl(qualname, func, key)
if func is None:
return register
else:
register(func)
def _device_type_to_key(device_type: str) -> str:
if device_type == "default":
# This is technically not correct, because although all device_type
# DispatchKeys are included in CompositeExplicitAutograd,
# not everything in CompositeExplicitAutograd is associated with a
# device_type. I don't really care that much about the difference.
return "CompositeExplicitAutograd"
return torch._C._dispatch_key_for_device(device_type)
@impl.register
def _(lib: Library, name, dispatch_key=""):
"""Legacy torch.library.impl API. Kept around for BC"""
def wrap(f):
lib.impl(name, f, dispatch_key)
return f
return wrap
@deprecated(
"`torch.library.impl_abstract` was renamed to `torch.library.register_fake`. Please use that "
"instead; we will remove `torch.library.impl_abstract` in a future version of PyTorch.",
category=FutureWarning,
)
def impl_abstract(qualname, func=None, *, lib=None, _stacklevel=1):
r"""This API was renamed to :func:`torch.library.register_fake` in PyTorch 2.4.
Please use that instead.
"""
if func is not None:
_stacklevel = _stacklevel + 1
return register_fake(qualname, func, lib=lib, _stacklevel=_stacklevel)
_op_identifier = Union[str, "torch._ops.OpOverload", "torch._library.custom_ops.CustomOpDef"]
def register_kernel(
op: _op_identifier,
device_types: device_types_t,
func: Optional[Callable] = None,
/,
*,
lib: Optional[Library] = None):
"""Register an implementation for a device type for this operator.
Some valid device_types are: "cpu", "cuda", "xla", "mps", "ipu", "xpu".
This API may be used as a decorator.
Args:
fn (Callable): The function to register as the implementation for
the given device types.
device_types (None | str | Sequence[str]): The device_types to register an impl to.
If None, we will register to all device types -- please only use
this option if your implementation is truly device-type-agnostic.
Examples::
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA)
>>> import torch
>>> from torch import Tensor
>>> from torch.library import custom_op
>>> import numpy as np
>>>
>>> # Create a custom op that works on cpu
>>> @custom_op("mylib::numpy_sin", mutates_args=(), device_types="cpu")
>>> def numpy_sin(x: Tensor) -> Tensor:
>>> x_np = x.numpy()
>>> y_np = np.sin(x_np)
>>> return torch.from_numpy(y_np)
>>>
>>> # Add implementations for the cuda device
>>> @torch.library.register_kernel("mylib::numpy_sin", "cuda")
>>> def _(x):
>>> x_np = x.cpu().numpy()
>>> y_np = np.sin(x_np)
>>> return torch.from_numpy(y_np).to(device=x.device)
>>>
>>> x_cpu = torch.randn(3)
>>> x_cuda = x_cpu.cuda()
>>> assert torch.allclose(numpy_sin(x_cpu), x_cpu.sin())
>>> assert torch.allclose(numpy_sin(x_cuda), x_cuda.sin())
"""
if not isinstance(op, (str, torch._ops.OpOverload, torch._library.custom_ops.CustomOpDef)):
raise ValueError("register_kernel(op): got unexpected type for op: {type(op)}")
if isinstance(op, torch._ops.OpOverload):
op = op._name
opdef = _maybe_get_opdef(op)
if opdef is not None:
return opdef.register_kernel(device_types, func)
assert isinstance(op, str)
if device_types is None:
device_types = "CompositeExplicitAutograd"
return impl(op, device_types, func, lib=lib)
def register_fake(
op: _op_identifier,
func: Optional[Callable] = None,
/,
*,
lib: Optional[Library] = None,
_stacklevel: int = 1):
r"""Register a FakeTensor implementation ("fake impl") for this operator.
Also sometimes known as a "meta kernel", "abstract impl".
An "FakeTensor implementation" specifies the behavior of this operator on
Tensors that carry no data ("FakeTensor"). Given some input Tensors with
certain properties (sizes/strides/storage_offset/device), it specifies
what the properties of the output Tensors are.
The FakeTensor implementation has the same signature as the operator.
It is run for both FakeTensors and meta tensors. To write a FakeTensor
implementation, assume that all Tensor inputs to the operator are
regular CPU/CUDA/Meta tensors, but they do not have storage, and
you are trying to return regular CPU/CUDA/Meta tensor(s) as output.
The FakeTensor implementation must consist of only PyTorch operations
(and may not directly access the storage or data of any input or
intermediate Tensors).
This API may be used as a decorator (see examples).
For a detailed guide on custom ops, please see
https://pytorch.org/docs/main/notes/custom_operators.html
Examples:
>>> import torch
>>> import numpy as np
>>> from torch import Tensor
>>>
>>> # Example 1: an operator without data-dependent output shape
>>> @torch.library.custom_op("mylib::custom_linear", mutates_args=())
>>> def custom_linear(x: Tensor, weight: Tensor, bias: Tensor) -> Tensor:
>>> raise NotImplementedError("Implementation goes here")
>>>
>>> @torch.library.register_fake("mylib::custom_linear")
>>> def _(x, weight, bias):
>>> assert x.dim() == 2
>>> assert weight.dim() == 2
>>> assert bias.dim() == 1
>>> assert x.shape[1] == weight.shape[1]
>>> assert weight.shape[0] == bias.shape[0]
>>> assert x.device == weight.device
>>>
>>> return (x @ weight.t()) + bias
>>>
>>> with torch._subclasses.fake_tensor.FakeTensorMode():
>>> x = torch.randn(2, 3)
>>> w = torch.randn(3, 3)
>>> b = torch.randn(3)
>>> y = torch.ops.mylib.custom_linear(x, w, b)
>>>
>>> assert y.shape == (2, 3)
>>>
>>> # Example 2: an operator with data-dependent output shape
>>> @torch.library.custom_op("mylib::custom_nonzero", mutates_args=())
>>> def custom_nonzero(x: Tensor) -> Tensor:
>>> x_np = x.numpy(force=True)
>>> res = np.stack(np.nonzero(x_np), axis=1)
>>> return torch.tensor(res, device=x.device)
>>>
>>> @torch.library.register_fake("mylib::custom_nonzero")
>>> def _(x):
>>> # Number of nonzero-elements is data-dependent.
>>> # Since we cannot peek at the data in an fake impl,
>>> # we use the ctx object to construct a new symint that
>>> # represents the data-dependent size.
>>> ctx = torch.library.get_ctx()
>>> nnz = ctx.new_dynamic_size()
>>> shape = [nnz, x.dim()]
>>> result = x.new_empty(shape, dtype=torch.int64)
>>> return result
>>>
>>> from torch.fx.experimental.proxy_tensor import make_fx
>>>
>>> x = torch.tensor([0, 1, 2, 3, 4, 0])
>>> trace = make_fx(torch.ops.mylib.custom_nonzero, tracing_mode="symbolic")(x)
>>> trace.print_readable()
>>>
>>> assert torch.allclose(trace(x), torch.ops.mylib.custom_nonzero(x))
"""
if not isinstance(op, (str, torch._ops.OpOverload, torch._library.custom_ops.CustomOpDef)):
raise ValueError("register_fake(op): got unexpected type for op: {type(op)}")
if isinstance(op, torch._ops.OpOverload):
op = op._name
opdef = _maybe_get_opdef(op)
if opdef is not None:
if func is None:
return opdef.register_fake
else:
return opdef.register_fake(func)
assert isinstance(op, str)
stacklevel = _stacklevel
def register(func):
namespace, op_name = torch._library.utils.parse_namespace(op)
if lib is None:
use_lib = Library(namespace, "FRAGMENT")
_keep_alive.append(use_lib)
else:
use_lib = lib
use_lib._register_fake(op_name, func, _stacklevel=stacklevel + 1)
return func
if func is None:
return register
else:
stacklevel += 1
return register(func)
def register_autograd(op: _op_identifier, backward: Callable, /, *, setup_context: Optional[Callable] = None, lib=None) -> None:
r"""Register a backward formula for this custom op.
In order for an operator to work with autograd, you need to register
a backward formula:
1. You must tell us how to compute gradients during the backward pass
by providing us a "backward" function.
2. If you need any values from the forward to compute gradients, you can
use `setup_context` to save values for backward.
``backward`` runs during the backward pass. It accepts ``(ctx, *grads)``:
- ``grads`` is one or more gradients. The number of gradients matches
the number of outputs of the operator.
The ``ctx`` object is `the same ctx object <context_method_mixins>`_ used by
:class:`torch.autograd.Function`. The semantics of ``backward_fn`` are the
same as :meth:`torch.autograd.Function.backward`.
``setup_context(ctx, inputs, output)`` runs during the forward pass.
Please save quantities needed for backward onto the ``ctx`` object via
either :meth:`torch.autograd.function.FunctionCtx.save_for_backward`
or assigning them as attributes of ``ctx``. If your custom op has
kwarg-only arguments, we expect the signature of ``setup_context``
to be ``setup_context(ctx, inputs, keyword_only_inputs, output)``.
Both ``setup_context_fn`` and ``backward_fn`` must be traceable. That is,
they may not directly access :meth:`torch.Tensor.data_ptr` and they must
not depend on or mutate global state. If you need a non-traceable backward,
you can make it a separate custom_op that you call inside ``backward_fn``.
Examples:
>>> import torch
>>> import numpy as np
>>> from torch import Tensor
>>>
>>> @torch.library.custom_op("mylib::numpy_sin", mutates_args=())
>>> def numpy_sin(x: Tensor) -> Tensor:
>>> x_np = x.cpu().numpy()
>>> y_np = np.sin(x_np)
>>> return torch.from_numpy(y_np).to(device=x.device)
>>>
>>> def setup_context(ctx, inputs, output) -> Tensor:
>>> x, = inputs
>>> ctx.save_for_backward(x)
>>>
>>> def backward(ctx, grad):
>>> x, = ctx.saved_tensors
>>> return grad * x.cos()
>>>
>>> torch.library.register_autograd("mylib::numpy_sin", backward, setup_context=setup_context)
>>>
>>> x = torch.randn(3, requires_grad=True)
>>> y = numpy_sin(x)
>>> grad_x, = torch.autograd.grad(y, x, torch.ones_like(y))
>>> assert torch.allclose(grad_x, x.cos())
>>>
>>> # Example with a keyword-only arg
>>> @torch.library.custom_op("mylib::numpy_mul", mutates_args=())
>>> def numpy_mul(x: Tensor, *, val: float) -> Tensor:
>>> x_np = x.cpu().numpy()
>>> y_np = x_np * val
>>> return torch.from_numpy(y_np).to(device=x.device)
>>>
>>> def setup_context(ctx, inputs, keyword_only_inputs, output) -> Tensor:
>>> ctx.val = keyword_only_inputs["val"]
>>>
>>> def backward(ctx, grad):
>>> return grad * ctx.val
>>>
>>> torch.library.register_autograd("mylib::numpy_mul", backward, setup_context=setup_context)
>>>
>>> x = torch.randn(3, requires_grad=True)
>>> y = numpy_mul(x, val=3.14)
>>> grad_x, = torch.autograd.grad(y, x, torch.ones_like(y))
>>> assert torch.allclose(grad_x, torch.full_like(x, 3.14))
"""
if not isinstance(op, (str, torch._ops.OpOverload, torch._library.custom_ops.CustomOpDef)):
raise ValueError(f"register_autograd(op): got unexpected type for op: {type(op)}")
if isinstance(op, torch._ops.OpOverload):
op = op._name
opdef = _maybe_get_opdef(op)
if opdef is not None:
opdef.register_autograd(backward, setup_context=setup_context)
return
assert isinstance(op, str)
qualname = op
op = torch._library.utils.lookup_op(qualname)
schema = op._schema
if not _library.utils.is_functional_schema(schema):
raise RuntimeError(
f"Cannot register autograd formula for non-functional operator "
f"{op} with schema {schema}. Please create "
f"a functional operator and register an autograd formula for that."
)
if _library.utils.has_kwarg_only_tensors(schema):
raise NotImplementedError(
f"register_autograd with kwarg-only Tensor args. In the original "
f"definition of the op, please make your tensors not kwarg-only. "
f"Got: {schema}")
info = _library.autograd.Info(backward, setup_context)
autograd_kernel = _library.autograd.make_autograd_impl(op, info)
namespace, opname = torch._library.utils.parse_namespace(qualname)
if lib is None:
lib = Library(namespace, "FRAGMENT")
_keep_alive.append(lib)
lib.impl(opname, autograd_kernel, "Autograd", with_keyset=True)
# If the op was defined in C++, then we want to make sure there was an
# m.set_python_module(module, ...) call and that the module is the
# same as the module that called torch.library.register_fake.
def _check_pystubs_once(func, qualname, actual_module_name):
checked = False
def inner(*args, **kwargs):
nonlocal checked
if checked:
return func(*args, **kwargs)
op = torch._library.utils.lookup_op(qualname)
if op._defined_in_python:
checked = True
return func(*args, **kwargs)
maybe_pystub = torch._C._dispatch_pystub(
op._schema.name,
op._schema.overload_name)
if maybe_pystub is None:
if torch._library.utils.requires_set_python_module():
namespace = op.namespace
cpp_filename = op._handle.debug()
raise RuntimeError(
f"Operator '{qualname}' was defined in C++ and has a Python "
f"fake impl. In this situation, we require there to also be a "
f'companion C++ `m.set_python_module("{actual_module_name}")` '
f"call, but we could not find one. Please add that to "
f"to the top of the C++ TORCH_LIBRARY({namespace}, ...) block the "
f"operator was registered in ({cpp_filename})")
else:
pystub_module = maybe_pystub[0]
if actual_module_name != pystub_module:
cpp_filename = op._handle.debug()
raise RuntimeError(
f"Operator '{qualname}' specified that its python fake impl "
f"is in the Python module '{pystub_module}' but it was actually found "
f"in '{actual_module_name}'. Please either move the fake impl "
f"or correct the m.set_python_module call ({cpp_filename})")
checked = True
return func(*args, **kwargs)
return inner
# NOTE [ctx inside the fake implementation]
# If a user has an operator with data-dependent output shape, then when writing
# a fake implementation they must query the current ctx and use methods on the
# ctx to construct a new unbacked symint.
#
# This is done via us setting the global_ctx_getter function every time a fake
# implementation is invoked.
def get_ctx() -> "torch._library.abstract_impl.AbstractImplCtx":
"""get_ctx() returns the current AbstractImplCtx object.
Calling ``get_ctx()`` is only valid inside of an fake impl
(see :func:`torch.library.register_fake` for more usage details.
"""
return torch._library.abstract_impl.global_ctx_getter()
_OPCHECK_DEFAULT_UTILS = (
"test_schema",
"test_autograd_registration",
"test_faketensor",
"test_aot_dispatch_dynamic",
)
def opcheck(
op: Union[torch._ops.OpOverload, torch._ops.OpOverloadPacket, CustomOpDef],
args: Tuple[Any, ...],
kwargs: Optional[Dict[str, Any]] = None,
*,
test_utils: Union[str, Sequence[str]] = _OPCHECK_DEFAULT_UTILS,
raise_exception: bool = True,
) -> Dict[str, str]:
"""Given an operator and some sample arguments, tests if the operator is
registered correctly.
That is, when you use the torch.library/TORCH_LIBRARY APIs to create a
custom op, you specified metadata (e.g. mutability info) about the custom op
and these APIs require that the functions you pass them satisfy certain
properties (e.g. no data pointer access in the fake/meta/abstract kernel)
``opcheck`` tests these metadata and properties.
Concretely, we test the following:
- test_schema: if the operator's schema is correct.
- test_autograd_registration: if autograd was registered correctly.
- test_faketensor: If the operator has a FakeTensor kernel
(and if it is correct). The FakeTensor kernel is necessary (
but not sufficient) for the operator to work with PyTorch compilation
APIs (torch.compile/export/FX).
- test_aot_dispatch_dynamic: If the operator has correct behavior
with PyTorch compilation APIs (torch.compile/export/FX).
This checks that the outputs (and gradients, if applicable) are the
same under eager-mode PyTorch and torch.compile.
This test is a superset of ``test_faketensor``.
For best results, please call ``opcheck`` multiple times with a
representative set of inputs. If your operator supports
autograd, please use ``opcheck`` with inputs with ``requires_grad = True``;
if your operator supports multiple devices (e.g. CPU and CUDA), please
use ``opcheck`` with inputs on all supported devices.
Args:
op: The operator. Must either be a function decorated with
:func:`torch.library.custom_op` or an OpOverload/OpOverloadPacket
found in torch.ops.* (e.g. torch.ops.aten.sin, torch.ops.mylib.foo)
args: The args to the operator
kwargs: The kwargs to the operator
test_utils: Tests that we should run. Default: all of them.
Example: ("test_schema", "test_faketensor")
raise_exception: If we should raise an exception on the first
error. If False, we will return a dict with information
on if each test passed or not.
.. warning::
opcheck and :func:`torch.autograd.gradcheck` test different things;
opcheck tests if your usage of torch.library APIs is correct while
:func:`torch.autograd.gradcheck` tests if your autograd formula is
mathematically correct. Use both to test custom ops that support
gradient computation.
Example:
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA)
>>> @torch.library.custom_op("mylib::numpy_mul", mutates_args=())
>>> def numpy_add(x: Tensor, y: float) -> Tensor:
>>> x_np = x.numpy(force=True)
>>> z_np = x_np + y
>>> return torch.from_numpy(z_np).to(x.device)
>>>
>>> @numpy_sin.register_fake
>>> def _(x, y):
>>> return torch.empty_like(x)
>>>
>>> def setup_context(ctx, inputs, output):
>>> y, = inputs
>>> ctx.y = y
>>>
>>> def backward(ctx, grad):
>>> return grad * ctx.y, None
>>>
>>> numpy_sin.register_autograd(backward, setup_context=setup_context)
>>>
>>> sample_inputs = [
>>> (torch.randn(3), 3.14),
>>> (torch.randn(2, 3, device='cuda'), 2.718),
>>> (torch.randn(1, 10, requires_grad=True), 1.234),
>>> (torch.randn(64, 64, device='cuda', requires_grad=True), 90.18),
>>> ]
>>>
>>> for args in sample_inputs:
>>> torch.library.opcheck(foo, args)
"""
import torch.testing._internal.optests as optests
return optests.opcheck(op, args, kwargs, test_utils=test_utils, raise_exception=raise_exception)