forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
saved_variable.h
121 lines (104 loc) · 4.57 KB
/
saved_variable.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
#pragma once
#include <torch/csrc/Export.h>
#include <torch/csrc/autograd/forward_grad.h>
#include <torch/csrc/autograd/saved_variable_hooks.h>
#include <ATen/core/Tensor.h>
#include <cstdint>
#include <memory>
namespace torch::autograd {
using Variable = at::Tensor;
struct Node;
TORCH_API extern const char* ERR_BACKWARD_TWICE;
/// A snapshot of a variable at a certain version. A `SavedVariable` stores
/// enough information to reconstruct a variable from a certain point in time.
class TORCH_API SavedVariable {
public:
SavedVariable() = default;
SavedVariable(
const Variable& variable,
bool is_output,
bool is_inplace_on_view = false);
SavedVariable(
const std::optional<Variable>& variable,
bool is_output,
bool is_inplace_on_view = false);
SavedVariable(SavedVariable&&) = default;
SavedVariable& operator=(SavedVariable&&) = default;
~SavedVariable() {
if (fw_grad_) {
// See note [ Using ForwardGrad ]
fw_grad_->clear();
}
}
/// Reconstructs the saved variable. Pass `saved_for` as the gradient
/// function if constructing the `SavedVariable` with it would have caused a
/// circular reference.
Variable unpack(std::shared_ptr<Node> saved_for = nullptr) const;
void register_hooks(std::unique_ptr<SavedVariableHooks>&& hooks);
void reset_data();
bool has_hooks() const {
return (bool)hooks_;
}
private:
// This field contains either:
// 1. the variable to save
// 2. or its tensor_data.
// If storing the variable itself would create a circular reference,
// we fall into the second case and its metadata is also saved separately.
// In that case, the grad_fn must be passed in to the unpack function when
// reconstructing the Variable (except when we are doing an inplace operation
// on a view, see below). The field saved_original_ below reflects the two
// cases: its value is true in the first case and false in the second case.
// The value data_.defined() can be false in three cases:
// 1. SavedVariable was constructed without a Tensor (the value to save is
// None), in that case was_default_constructed_ will be kept at true
// 2. The saved variable has been released by calling
// SavedVariable::reset_data(), typically during the backward pass
// 3. Hooks have been registered. In that case, hooks_ will be defined
// instead. Note that the value of saved_original_ only reflects what happened
// during the construction of the SavedVariable. If saved_original_ is true,
// we saved the original tensor in data_, but if the user registers hooks, we
// will no longer have it (despite the saved_original_ still being true)
at::Tensor data_;
// This field is used to store the forward AD gradients associated with
// the saved Tensor. Note that this shared_ptr must never be shared with
// either the saved Tensor or the unpacked Tensor. See note [ Using
// ForwardGrad ]
std::shared_ptr<ForwardGrad> fw_grad_;
// Weak version of grad_fn_ that prevents leaks in rebase_history() for
// inplace views.
// This variable is used when the user chooses to create a SavedVariable with
// is_inplace_on_view = true.
// In that case, the grad_fn passed in to the unpack function at unwrapping
// time is unused.
std::weak_ptr<Node> weak_grad_fn_;
c10::VariableVersion version_counter_;
uint32_t saved_version_ = 0;
uint32_t output_nr_ = 0;
bool was_default_constructed_ = true;
bool is_inplace_on_view_ = false;
bool saved_original_ = false;
bool is_leaf_ = false;
bool is_output_ = false;
// Hooks are a pair of functions pack_hook/unpack_hook that provides
// fine-grained control over how the SavedVariable should save its data.
// pack_hook is called upon registration, while unpack_hook is called when
// unpacking.
std::unique_ptr<SavedVariableHooks> hooks_;
// Fields grad_fn_, grad_accumulator_, and requires_grad_ are only used if
// hooks are defined. They are set before pack_hook is called and used after
// unpack_hook is called.
std::shared_ptr<Node> grad_fn_;
// For the usual case where leaf tensors are the input, we expect its
// grad_acc to be kept alive by the graph. The reason SavedVariable holds
// a owning reference is to support the case where a custom autograd Function
// saves an intermediate.
std::shared_ptr<Node> grad_accumulator_;
bool requires_grad_ = false;
void save_metadata(const Variable& data);
static std::unique_ptr<SavedVariableHooks> get_default_hooks();
void set_hooks_and_pack_data(
std::unique_ptr<SavedVariableHooks>&& hooks,
const Variable& data);
};
} // namespace torch::autograd