forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
function.h
763 lines (669 loc) · 29 KB
/
function.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
#pragma once
#include <torch/csrc/autograd/anomaly_mode.h>
#include <torch/csrc/autograd/edge.h>
#include <torch/csrc/autograd/grad_mode.h>
#include <torch/csrc/autograd/graph_task.h>
#include <torch/csrc/autograd/input_metadata.h>
#include <torch/csrc/autograd/saved_variable.h>
#include <torch/csrc/autograd/variable.h>
#include <torch/csrc/utils/python_stub.h>
#include <torch/csrc/utils/variadic.h>
#include <ATen/SequenceNumber.h>
#include <ATen/core/Tensor.h>
#include <ATen/record_function.h>
#include <c10/util/Exception.h>
#include <c10/util/irange.h>
#include <algorithm>
#include <cstdint>
#include <initializer_list>
#include <memory>
#include <string>
#include <utility>
#include <vector>
namespace torch::autograd {
struct Edge;
struct FunctionPostHook;
struct FunctionPreHook;
using tensor_list = std::vector<at::Tensor>;
using variable_list = std::vector<Variable>;
using edge_list = std::vector<Edge>;
using saved_variable_list = std::vector<SavedVariable>;
using IndexRange = std::pair<size_t, size_t>;
using torch::dynamo::autograd::CompiledNodeArgs;
using torch::dynamo::autograd::SwapSavedVariables;
// Custom deleter to prevent stack overflows.
TORCH_API void deleteNode(Node* function);
// Guard that sets and restores the evaluating node
class NodeGuard {
public:
explicit NodeGuard(std::shared_ptr<Node> node);
~NodeGuard();
private:
std::shared_ptr<Node> last_evaluating_node_;
};
// Return the Node currently being evaluated (if any)
// This is only set during the backward pass while a Node is being
// executed.
TORCH_API std::shared_ptr<Node> get_current_node();
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Node
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// A `Node` is an abstract class that represents an operation taking zero
// or more input `Variable`s and producing zero or more output `Variable`s. All
// functions in PyTorch's autograd machinery derive from this class and
// override its `apply` method. Instances of such subclasses will then be
// invokable via the call operator.
//
// Nodes in the Autograd Graph
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// When viewing the autograd system as a graph, `Node`s are the vertices or
// nodes, connected to each other via (directed) `Edge`s, which themselves are
// represented via (`Node`, input_nr) pairs. `Variable`s are the outputs to
// and inputs of `Node`s, and travel between these edges during execution
// of the graph. When two or more `Edge`s (from different sources) point at the
// same input to a `Node`, the values produced along all of these edges are
// implicitly summed prior to being forwarded to the target `Node`.
//
// Hierarchy
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Subclasses usually represent differentiable functions as well as their
// gradient operators. Note, however, that due to the very general definition
// of a `Node` taking *zero* or more inputs and producing *zero* or more
// outputs, uses of `Node`s are flexible and extend beyond purely
// mathematical operations. For example, the `AccumulateGrad` function is a
// *sink*: it takes one input, but produces no outputs, instead accumulating
// the input as a side effect. At the other extreme, the `GraphRoot` function
// receives no inputs from other functions, but produces multiple outputs.
//
// Interface
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// The most important method on `Node` is the call operator, which takes in
// a list of variables and produces a list of variables. The precise size of
// these lists can be determined with `num_inputs()` and `num_outputs()`.
// `Node`s are stitched together via their `next_edge` interface, which let
// you manipulate the set of outgoing edges of a `Node`. You can add an
// edge with `add_next_edge()`, retrieve an edge with `next_edge(index)` and
// iterate over them via the `next_edges()` method. Other methods exist for
// integration with the JIT and other parts of PyTorch. Every `Node` has a
// *sequence number* that increases monotonically in the order of `Node`
// construction. It can be retrieved via the `sequence_nr()` method. Note that
// this sequence number is *thread local*. This means that when `Node`s
// `A`, `B` and `C` are created consecutively in the same thread, their
// sequence numbers will be ordered `A` < `B` < `C`. If, however, `A` and `B`
// are created in one thread and `C` is created in a new thread, there are *no
// guarantees* w.r.t. the ordering of `C` relative to `A` or `B`.
// See NOTE [ Sequence Number] for more details on the usages of sequence
// number.
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
struct TORCH_API Node : std::enable_shared_from_this<Node> {
public:
/// Construct a new `Node` with the given `next_edges`
explicit Node(uint64_t sequence_nr, edge_list&& next_edges = edge_list())
: sequence_nr_(sequence_nr), next_edges_(std::move(next_edges)) {
for (const Edge& edge : next_edges_) {
update_topological_nr(edge);
}
if (AnomalyMode::is_enabled()) {
metadata()->store_stack();
// If anomaly mode is enabled and graph is constructed, then assign the
// currently evaluating node as the parent of this node.
// A parent is a Node where this Node is created.
// We are tracking the parents to track multiple backward operations.
assign_parent();
}
// Store the thread_id of the forward operator.
// See NOTE [ Sequence Numbers ]
thread_id_ = at::RecordFunction::currentThreadId();
}
explicit Node(edge_list&& next_edges = edge_list())
: Node(
/*sequence_nr=*/at::sequence_number::get_and_increment(),
std::move(next_edges)) {}
/// Nodes are neither copyable nor moveable.
Node(const Node& other) = delete;
Node(Node&& other) = delete;
Node& operator=(const Node& other) = delete;
Node& operator=(Node&& other) = delete;
virtual ~Node() = default;
std::shared_ptr<Node> getptr() {
return shared_from_this();
}
/// Evaluates the function on the given inputs and returns the result of the
/// function call.
variable_list operator()(variable_list&& inputs) {
// In the first iteration of named tensors, autograd ignores names and
// operates on unnamed tensors. In the long term, autograd should
// probably operate with names.
at::NoNamesGuard no_names_guard;
#ifdef USE_ROCM
// Keep track of backward pass for rocblas.
at::ROCmBackwardPassGuard in_backward;
#endif
auto step_callbacks =
at::getStepCallbacksUnlessEmpty(at::RecordScope::BACKWARD_FUNCTION);
if (C10_UNLIKELY(step_callbacks.has_value())) {
at::RecordFunction guard(std::move(*step_callbacks));
// Using sequence number and thread id to correlate with
// the forward pass function
guard.setForwardThreadId(thread_id_);
if (guard.needsInputs()) {
std::vector<c10::IValue> inputs_vec(inputs.begin(), inputs.end());
guard.before(
name(),
c10::ArrayRef<const c10::IValue>(
inputs_vec.data(), inputs_vec.size()),
static_cast<int64_t>(sequence_nr()));
} else {
guard.before(name(), static_cast<int64_t>(sequence_nr()));
}
return apply(std::move(inputs));
} else {
return apply(std::move(inputs));
}
}
// Graph Connectivity API
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Inputs. NOTE: inputs of the grad_fn correspond to Tensor outputs of the
// forward function.
// Marker for expected undefined input
struct undefined_input {};
/// Adds the type and shape metadata for a new input. Returns the index of
/// of the new input.
uint32_t add_input_metadata(
const at::TensorOptions& options,
c10::SymIntArrayRef shape,
bool is_tensor_subclass,
bool is_nested) noexcept {
uint32_t input_nr = input_metadata_.size();
auto meta_shape = MetadataShape{std::in_place_type<SymIntSmallVec>, shape};
input_metadata_.emplace_back(
options, meta_shape, is_tensor_subclass, is_nested);
return input_nr;
}
uint32_t add_input_metadata(const at::Tensor& t) noexcept {
uint32_t input_nr = input_metadata_.size();
input_metadata_.emplace_back(t);
return input_nr;
}
/// Adds a placeholder for an input that will not be used.
uint32_t add_input_metadata(undefined_input u) noexcept {
uint32_t input_nr = input_metadata_.size();
input_metadata_.emplace_back();
return input_nr;
}
uint32_t num_inputs() const noexcept {
return input_metadata_.size();
}
const InputMetadata& input_metadata(size_t index) const {
return input_metadata_[index];
}
// Danger: not thread safe, caller must protect with lock
InputMetadata& mutable_input_metadata(size_t index) {
return input_metadata_[index];
}
/**
* Note: Function Streams
* A function's stream (for a given device type) is the stream of the first
* element of its input buffer on a device of that type.
*
* If all elements are on the same device they MUST share a stream. If
* elements are on different devices (across multiple GPUs, for example)
* they may have different streams.
*/
std::optional<c10::Stream> stream() {
auto opt_device_type = at::getAccelerator();
if (!opt_device_type.has_value()) {
return c10::nullopt;
}
for (const auto& metadata : input_metadata_) {
if (metadata.device().type() == opt_device_type.value())
return metadata.stream();
}
return c10::nullopt;
}
void clear_input_metadata() {
input_metadata_.clear();
}
// Outputs ("Next Edges")
void update_topological_nr(const Edge& edge) {
TORCH_INTERNAL_ASSERT(
!has_parent_,
"Cannot update a node's topological_nr after it already has a parent."
" If we allow this, we can no longer guarantee that a parent's"
" topo_nr is always greater than those of all its children")
Node* node = edge.function.get();
if (node) {
auto topo_nr = node->topological_nr();
if (topological_nr_ <= topo_nr) {
topological_nr_ = topo_nr + 1;
}
}
}
void set_next_edge(size_t index, Edge edge) {
update_topological_nr(edge);
next_edges_[index] = std::move(edge);
}
void add_next_edge(Edge edge) {
update_topological_nr(edge);
next_edges_.emplace_back(std::move(edge));
}
void set_next_edges(edge_list&& next_edges) {
next_edges_ = std::move(next_edges);
for (const auto& next_edge : next_edges_) {
update_topological_nr(next_edge);
}
}
const Edge& next_edge(size_t index) const noexcept {
return next_edges_[index];
}
const edge_list& next_edges() const noexcept {
return next_edges_;
}
edge_list& next_edges() noexcept {
return next_edges_;
}
uint32_t num_outputs() const noexcept {
return next_edges_.size();
}
// Miscellaneous Methods
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// NOTE [ Sequence Number]
///
/// The sequence_nr has two main usages in autograd:
///
/// 1) Helps determine the node's execution priority in the engine.
/// All else being equal, nodes with higher priority numbers are executed
/// first. Thus, nodes corresponding to ops executed later are the first to
/// be executed in the backward pass. One caveat is that we prioritize
/// AccumulateGrad nodes by explicitly setting its sequence_nr to be
/// UINT64_MAX.
/// 2) The sequence number of this `Node` is paired with with thread_id it was
/// created in
/// as a unique identifier by the profiler to annotate recorded events.
/// The purpose of this is to help users (and possibly programs)
/// interpreting the profiler's output to correlate backward nodes with its
/// forward ops. We need both sequence_nr and thread_id to identify a node
/// because sequence_nr is thread_local, i.e., starts counting up from zero
/// in a new thread
uint64_t sequence_nr() const noexcept {
return sequence_nr_;
}
void set_sequence_nr(uint64_t sequence_nr) {
sequence_nr_ = sequence_nr;
}
// NOTE [ Topological Number ]
//
// topological_nr is used to prune branches in the DAG during autograd
// discovery as maintaining topological_nr helps us check in O(1) if there
// does NOT exist a directed path between two nodes.
//
// The topological order number of this `Node` representing the length of the
// longest possible path from this Node to any leaf node. If you are leaf
// node, aka AccumulateGrad, this will be zero. This value has the property
// that For every pair of nodes X, Y in G, existence of a directed path from X
// to Y implies topo_nr(X) > topo_nr(Y). The converse is not true, however, so
// we cannot prove existence of a path from X to Y, only non-existence.
//
// One assumption we make when using topo_nr is that once a node
// has been used, i.e., has a parent node, its own topo_nr does not change
// we have added some checks with the `has_parent_` field to enforce this.
//
// What NOT to do:
//
// 1) 2 -> 1 -> 0 In this diagram we label nodes with their
// topo_nr.
// 2 -> 1 -> 0 We have two simple graphs that can each
// arise from
// `t.exp().exp()`, for example.
// 2) 2 -> 1 -> 0
// /
// 2 -> 1 -> 0 We add 2 as a next edge to 1 even though 1
// already
// has a parent.
// 3) 2 -> 1 -> 0
// /
// 2 -> 3 -> 0 2 < 3, yet there exists a path from 2 to 3!
//
uint64_t topological_nr() const noexcept {
has_parent_ = true;
return topological_nr_;
}
// assigning a node as a parent to this node
void assign_parent();
/// Id of the thread that created Node
uint64_t thread_id() const noexcept {
return thread_id_;
}
/// Returns the name of the dynamic type of the function, for debugging.
virtual std::string name() const;
/// The difference between functions `should_compute_output` and
/// `task_should_compute_output`:
/// - `should_compute_output` should only be used during graph construction
/// and takes into account only requires_grad information
/// - `task_should_compute_output` should only be called during the backward
/// pass (unless called directly through grad_fn) and takes into account the
/// current graph task. Specifically, the autograd engine trims unnecessary
/// edges when `inputs` are specified, and during backward untrimmed nodes
/// left on the graph can/should check `task_should_compute_output` to see if
/// any outgoing edges have been trimmed by the engine. If that is the case,
/// gradient computation wrt those edges can be omitted.
///
/// Returns true if the particular output edge is active, and that particular
/// output of this function should be computed.
bool should_compute_output(size_t output_edge_index) const {
TORCH_CHECK(output_edge_index < num_outputs(), "Index out of range");
return next_edges_[output_edge_index].is_valid();
}
/// Returns true if any of the output edges in any of the ranges are active.
bool should_compute_output(std::initializer_list<IndexRange> idxs) const {
return std::any_of(idxs.begin(), idxs.end(), [this](IndexRange range) {
for (const auto i : c10::irange(range.first, range.second)) {
if (should_compute_output(i))
return true;
}
return false;
});
}
/// Same as the above `should_compute_output` function but will also
/// check whether this edge is needed within the current graph task.
bool task_should_compute_output(size_t output_edge_index) const {
TORCH_CHECK(output_edge_index < num_outputs(), "Index out of range");
const auto& next = next_edges_[output_edge_index];
if (next.is_valid()) {
const auto exec_info = get_current_graph_task_exec_info();
if (exec_info && !exec_info->empty()) {
auto it = exec_info->find(next.function.get());
if (it == exec_info->end() || !it->second.should_execute()) {
return false; // this edge is not needed for the current graph_task
}
}
return true;
}
return false;
}
/// Returns true if any of the output edges in any of the ranges are active
/// and should be computed in the current graph task.
bool task_should_compute_output(
std::initializer_list<IndexRange> idxs) const {
return std::any_of(idxs.begin(), idxs.end(), [this](IndexRange range) {
for (const auto i : c10::irange(range.first, range.second)) {
if (task_should_compute_output(i))
return true;
}
return false;
});
}
/// Returns the `PyObject` stored for this `Node` (for Python
/// interaction).
PyObject* pyobj() const noexcept {
return pyobj_;
}
/// Sets the `PyObject` stored for this `Node` (for Python interaction).
void set_pyobj(PyObject* pyobj) noexcept {
pyobj_ = pyobj;
}
/// Returns the anomaly metadata stored for this `Node`.
/// If none exist, creates a new empty one.
AnomalyMetadata* metadata() noexcept;
// Hook API
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
uintptr_t add_post_hook(std::unique_ptr<FunctionPostHook>&& post_hook) {
post_hooks_.emplace_back(std::move(post_hook));
// Use the raw pointer as the unique key to identify this hook. This key
// can then be used in del_post_hook(key) to remove this hook.
return reinterpret_cast<std::uintptr_t>(post_hooks_.back().get());
}
const std::vector<std::unique_ptr<FunctionPostHook>>& post_hooks()
const noexcept {
return post_hooks_;
}
// delete a post hook matching the key
bool del_post_hook(const uintptr_t& key) {
for (auto it = post_hooks_.begin(); it != post_hooks_.end(); ++it) {
if (key == reinterpret_cast<std::uintptr_t>(it->get())) {
post_hooks_.erase(it);
return true;
}
}
return false;
}
std::vector<std::unique_ptr<FunctionPostHook>>& post_hooks() noexcept {
return post_hooks_;
}
void add_pre_hook(std::unique_ptr<FunctionPreHook>&& pre_hook) {
pre_hooks_.emplace_back(std::move(pre_hook));
}
void add_tensor_pre_hook(std::unique_ptr<FunctionPreHook>&& pre_hook) {
tensor_pre_hooks_.emplace_back(std::move(pre_hook));
}
void add_retains_grad_hook(
std::unique_ptr<FunctionPreHook>&& pre_hook,
size_t output_idx) {
retains_grad_hooks_[output_idx] = std::move(pre_hook);
}
std::unique_ptr<FunctionPreHook> pop_retains_grad_hook(size_t output_idx) {
auto ret = std::move(retains_grad_hooks_[output_idx]);
retains_grad_hooks_.erase(output_idx);
return ret;
}
const std::vector<std::unique_ptr<FunctionPreHook>>& pre_hooks()
const noexcept {
return pre_hooks_;
}
std::vector<std::unique_ptr<FunctionPreHook>>& pre_hooks() noexcept {
return pre_hooks_;
}
virtual std::vector<std::unique_ptr<FunctionPreHook>>&
tensor_pre_hooks() noexcept {
return tensor_pre_hooks_;
}
virtual std::unique_ptr<PostAccumulateGradHook>&
tensor_post_acc_grad_hooks() noexcept {
static std::unique_ptr<PostAccumulateGradHook> empty = nullptr;
return empty;
}
std::unordered_map<size_t, std::unique_ptr<FunctionPreHook>>&
retains_grad_hooks() noexcept {
return retains_grad_hooks_;
}
// Customization Points for Subclasses
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// Releases saved variables if the operation won't be reused.
virtual void release_variables() {}
/// Called before an apply if `release_variables()` is going to be called.
/// Allows larger ops like `InterpreterAutogradFunction` to incrementally
/// release variables as they run.
virtual void will_release_variables() {}
/// Returns true if this function is traceable. An op is traceable if all
/// operations happening within `apply()` are performed on autograd
/// `Variables` (i.e. apply mostly instantiates and applies other functions).
virtual bool is_traceable() {
return false;
}
/// A `Node` is said to pass state transparently to backward, if the
/// state consists only of (Saved)Variables and only non-variable objects
/// that parameterize the operation in some way that defines the graph
/// structure AND the backward function is traceable. In particular,
/// parametrization MUST NOT depend on the data of any `Variable`.
/// TODO: it might be possible to handle cases where backward is
/// non-traceable but state passing could be considered transparent. This
/// will probably depend on saved_variable_list being mutable.
/// NOTE: this value matters only if is_traceable() returns false.
virtual bool passes_state_transparently() {
return false;
}
// see [Note: Compiled Autograd]
// Used by compiled autograd to
// 1) Extract tensors/symint args
// 2) Collect node information for specialization and caching
// Implementations in subclasses should call args.collect() with all node
// attrs. These functions are only called durring backward.
virtual void compiled_args(CompiledNodeArgs& args) {
throw std::runtime_error(
std::string("compiled_args not implemented: ") + name());
}
// Used by compiled autograd to call apply() with different saved tensors
// Implementations should call saved.before() on all attrs, then apply(), then
// saved.after() on all attrs in the same order.
virtual variable_list apply_with_saved(
const variable_list& inputs,
SwapSavedVariables& saved) {
throw std::runtime_error(
std::string("apply_with_saved not implemented: ") + name());
}
protected:
/// Performs the `Node`'s actual operation.
virtual variable_list apply(variable_list&& inputs) = 0;
/// Calls `apply()`, but instruments it with tracing machinery.
variable_list traced_apply(variable_list inputs);
// Sequence number used to correlate backward nodes with forward ops in the
// profiler and provide determinism in the engine.
// NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
uint64_t sequence_nr_;
// See NOTE [ Topological Number ]
uint64_t topological_nr_ = 0;
// Tracks whether this node has been added as the next_edge of another node
// via set_next_edge(s), which always calls topological_nr() of all its
// children See NOTE [ Topological Number ] for why we need this.
mutable bool has_parent_ = false;
// Id of the thread that created the instance
uint64_t thread_id_ = 0;
// Note [Thread Safety on Autograd Node]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Autograd Engine let the owning thread which calls Engine::execute to drive
// the GraphTask execution, there might be cases that part of the GraphTask is
// shared across different `backward()` or `grad()` calls, i.e. fork new
// threads in the middle of the forward and call `backward()` separately from
// different threads. We need to protect the thread safety on NodeTask to
// prevent data racing on shared variables read/write.
//
// NB: This is only needed for Autograd Nodes that runs on CPU, technically
// "CUDA", "XLA" nodes don't need locking because device threads are always
// single threaded.
//
// Here we add a thread mutex to help protect the Node's thread safety, so
// that different threads cannot race the shared data when executing the same
// NodeTask from multiple CPU threads. It IS the user/developer responsibility
// to take advantage of this mutex to protect the thread safety of their
// autograd Node. The general strategy of thread safety on autograd Node:
//
// 1. User should lock the mutex during Node::release_variables() if the Node
// needs
// to release the variables on the fly, this serve the purpose that when we
// release saved_variables from one thread, no other threads can release
// the saved variables concurrently. call the Node::apply(),
// 2. User should lock the mutex during Node::apply(), this is to ensure Node
// that
// writing to the shared variable are not racing across threads (i.e.
// AccumulateGrad and custom C++ Autograd Node if writing to shared
// variables )
// 3. item 2 and item 3 should work together so that when we release saved
// variables
// from one thread, no other threads can call Node::apply(), this ensures
// the variable references from other threads aren't dangling.
// 4. if the Node don't release any variables and no shared data read/write in
// the Node
// i.e. purely functional, user don't need to lock the mutex
//
// This way we could protect the thread safety on Autograd Node, but we could
// still not protect the thread safety on Node pre/post C++ hooks (python
// hooks are automatically thread safe), we rely on the user to write thread
// safe C++ hooks if they want the hook to be correctly applied in
// multithreading environment.
std::mutex mutex_;
edge_list next_edges_;
PyObject* pyobj_ = nullptr; // weak reference
std::unique_ptr<AnomalyMetadata> anomaly_metadata_ = nullptr;
// NOTE [Hooks ordering]
// We have 3 separate fields for pre hooks registered to the autograd nodes
// because the conditions under which they execute are different, and we
// want more fine-grained control over the order in which different types
// of hooks are executed.
// - pre_hooks are only executed when the node itself is executed
// - tensor_pre_hook is executed as long as the engine traverses over it
// even if that node won't be executed.
// - retains_grad_hook are like tensor_pre_hooks except they are always
// ordered after all other tensor pre hooks
std::vector<std::unique_ptr<FunctionPreHook>> pre_hooks_;
std::vector<std::unique_ptr<FunctionPreHook>> tensor_pre_hooks_;
std::unordered_map<size_t, std::unique_ptr<FunctionPreHook>>
retains_grad_hooks_;
std::vector<std::unique_ptr<FunctionPostHook>> post_hooks_;
at::SmallVector<InputMetadata, 2> input_metadata_;
};
/// See Node::is_traceable() for definition.
struct TraceableFunction : public Node {
using Node::Node;
bool is_traceable() final {
return true;
}
};
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Associated Free Nodes
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
namespace detail {
// Implementation of `collect_next_edges` (see below).
struct MakeNextFunctionList : IterArgs<MakeNextFunctionList> {
edge_list next_edges;
using IterArgs<MakeNextFunctionList>::operator();
void operator()(const Variable& variable) {
if (variable.defined()) {
next_edges.emplace_back(impl::gradient_edge(variable));
} else {
next_edges.emplace_back();
}
}
void operator()(const Variable* variable) {
operator()(*variable);
}
void operator()(const std::optional<Variable>& variable) {
if (variable.has_value()) {
operator()(*variable);
} else {
next_edges.emplace_back();
}
}
};
} // namespace detail
/// Create an `Edge` between the given `variable` and the `function`, which is
/// assumed to be the gradient function of this variable (i.e. the function
/// through which this variable is backpropagated during the backward pass).
/// This sets the `grad_fn` property of the `variable`. This function assumes
/// that the `Variable` is a new input to the gradient function and its
/// `input_nr` thus equal to `function->num_inputs()`. Additionally, it
/// increments the `Node`'s number of inputs by one. Approximately
/// equivalent to `variable.set_gradient_edge(function,
/// function->add_input_metadata(variable.dispatch_type(), variable.sizes()))`.
/// If you don't want the `Node`'s `num_inputs` to be incremented, use
/// `set_gradient_edge` directly.
inline void create_gradient_edge(
Variable& variable,
std::shared_ptr<Node> function) {
// Copy before move.
const auto input_nr = function->add_input_metadata(variable);
impl::set_gradient_edge(variable, {std::move(function), input_nr});
}
/// Return true if any of the variables in the list require a gradient.
inline bool any_variable_requires_grad(const variable_list& variables) {
return std::any_of(
variables.begin(), variables.end(), [](const Variable& variable) {
return variable.defined() && variable.requires_grad();
});
}
/// Return the next edges of all the given variables, or tuples of variables.
template <typename... Variables>
edge_list collect_next_edges(Variables&&... variables) {
detail::MakeNextFunctionList make;
make.apply(std::forward<Variables>(variables)...);
return std::move(make.next_edges);
}
struct TypeAndSize {
TypeAndSize() : options(at::TensorOptions()) {}
/* implicit */
TypeAndSize(const at::Tensor& t)
: sym_sizes(t.sym_sizes().vec()), options(t.options()) {}
at::Tensor zeros();
std::vector<c10::SymInt> sym_sizes;
at::TensorOptions options;
};
} // namespace torch::autograd