forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_utils_internal.py
222 lines (169 loc) · 7.14 KB
/
_utils_internal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import functools
import logging
import os
import sys
import tempfile
from typing import Any, Dict, Optional
import torch
from torch._strobelight.compile_time_profiler import StrobelightCompileTimeProfiler
log = logging.getLogger(__name__)
if os.environ.get("TORCH_COMPILE_STROBELIGHT", False):
import shutil
if not shutil.which("strobeclient"):
log.info(
"TORCH_COMPILE_STROBELIGHT is true, but seems like you are not on a FB machine."
)
else:
log.info("Strobelight profiler is enabled via environment variable")
StrobelightCompileTimeProfiler.enable()
# this arbitrary-looking assortment of functionality is provided here
# to have a central place for overrideable behavior. The motivating
# use is the FB build environment, where this source file is replaced
# by an equivalent.
if torch._running_with_deploy():
# __file__ is meaningless in the context of frozen torch used in torch deploy.
# setting empty torch_parent should allow below functions to operate without crashing,
# but it's unclear if there is a valid use case for them in the context of deploy.
torch_parent = ""
else:
if os.path.basename(os.path.dirname(__file__)) == "shared":
torch_parent = os.path.dirname(os.path.dirname(os.path.dirname(__file__)))
else:
torch_parent = os.path.dirname(os.path.dirname(__file__))
def get_file_path(*path_components: str) -> str:
return os.path.join(torch_parent, *path_components)
def get_file_path_2(*path_components: str) -> str:
return os.path.join(*path_components)
def get_writable_path(path: str) -> str:
if os.access(path, os.W_OK):
return path
return tempfile.mkdtemp(suffix=os.path.basename(path))
def prepare_multiprocessing_environment(path: str) -> None:
pass
def resolve_library_path(path: str) -> str:
return os.path.realpath(path)
def throw_abstract_impl_not_imported_error(opname, module, context):
if module in sys.modules:
raise NotImplementedError(
f"{opname}: We could not find the fake impl for this operator. "
)
else:
raise NotImplementedError(
f"{opname}: We could not find the fake impl for this operator. "
f"The operator specified that you may need to import the '{module}' "
f"Python module to load the fake impl. {context}"
)
# NB! This treats "skip" kwarg specially!!
def compile_time_strobelight_meta(phase_name):
def compile_time_strobelight_meta_inner(function):
@functools.wraps(function)
def wrapper_function(*args, **kwargs):
if "skip" in kwargs:
kwargs["skip"] = kwargs["skip"] + 1
return StrobelightCompileTimeProfiler.profile_compile_time(
function, phase_name, *args, **kwargs
)
return wrapper_function
return compile_time_strobelight_meta_inner
# Meta only, see
# https://www.internalfb.com/intern/wiki/ML_Workflow_Observability/User_Guides/Adding_instrumentation_to_your_code/
#
# This will cause an event to get logged to Scuba via the signposts API. You
# can view samples on the API at https://fburl.com/scuba/workflow_signpost/zh9wmpqs
# we log to subsystem "torch", and the category and name you provide here.
# Each of the arguments translate into a Scuba column. We're still figuring
# out local conventions in PyTorch, but category should be something like
# "dynamo" or "inductor", and name should be a specific string describing what
# kind of event happened.
#
# Killswitch is at
# https://www.internalfb.com/intern/justknobs/?name=pytorch%2Fsignpost#event
def signpost_event(category: str, name: str, parameters: Dict[str, Any]):
log.info("%s %s: %r", category, name, parameters)
def log_compilation_event(metrics):
log.info("%s", metrics)
def upload_graph(graph):
pass
def set_pytorch_distributed_envs_from_justknobs():
pass
def log_export_usage(**kwargs):
pass
def log_torchscript_usage(api: str):
_ = api
return
def check_if_torch_exportable():
return False
def log_torch_jit_trace_exportability(
api: str, type_of_export: str, export_outcome: str, result: str
):
_, _, _, _ = api, type_of_export, export_outcome, result
return
def export_api_rollout_check() -> bool:
return False
def justknobs_check(name: str) -> bool:
"""
This function can be used to killswitch functionality in FB prod,
where you can toggle this value to False in JK without having to
do a code push. In OSS, we always have everything turned on all
the time, because downstream users can simply choose to not update
PyTorch. (If more fine-grained enable/disable is needed, we could
potentially have a map we lookup name in to toggle behavior. But
the point is that it's all tied to source code in OSS, since there's
no live server to query.)
This is the bare minimum functionality I needed to do some killswitches.
We have a more detailed plan at
https://docs.google.com/document/d/1Ukerh9_42SeGh89J-tGtecpHBPwGlkQ043pddkKb3PU/edit
In particular, in some circumstances it may be necessary to read in
a knob once at process start, and then use it consistently for the
rest of the process. Future functionality will codify these patterns
into a better high level API.
WARNING: Do NOT call this function at module import time, JK is not
fork safe and you will break anyone who forks the process and then
hits JK again.
"""
return True
def justknobs_getval_int(name: str) -> int:
"""
Read warning on justknobs_check
"""
return 0
@functools.lru_cache(None)
def max_clock_rate():
if not torch.version.hip:
from triton.testing import nvsmi
return nvsmi(["clocks.max.sm"])[0]
else:
# Manually set max-clock speeds on ROCm until equivalent nvmsi
# functionality in triton.testing or via pyamdsmi enablement. Required
# for test_snode_runtime unit tests.
gcn_arch = str(torch.cuda.get_device_properties(0).gcnArchName.split(":", 1)[0])
if "gfx94" in gcn_arch:
return 1700
elif "gfx90a" in gcn_arch:
return 1700
elif "gfx908" in gcn_arch:
return 1502
elif "gfx11" in gcn_arch:
return 1700
elif "gfx103" in gcn_arch:
return 1967
elif "gfx101" in gcn_arch:
return 1144
else:
return 1100
TEST_MASTER_ADDR = "127.0.0.1"
TEST_MASTER_PORT = 29500
# USE_GLOBAL_DEPS controls whether __init__.py tries to load
# libtorch_global_deps, see Note [Global dependencies]
USE_GLOBAL_DEPS = True
# USE_RTLD_GLOBAL_WITH_LIBTORCH controls whether __init__.py tries to load
# _C.so with RTLD_GLOBAL during the call to dlopen.
USE_RTLD_GLOBAL_WITH_LIBTORCH = False
# If an op was defined in C++ and extended from Python using the
# torch.library.register_fake, returns if we require that there be a
# m.set_python_module("mylib.ops") call from C++ that associates
# the C++ op with a python module.
REQUIRES_SET_PYTHON_MODULE = False
def maybe_upload_prof_stats_to_manifold(profile_path: str) -> Optional[str]:
print("Uploading profile stats (fb-only otherwise no-op)")
return None