forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
_custom_ops.py
322 lines (270 loc) · 12.5 KB
/
_custom_ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import inspect
from torch._custom_op.impl import (
_custom_op_with_schema,
_find_custom_op,
infer_schema,
parse_qualname,
validate_namespace,
)
from torch.library import get_ctx
__all__ = [
"custom_op",
"impl",
"impl_abstract",
"get_ctx",
"impl_save_for_backward",
"impl_backward",
]
def custom_op(qualname, func_or_schema=None):
r"""Register a new custom operator
In PyTorch, defining an op (short for "operator") is a two step-process:
- we need to define the op (by providing an operator name and schema)
- we need to implement behavior for how the operator interacts with
various PyTorch subsystems, like CPU/CUDA Tensors, Autograd, etc.
This entrypoint defines the custom operator (the first step)
you must then perform the second step by calling various
``impl_*`` APIs.
This API may be used as a decorator (see examples).
For a detailed guide on custom ops, please see
https://docs.google.com/document/d/1aGWtgxV3HppuxQAdddyPrs74_aEntpkYt9MalnCKnhk
Arguments:
qualname (str): Should be a string that looks like
"namespace::operator_name". Operators in PyTorch need a namespace to
avoid name collisions; a given operator may only be created once.
If you are writing a Python library, we recommend the namespace to
be the name of your top-level module.
func_or_schema (Union[Callable, str]): Each PyTorch operator needs a
schema that tells PyTorch the types of the inputs/outputs.
If this is a Callable, we will automatically infer the schema from
the type annotations on the function (see examples). Otherwise,
if you don't want to use type annotations, you may provide us the
schema string.
Example::
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA)
>>> import torch
>>> import numpy as np
>>> from torch import Tensor
>>>
>>> # Step 1: define the custom op.
>>> # We need to provide the API a "prototype function"
>>> # (a function that returns NotImplementedError), from which
>>> # we will infer the types of the inputs and outputs.
>>> @torch._custom_ops.custom_op("mylibrary::numpy_sin")
>>> def numpy_sin(x: Tensor) -> Tensor:
>>> raise NotImplementedError
>>>
>>> # The custom op is now accessible via the torch.ops module:
>>> torch.ops.mylibrary.numpy_sin
>>>
>>> # Step 2: Register an implementation for various PyTorch subsystems
>>>
>>> # Register an implementation for CPU tensors
>>> @torch._custom_ops.impl("mylibrary::numpy_sin", device_types="cpu")
>>> def numpy_sin_impl_cpu(x):
>>> return torch.from_numpy(np.sin(x.numpy()))
>>>
>>> # Register an implementation for CUDA tensors
>>> @torch._custom_ops.impl("mylibrary::numpy_sin", device_types="cuda")
>>> def numpy_sin_impl_cuda(x):
>>> return torch.from_numpy(np.sin(x.cpu().numpy())).to(x.device)
>>>
>>> x = torch.randn(3)
>>> torch.ops.mylibrary.numpy_sin(x) # calls numpy_sin_impl_cpu
>>>
>>> x_cuda = x.cuda()
>>> torch.ops.mylibrary.numpy_sin(x) # calls numpy_sin_impl_cuda
"""
ns, name = parse_qualname(qualname)
validate_namespace(ns)
def inner(func):
if not inspect.isfunction(func):
raise ValueError(
f"custom_op(...)(func): Expected `func` to be a Python "
f"function, got: {type(func)}"
)
if func.__name__ != name:
raise ValueError(
f"custom_op(qualname='{qualname}', ...)(func): expected `func` "
f"to have name '{name}' but got '{func.__name__}'. "
f"Please either change the name of `func` or the qualname that "
f"is passed to `custom_op`"
)
schema = infer_schema(func)
_custom_op_with_schema(qualname, schema)
return func
if func_or_schema is None:
return inner
if isinstance(func_or_schema, str):
_custom_op_with_schema(qualname, func_or_schema)
else:
return inner(func_or_schema)
def impl(qualname, *, device_types=("cpu", "cuda"), func=None):
r"""Register an implementation for a device type for this custom op.
If the op is passed multiple Tensor inputs with different device
types, it will dispatch to the registered implementation for the highest
priority device type among those present.
The supported device types, in order of priority, are {'cuda', 'cpu'}.
This API may be used as a decorator (see examples).
For a detailed guide on custom ops, please see
https://docs.google.com/document/d/1aGWtgxV3HppuxQAdddyPrs74_aEntpkYt9MalnCKnhk
Arguments:
device_types (str or Iterable[str]): the device type(s) to register the function for.
Example::
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA)
>>> import torch
>>> import numpy as np
>>> from torch import Tensor
>>>
>>> # Step 1: define the custom op.
>>> # We need to provide the API a "prototype function"
>>> # (a function that returns NotImplementedError), from which
>>> # we will infer the types of the inputs and outputs.
>>> @torch._custom_ops.custom_op("mylibrary::numpy_cos")
>>> def numpy_cos(x: Tensor) -> Tensor:
>>> raise NotImplementedError
>>>
>>> # The custom op is now accessible via the torch.ops module:
>>> torch.ops.mylibrary.numpy_cos
>>>
>>> # Step 2: Register an implementation for various PyTorch subsystems
>>>
>>> # Register an implementation for CPU tensors
>>> @torch._custom_ops.impl("mylibrary::numpy_cos", device_types="cpu")
>>> def numpy_cos_impl_cpu(x):
>>> return torch.from_numpy(np.cos(x.numpy()))
>>>
>>> # Register an implementation for CUDA tensors
>>> @torch._custom_ops.impl("mylibrary::numpy_cos", device_types="cuda")
>>> def numpy_cos_impl_cuda(x):
>>> return torch.from_numpy(np.cos(x.cpu().numpy())).to(x.device)
>>>
>>> x = torch.randn(3)
>>> torch.ops.mylibrary.numpy_cos(x) # calls numpy_cos_impl_cpu
>>>
>>> x_cuda = x.cuda()
>>> torch.ops.mylibrary.numpy_cos(x) # calls numpy_cos_impl_cuda
"""
def inner(func):
custom_op = _find_custom_op(qualname, also_check_torch_library=True)
custom_op.impl(device_types, _stacklevel=3)(func)
return func
if func is None:
return inner
return inner(func)
def impl_abstract(qualname, *, func=None):
r"""Register an abstract implementation for this operator.
An "abstract implementation" specifies the behavior of this operator on
Tensors that carry no data. Given some input Tensors with certain properties
(sizes/strides/storage_offset/device), it specifies what the properties of
the output Tensors are.
The abstract implementation has the same signature as the operator.
It is run for both FakeTensors and meta tensors. To write an abstract
implementation, assume that all Tensor inputs to the operator are
regular CPU/CUDA/Meta tensors, but they do not have storage, and
you are trying to return regular CPU/CUDA/Meta tensor(s) as output.
The abstract implementation must consist of only PyTorch operations
(and may not directly access the storage or data of any input or
intermediate Tensors).
This API may be used as a decorator (see examples).
For a detailed guide on custom ops, please see
https://docs.google.com/document/d/1aGWtgxV3HppuxQAdddyPrs74_aEntpkYt9MalnCKnhk
Examples::
>>> import numpy as np
>>> from torch import Tensor
>>>
>>> # Example 1: an operator without data-dependent output shape
>>> @torch._custom_ops.custom_op("mylibrary::custom_linear")
>>> def custom_linear(x: Tensor, weight: Tensor, bias: Tensor) -> Tensor:
>>> raise NotImplementedError
>>>
>>> @torch._custom_ops.impl_abstract("mylibrary::custom_linear")
>>> def custom_linear_abstract(x, weight):
>>> assert x.dim() == 2
>>> assert weight.dim() == 2
>>> assert bias.dim() == 1
>>> assert x.shape[1] == weight.shape[1]
>>> assert weight.shape[0] == bias.shape[0]
>>> assert x.device == weight.device
>>>
>>> return (x @ weight.t()) + bias
>>>
>>> # Example 2: an operator with data-dependent output shape
>>> @torch._custom_ops.custom_op('mylibrary::custom_nonzero')
>>> def custom_nonzero(x: Tensor) -> Tensor:
>>> ...
>>>
>>> @torch._custom_ops.impl_abstract("mylibrary::custom_nonzero")
>>> def custom_nonzero_abstract(x):
>>> # Number of nonzero-elements is data-dependent.
>>> # Since we cannot peek at the data in an abstract impl,
>>> # we use the ctx object to construct a new symint that
>>> # represents the data-dependent size.
>>> ctx = torch._custom_ops.get_ctx()
>>> nnz = ctx.create_unbacked_symint()
>>> shape = [x.dim(), nnz]
>>> result = x.new_empty(shape, dtype=torch.long)
>>> return result
>>>
>>> @torch._custom_ops.impl("mylibrary::custom_nonzero")
>>> def custom_nonzero_impl(x):
>>> x_np = to_numpy(x)
>>> res = np.stack(np.nonzero(x_np), axis=1)
>>> # unbacked symbolic ints in PyTorch must be >= 2, so we
>>> # constrain the range to at least 2
>>> if res.shape[0] <= 1:
>>> raise RuntimeError("not supported")
>>> return torch.tensor(res, device=x.device)
"""
import torch.library
return torch.library.register_fake(qualname, func, _stacklevel=2)
def impl_save_for_backward(qualname, *, func=None):
r"""Register a function that tells us what to save for backward.
Please see :func:`impl_backward` for more details.
"""
def inner(func):
custom_op = _find_custom_op(qualname, also_check_torch_library=True)
custom_op.impl_save_for_backward(_stacklevel=3)(func)
return func
if func is None:
return inner
return inner(func)
def impl_backward(qualname, output_differentiability=None, *, func=None):
r"""Registers a backward formula for an operator.
In order for an operator to work with autograd, you need to register
a backward formula. There are two pieces to this:
1. You must give us a function to specify what to save for backward.
Call this the "save for backward" function.
2. You must give us a function that computes gradients. Call this the
"backward" function.
Use `impl_save_for_backward` to define a "save for backward" function
that specifies what gets saved for backward. The function should accept
two arguments ``(inputs, output)`` and return the quantities to be saved
for backward.
During runtime, when you call the operator in a forwards pass, PyTorch
will invoke the "save for backward" function with the inputs and output
of the operator.
Use `impl_backward` to define the "backward" function. The backward
function must accept ``(ctx, saved, *grads)``:
- ``ctx`` is a context object where we may provide information
- ``saved`` is exactly what gets returned from the "save for backward"
function
- ``grads`` is one or more gradients. The number of gradients matches
the number of outputs of the operator.
The backward function must return a dict that maps the name of
an input to the operator to its corresponding gradient. All inputs that
were declared to be Tensors in the operator definition must be accounted
for in the dict. The gradient may be a Tensor or None.
For a detailed guide on custom ops, please see
https://docs.google.com/document/d/1aGWtgxV3HppuxQAdddyPrs74_aEntpkYt9MalnCKnhk
"""
def inner(func):
custom_op = _find_custom_op(qualname, also_check_torch_library=True)
custom_op.impl_backward(output_differentiability, _stacklevel=3)(func)
return func
if func is None:
return inner
return inner(func)
def _destroy(qualname):
"""De-registers a custom op. For testing purposes only"""
custom_op = _find_custom_op(qualname)
custom_op._destroy()