forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_cuda_nvml_based_avail.py
166 lines (144 loc) · 7.09 KB
/
test_cuda_nvml_based_avail.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# Owner(s): ["module: cuda"]
import multiprocessing
import os
import sys
import unittest
from unittest.mock import patch
import torch
# NOTE: Each of the tests in this module need to be run in a brand new process to ensure CUDA is uninitialized
# prior to test initiation.
with patch.dict(os.environ, {"PYTORCH_NVML_BASED_CUDA_CHECK": "1"}):
# Before executing the desired tests, we need to disable CUDA initialization and fork_handler additions that would
# otherwise be triggered by the `torch.testing._internal.common_utils` module import
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
IS_JETSON,
IS_WINDOWS,
NoTest,
parametrize,
run_tests,
TestCase,
)
# NOTE: Because `remove_device_and_dtype_suffixes` initializes CUDA context (triggered via the import of
# `torch.testing._internal.common_device_type` which imports `torch.testing._internal.common_cuda`) we need
# to bypass that method here which should be irrelevant to the parameterized tests in this module.
torch.testing._internal.common_utils.remove_device_and_dtype_suffixes = lambda x: x
TEST_CUDA = torch.cuda.is_available()
if not TEST_CUDA:
print("CUDA not available, skipping tests", file=sys.stderr)
TestCase = NoTest # type: ignore[misc, assignment] # noqa: F811
@torch.testing._internal.common_utils.markDynamoStrictTest
class TestExtendedCUDAIsAvail(TestCase):
SUBPROCESS_REMINDER_MSG = (
"\n REMINDER: Tests defined in test_cuda_nvml_based_avail.py must be run in a process "
"where there CUDA Driver API has not been initialized. Before further debugging, ensure you are either using "
"run_test.py or have added --subprocess to run each test in a different subprocess."
)
def setUp(self):
super().setUp()
torch.cuda._cached_device_count = (
None # clear the lru_cache on this method before our test
)
@staticmethod
def in_bad_fork_test() -> bool:
_ = torch.cuda.is_available()
return torch.cuda._is_in_bad_fork()
# These tests validate the behavior and activation of the weaker, NVML-based, user-requested
# `torch.cuda.is_available()` assessment. The NVML-based assessment should be attempted when
# `PYTORCH_NVML_BASED_CUDA_CHECK` is set to 1, reverting to the default CUDA Runtime API check otherwise.
# If the NVML-based assessment is attempted but fails, the CUDA Runtime API check should be executed
@unittest.skipIf(IS_WINDOWS, "Needs fork")
@parametrize("nvml_avail", [True, False])
@parametrize("avoid_init", ["1", "0", None])
def test_cuda_is_available(self, avoid_init, nvml_avail):
if IS_JETSON and nvml_avail and avoid_init == "1":
self.skipTest("Not working for Jetson")
patch_env = {"PYTORCH_NVML_BASED_CUDA_CHECK": avoid_init} if avoid_init else {}
with patch.dict(os.environ, **patch_env):
if nvml_avail:
_ = torch.cuda.is_available()
else:
with patch.object(torch.cuda, "_device_count_nvml", return_value=-1):
_ = torch.cuda.is_available()
with multiprocessing.get_context("fork").Pool(1) as pool:
in_bad_fork = pool.apply(TestExtendedCUDAIsAvail.in_bad_fork_test)
if os.getenv("PYTORCH_NVML_BASED_CUDA_CHECK") == "1" and nvml_avail:
self.assertFalse(
in_bad_fork, TestExtendedCUDAIsAvail.SUBPROCESS_REMINDER_MSG
)
else:
assert in_bad_fork
@torch.testing._internal.common_utils.markDynamoStrictTest
class TestVisibleDeviceParses(TestCase):
def test_env_var_parsing(self):
def _parse_visible_devices(val):
from torch.cuda import _parse_visible_devices as _pvd
with patch.dict(os.environ, {"CUDA_VISIBLE_DEVICES": val}, clear=True):
return _pvd()
# rest of the string is ignored
self.assertEqual(_parse_visible_devices("1gpu2,2ampere"), [1, 2])
# Negatives abort parsing
self.assertEqual(_parse_visible_devices("0, 1, 2, -1, 3"), [0, 1, 2])
# Double mention of ordinal returns empty set
self.assertEqual(_parse_visible_devices("0, 1, 2, 1"), [])
# Unary pluses and minuses
self.assertEqual(_parse_visible_devices("2, +3, -0, 5"), [2, 3, 0, 5])
# Random string is used as empty set
self.assertEqual(_parse_visible_devices("one,two,3,4"), [])
# Random string is used as separator
self.assertEqual(_parse_visible_devices("4,3,two,one"), [4, 3])
# GPU ids are parsed
self.assertEqual(_parse_visible_devices("GPU-9e8d35e3"), ["GPU-9e8d35e3"])
# Ordinals are not included in GPUid set
self.assertEqual(_parse_visible_devices("GPU-123, 2"), ["GPU-123"])
# MIG ids are parsed
self.assertEqual(_parse_visible_devices("MIG-89c850dc"), ["MIG-89c850dc"])
def test_partial_uuid_resolver(self):
from torch.cuda import _transform_uuid_to_ordinals
uuids = [
"GPU-9942190a-aa31-4ff1-4aa9-c388d80f85f1",
"GPU-9e8d35e3-a134-0fdd-0e01-23811fdbd293",
"GPU-e429a63e-c61c-4795-b757-5132caeb8e70",
"GPU-eee1dfbc-0a0f-6ad8-5ff6-dc942a8b9d98",
"GPU-bbcd6503-5150-4e92-c266-97cc4390d04e",
"GPU-472ea263-58d7-410d-cc82-f7fdece5bd28",
"GPU-e56257c4-947f-6a5b-7ec9-0f45567ccf4e",
"GPU-1c20e77d-1c1a-d9ed-fe37-18b8466a78ad",
]
self.assertEqual(_transform_uuid_to_ordinals(["GPU-9e8d35e3"], uuids), [1])
self.assertEqual(
_transform_uuid_to_ordinals(["GPU-e4", "GPU-9e8d35e3"], uuids), [2, 1]
)
self.assertEqual(
_transform_uuid_to_ordinals("GPU-9e8d35e3,GPU-1,GPU-47".split(","), uuids),
[1, 7, 5],
)
# First invalid UUID aborts parsing
self.assertEqual(
_transform_uuid_to_ordinals(["GPU-123", "GPU-9e8d35e3"], uuids), []
)
self.assertEqual(
_transform_uuid_to_ordinals(["GPU-9e8d35e3", "GPU-123", "GPU-47"], uuids),
[1],
)
# First ambigous UUID aborts parsing
self.assertEqual(
_transform_uuid_to_ordinals(["GPU-9e8d35e3", "GPU-e", "GPU-47"], uuids), [1]
)
# Duplicate UUIDs result in empty set
self.assertEqual(
_transform_uuid_to_ordinals(["GPU-9e8d35e3", "GPU-47", "GPU-9e8"], uuids),
[],
)
def test_ordinal_parse_visible_devices(self):
def _device_count_nvml(val):
from torch.cuda import _device_count_nvml as _dc
with patch.dict(os.environ, {"CUDA_VISIBLE_DEVICES": val}, clear=True):
return _dc()
with patch.object(torch.cuda, "_raw_device_count_nvml", return_value=2):
self.assertEqual(_device_count_nvml("1, 0"), 2)
# Ordinal out of bounds aborts parsing
self.assertEqual(_device_count_nvml("1, 5, 0"), 1)
instantiate_parametrized_tests(TestExtendedCUDAIsAvail)
if __name__ == "__main__":
run_tests()