forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCachingHostAllocator.h
380 lines (331 loc) · 12.7 KB
/
CachingHostAllocator.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
#include <c10/core/Allocator.h>
#include <c10/util/Optional.h>
#include <c10/util/flat_hash_map.h>
#include <c10/util/llvmMathExtras.h>
#include <deque>
#include <mutex>
#include <set>
namespace at {
/**
* HostBlock is typically a fundamental memory block used in pinned memory. It
* is likely related to Event and Stream of device runtime. It is probably a
* base struct or interface that can be inherited and extended by each backend.
*/
template <typename S>
struct HostBlock {
// constructor for search key
HostBlock(size_t size) : size_(size) {}
HostBlock(size_t size, void* ptr) : size_(size), ptr_(ptr) {}
std::mutex mutex_;
size_t size_{0}; // block size in bytes
void* ptr_{nullptr}; // memory address
bool allocated_{false}; // in-use flag
size_t event_count_{0}; // number of related events
ska::flat_hash_set<S> streams_; // streams on which the block was used
};
/**
* ComparatorSize is used for lookup support in the set of host memory blocks
* using the block size.
*/
template <typename B>
struct ComparatorSize {
bool operator()(const B* a, const B* b) const {
if (a->size_ != b->size_) {
return a->size_ < b->size_;
}
return (uintptr_t)a->ptr_ < (uintptr_t)b->ptr_;
}
};
/**
* Note [HostAllocator design]
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* We have three key data structures - the free list which stores blocks that
* are not currently used, the block list which stores all blocks that have been
* allocated, and the event queue which stores runtime events and their
* corresponding blocks.
*
* Each of these are protected by a separate mutex. The key design principles
* are to 1) only hold each mutex for the minimal amount of time possible, 2)
* never do any possible expensive operations (such as CUDA runtime API calls)
* while holding the lock.
*
* There are four public methods: allocate, free, record_event and empty_cache.
* 1) In the allocate path, we first check to see if we can service our
* request from this free list, and otherwise we create a new block with
* allocate_host_memory.
* 2) In the free path, we insert events (if required) into the event queue,
* and if possible insert our block back into the free list. In allocate, we
* first eagerly query events until we find one that is not ready, and insert
* the corresponding block onto the free list if all the events recorded for a
* block are ready.
* 3) In the record_event path, we simply insert the given stream into the set
* of streams tracked by the specified block. This set of streams is then
* consumed in the free path.
* 4) In the empty_cache path, we flush any available blocks into the free
* list. Remove all element of free list, then remove them from block list and
* release the associated pinned memory allocation via free_block.
*
* We generalize the caching host allocator into two parts: interface and
* implementation. For any new backend looking to integrate with host allocator
* and reuse caching mechanism, these two parts are necessary to be specialized.
*
* For the implementation, we provide a CachingHostAllocatorImpl struct
* to abstract the caching mechanism. Any backend needs to provide a customized
* implementation by specializing its own public functions and the related
* runtime functions. Its template parameter S represents runtime Stream, E
* denotes runtime Event, B indicates the fundamental memory block, and C
* signifies the sorting compartor algorithm for the memory blocks.
*
* For the interface, we provide a CachingHostAllocatorInterface struct as an
* interface. Any backend needs to derive its own host allocator from this
* interface. Its template parameter T refers to an implementation that
* inherited from CachingHostAllocatorImpl.
*
* So this design can share the caching mechanism across each backend, and
* provide flexibility to each backend. A backend can choose to follow this
* implementation or reuse them by extending and overriding them as necessary.
* Taking CUDA as an example, it specializes runtime related functions to reuse
* the caching mechanism. Additionally, it extends the allocator's functionality
* by adding the allocWithCudaHostRegister function to support page-locking the
* memory range used by CUDA. Of course, you can also refer to
* XPUCachingHostAllocator, which is a host caching allocator supported on XPU
* backend, to implement a basic host caching allocator.
*
* Some of the invariants here are less strict than they could be - for example,
* we do not enforce that free(Block* block) => block->event_count == 0. This is
* for compatibility reasons, and we can explore enforcing these in subsequent
* versions.
*
* Note that this caching host allocator does not split larger allocations into
* smaller blocks, unlike the caching device allocator.
*/
template <
typename S,
typename E,
typename B = HostBlock<S>,
typename C = ComparatorSize<B>>
struct CachingHostAllocatorImpl {
virtual ~CachingHostAllocatorImpl() = default;
public:
// return data_ptr and block pair.
virtual std::pair<void*, void*> allocate(size_t size) {
if (size == 0) {
return {nullptr, nullptr};
}
process_events();
// First, try to allocate from the free list
auto* block = get_free_block(size);
if (block) {
return {block->ptr_, reinterpret_cast<void*>(block)};
}
// Round up the allocation to the nearest power of two to improve reuse.
size_t roundSize = c10::llvm::PowerOf2Ceil(size);
void* ptr = nullptr;
allocate_host_memory(roundSize, &ptr);
// Then, create a new block.
block = new B(roundSize, ptr);
block->allocated_ = true;
add_allocated_block(block);
return {block->ptr_, reinterpret_cast<void*>(block)};
}
virtual void free(void* ctx) {
if (!ctx) {
return;
}
// Note: we can assume that free is correctly paired with alloc, and thus we
// do not need to look up the ctx in blocks_.
auto* block = reinterpret_cast<B*>(ctx);
std::optional<std::vector<E>> events;
{
std::lock_guard<std::mutex> g(block->mutex_);
block->allocated_ = false;
if (block->streams_.empty()) {
TORCH_INTERNAL_ASSERT(block->event_count_ == 0);
} else {
events = std::vector<E>();
events->reserve(block->streams_.size());
for (auto stream : block->streams_) {
record_stream(events, stream);
}
block->event_count_ += events->size();
block->streams_.clear();
}
}
if (!events) {
std::lock_guard<std::mutex> g(free_list_mutex_);
free_list_.insert(block);
} else {
// restore these events that record by used streams.
std::lock_guard<std::mutex> g(events_mutex_);
for (auto&& event : *events) {
events_.emplace_front(std::move(event), block);
}
}
}
virtual bool record_event(void* ptr, void* ctx, S stream) {
auto* block = reinterpret_cast<B*>(ctx);
// Note: we need to check if the passed-in `ctx` is valid. This is because
// `record_event` (via `CachingHostAllocator_recordEvent`) can be invoked on
// an arbitrary tensor, and is not guaranteed to correspond to a pinned
// memory allocation. Therefore, we need to check that `ctx` is valid before
// proceeding.
{
std::lock_guard<std::mutex> g(blocks_mutex_);
if (blocks_.find(block) != blocks_.end()) {
// Now we know this object is safe to access.
std::lock_guard<std::mutex> gb(block->mutex_);
TORCH_INTERNAL_ASSERT(block->allocated_);
block->streams_.insert(stream);
return true;
}
auto it = ptr_to_block_.find(ptr);
if (it != ptr_to_block_.end()) {
block = it->second;
std::lock_guard<std::mutex> g(block->mutex_);
TORCH_INTERNAL_ASSERT(block->allocated_);
block->streams_.insert(stream);
return true;
}
}
return false;
}
virtual void empty_cache() {
// Flush any available blocks into the free_list.
process_events();
// Remove all elements from the free list, remove them from the blocks
// list, and free the associated pinned memory allocation. This requires
// concurrently holding both the free list mutex and the blocks mutex, and
// is the only function that concurrently holds multiple mutexes.
std::lock(free_list_mutex_, blocks_mutex_);
std::lock_guard<std::mutex> gf(free_list_mutex_, std::adopt_lock);
std::lock_guard<std::mutex> gb(blocks_mutex_, std::adopt_lock);
std::vector<B*> blocks_to_remove(free_list_.begin(), free_list_.end());
free_list_.clear();
for (auto* block : blocks_to_remove) {
blocks_.erase(block);
ptr_to_block_.erase(block->ptr_);
free_block(block);
delete block;
}
}
virtual void copy_data(void* dest, const void* src, std::size_t count) const {
TORCH_CHECK_NOT_IMPLEMENTED(false, "Not implemented for copy_data");
}
private:
virtual void add_allocated_block(B* block) {
std::lock_guard<std::mutex> g(blocks_mutex_);
blocks_.insert(block);
ptr_to_block_.insert({block->ptr_, block});
}
virtual B* get_free_block(size_t size) {
std::lock_guard<std::mutex> g(free_list_mutex_);
B key(size);
auto it = free_list_.lower_bound(&key);
if (it != free_list_.end()) {
B* block = *it;
block->allocated_ = true;
free_list_.erase(it);
return block;
}
return nullptr;
}
virtual void process_events() {
while (true) {
// Avoid calling cudaEventDestroy while holding a mutex, so move
// intermediate events out of the lock into this object.
// process the last event
std::optional<std::pair<E, B*>> processed;
{
std::lock_guard<std::mutex> g(events_mutex_);
if (!events_.empty()) {
processed = std::move(events_.back());
events_.pop_back();
}
}
if (!processed) {
return;
}
// otherwise, query the event
{
// now, see if we can handle this element
auto& event = processed->first;
if (!query_event(event)) {
// push the event onto the back if it's not ready.
{
std::lock_guard<std::mutex> g(events_mutex_);
events_.push_back(std::move(*processed));
}
return;
}
}
// Process the events.
TORCH_INTERNAL_ASSERT(processed);
auto* block = processed->second;
bool available = false;
{
std::lock_guard<std::mutex> g(block->mutex_);
TORCH_INTERNAL_ASSERT(!block->allocated_)
block->event_count_--;
if (block->event_count_ == 0) {
available = true;
}
}
if (available) {
std::lock_guard<std::mutex> g(free_list_mutex_);
free_list_.insert(block);
}
}
}
/* These following functions are runtime-related. */
// Allocate page-locked memory on the host.
virtual void allocate_host_memory(size_t size, void** ptr) {
TORCH_CHECK_NOT_IMPLEMENTED(
false, "Not implemented for allocate_host_memory");
}
// Free block and release the pointer contained in block.
virtual void free_block(B* block) {
TORCH_CHECK_NOT_IMPLEMENTED(false, "Not implemented for free_block");
}
// Record an event on stream and store event into events.
virtual void record_stream(std::optional<std::vector<E>>& events, S stream) {
TORCH_CHECK_NOT_IMPLEMENTED(false, "Not implemented for record_stream");
}
// Query event if it is completed.
virtual bool query_event(E& event) {
TORCH_CHECK_NOT_IMPLEMENTED(false, "Not implemented for query_event");
}
alignas(64) std::mutex blocks_mutex_;
ska::flat_hash_set<B*> blocks_; // block list
ska::flat_hash_map<void*, B*> ptr_to_block_;
// Note: sharding this mutex seems to be profitable in heavily multi-threaded
// scenarios.
alignas(64) std::mutex free_list_mutex_;
// Note: an alternative datastructure can yield significant wins here in
// microbenchmarks.
std::set<B*, C> free_list_; // free list
alignas(64) std::mutex events_mutex_;
std::deque<std::pair<E, B*>> events_; // event queue paired with block
};
template <typename T>
struct CachingHostAllocatorInterface : public at::Allocator {
CachingHostAllocatorInterface() :impl_(std::make_unique<T>()) {}
at::DataPtr allocate(size_t size) override {
TORCH_CHECK_NOT_IMPLEMENTED(false, "Not implemented for allocate");
}
void free(void* ctx) {
impl_->free(ctx);
}
template <typename S>
bool record_event(void* ptr, void* ctx, S stream) {
return impl_->record_event(ptr, ctx, stream);
}
void empty_cache() {
impl_->empty_cache();
}
void copy_data(void* dest, const void* src, std::size_t count)
const override {
impl_->copy_data(dest, src, count);
}
std::unique_ptr<T> impl_;
};
} // namespace at