forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Context.h
578 lines (524 loc) · 19.5 KB
/
Context.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
#pragma once
#include <ATen/BlasBackend.h>
#include <ATen/CPUGeneratorImpl.h>
#include <ATen/DeviceAccelerator.h>
#include <ATen/LinalgBackend.h>
#include <ATen/core/ATenGeneral.h>
#include <ATen/core/DeprecatedTypeProperties.h>
#include <ATen/core/Generator.h>
#include <ATen/core/LegacyTypeDispatch.h>
#include <ATen/detail/AcceleratorHooksInterface.h>
#include <ATen/detail/CUDAHooksInterface.h>
#include <ATen/detail/HIPHooksInterface.h>
#include <ATen/detail/IPUHooksInterface.h>
#include <ATen/detail/MAIAHooksInterface.h>
#include <ATen/detail/MPSHooksInterface.h>
#include <ATen/detail/MTIAHooksInterface.h>
#include <ATen/detail/PrivateUse1HooksInterface.h>
#include <ATen/detail/XPUHooksInterface.h>
#include <c10/core/QEngine.h>
#include <c10/core/impl/DeviceGuardImplInterface.h>
#include <c10/util/CallOnce.h>
#include <c10/util/Exception.h>
#include <c10/util/env.h>
#include <c10/util/irange.h>
#include <cstdint>
#include <mutex>
namespace at {
class Tensor;
enum class TORCH_API Float32MatmulPrecision { HIGHEST, HIGH, MEDIUM };
class TORCH_API Context {
public:
Context();
const Generator& defaultGenerator(Device device) {
c10::DeviceType device_type = device.type();
initCUDAIfNeeded(device_type);
initHIPIfNeeded(device_type);
if (device_type == at::kCPU) {
return at::detail::getDefaultCPUGenerator();
} else if (device_type == at::kCUDA) {
return at::detail::getCUDAHooks().getDefaultCUDAGenerator(device.index());
} else if (device_type == at::kMPS) {
return at::detail::getMPSHooks().getDefaultMPSGenerator();
} else if (device_type == at::kXPU) {
return at::detail::getXPUHooks().getDefaultXPUGenerator(device.index());
} else if (device_type == at::kIPU) {
return at::detail::getIPUHooks().getDefaultIPUGenerator(device.index());
} else if (device_type == at::kPrivateUse1) {
return at::GetPrivateUse1HooksInterface()->getDefaultGenerator(
device.index());
} else {
AT_ERROR(c10::DeviceTypeName(device_type), " device type not enabled.");
}
}
const AcceleratorHooksInterface& getAcceleratorHooksInterface(
std::optional<c10::DeviceType> opt_device_type = c10::nullopt) {
c10::DeviceType device_type = opt_device_type.has_value()
? opt_device_type.value()
: at::getAccelerator(true).value();
if (device_type == at::kCUDA) {
return at::detail::getCUDAHooks();
} else if (device_type == at::kMPS) {
return at::detail::getMPSHooks();
} else if (device_type == at::kPrivateUse1) {
return at::detail::getPrivateUse1Hooks();
} else if (device_type == at::kMTIA) {
return at::detail::getMTIAHooks();
} else {
AT_ERROR(
c10::DeviceTypeName(device_type), " device type not an accelerator.");
}
}
Device getDeviceFromPtr(void* data, c10::DeviceType device_type) {
initCUDAIfNeeded(device_type);
initHIPIfNeeded(device_type);
initXPUIfNeeded(device_type);
if (device_type == at::kCPU) {
return c10::DeviceType::CPU;
} else if (device_type == at::kCUDA) {
return at::detail::getCUDAHooks().getDeviceFromPtr(data);
} else if (device_type == at::kXPU) {
return at::detail::getXPUHooks().getDeviceFromPtr(data);
} else if (device_type == at::kPrivateUse1) {
return at::GetPrivateUse1HooksInterface()->getDeviceFromPtr(data);
} else {
AT_ERROR(c10::DeviceTypeName(device_type), " device type not enabled.");
}
}
static bool isPinnedPtr(const void* data) {
return detail::getCUDAHooks().isPinnedPtr(data);
}
static bool hasOpenMP();
static bool hasMKL();
static bool hasLAPACK();
static bool hasMKLDNN();
static bool hasMAGMA() {
return detail::getCUDAHooks().hasMAGMA();
}
static bool hasCUDA() {
return detail::getCUDAHooks().hasCUDA();
}
static bool hasMTIA() {
return detail::getMTIAHooks().hasMTIA();
}
static bool hasCUDART() {
return detail::getCUDAHooks().hasCUDART();
}
static long versionCUDART() {
return detail::getCUDAHooks().versionCUDART();
}
static bool hasCuDNN() {
return detail::getCUDAHooks().hasCuDNN();
}
static long versionCuDNN() {
return detail::getCUDAHooks().versionCuDNN();
}
static bool hasCuSOLVER() {
return detail::getCUDAHooks().hasCuSOLVER();
}
static bool hasCuBLASLt() {
return detail::getCUDAHooks().hasCuBLASLt();
}
static bool hasHIP() {
return detail::getHIPHooks().hasHIP();
}
static bool hasMPS() {
return detail::getMPSHooks().hasMPS();
}
static bool hasIPU() {
return c10::impl::hasDeviceGuardImpl(c10::DeviceType::IPU);
}
static bool hasXLA() {
return c10::impl::hasDeviceGuardImpl(c10::DeviceType::XLA);
}
static bool hasXPU() {
return detail::getXPUHooks().hasXPU();
}
static bool hasLazy() {
return c10::impl::hasDeviceGuardImpl(c10::DeviceType::Lazy);
}
static bool hasMAIA() {
return c10::impl::hasDeviceGuardImpl(c10::DeviceType::MAIA);
}
// defined in header so that getNonVariableType has ability to inline
// call_once check. getNonVariableType is called fairly frequently
void lazyInitCUDA() {
c10::call_once(thc_init, [&] { detail::getCUDAHooks().initCUDA(); });
}
void lazyInitHIP() {
c10::call_once(thh_init, [&] { detail::getHIPHooks().initHIP(); });
}
void lazyInitXPU() {
c10::call_once(thx_init, [&] { detail::getXPUHooks().initXPU(); });
}
void lazyInitMTIA() {
c10::call_once(th_mtia_init, [&] { detail::getMTIAHooks().initMTIA(); });
}
void lazyInitPrivateUse1() {
c10::call_once(thp_init, [&] {
if (isPrivateUse1HooksRegistered()) {
at::GetPrivateUse1HooksInterface()->initPrivateUse1();
}
});
}
static const at::cuda::NVRTC& getNVRTC() {
return detail::getCUDAHooks().nvrtc();
}
static bool setFlushDenormal(bool on);
// NB: This method is *purely* whether or not a user requested
// that CuDNN was enabled, it doesn't actually say anything about
// whether or not CuDNN is actually usable. Use cudnn_is_acceptable
// to test this instead
bool userEnabledCuDNN() const;
void setUserEnabledCuDNN(bool e);
bool userEnabledMkldnn() const;
void setUserEnabledMkldnn(bool e);
bool benchmarkCuDNN() const;
void setBenchmarkCuDNN(bool);
int benchmarkLimitCuDNN() const;
void setBenchmarkLimitCuDNN(int);
bool deterministicCuDNN() const;
void setDeterministicCuDNN(bool);
bool userEnabledNNPACK() const;
void setUserEnabledNNPACK(bool e);
// Note [Disabling Fused SDP Kernels]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Flash and Memory Efficient SDP kernels are enabled by default.
// However, they can be disabled by setting
// at::globalContext().setUserEnabledFlashSDP(false) flag.
// This is useful for debugging purposes. For example, if you want to
// compare the performance of the flash SDP kernels with the unfused
// kernel, you can disable the flash SDP kernels. By disabling
// the math SDP kernel, you can force your code to use flash kernels.
// The math SDP kernel can be disabled by setting
// at::globalContext().setUserEnabledMathSDP(false) flag.
void setSDPUseFlash(bool);
bool userEnabledFlashSDP() const;
void setSDPUseMemEfficient(bool);
bool userEnabledMemEfficientSDP() const;
void setSDPUseMath(bool);
bool userEnabledMathSDP() const;
void setSDPUseCuDNN(bool);
bool userEnabledCuDNNSDP() const;
at::LinalgBackend linalgPreferredBackend() const;
void setLinalgPreferredBackend(at::LinalgBackend);
at::BlasBackend blasPreferredBackend() const;
void setBlasPreferredBackend(at::BlasBackend);
// Note [Enabling Deterministic Operations]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Operations in PyTorch that normally act nondeterministically, but have an
// alternate deterministic implementation, should satisfy the following
// requirements:
//
// * Include this comment: "See Note [Enabling Deterministic Operations]"
//
// * Check the value of `at::globalContext().deterministicAlgorithms()` to
// toggle
// between nondeterministic and deterministic implementations.
//
// * Have an entry in the list of PyTorch operations that toggle between
// nondeterministic
// and deterministic implementations, in the docstring of
// `use_deterministic_algorithms()` in torch/__init__.py
//
// `example_func()` below shows an example of toggling between
// nondeterministic and deterministic implementations:
//
// void example_func() {
// // See Note [Enabling Deterministic Operations]
// if (at::globalContext().deterministicAlgorithms()) {
// example_func_deterministic();
// } else {
// example_func_nondeterministic();
// }
// }
bool deterministicAlgorithms() const;
bool deterministicAlgorithmsWarnOnly() const;
void setDeterministicAlgorithms(bool, bool);
bool deterministicFillUninitializedMemory() const;
void setDeterministicFillUninitializedMemory(bool);
// Note [Writing Nondeterministic Operations]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Operations in PyTorch that act nondeterministically and do not have an
// alternate deterministic implementation should satisfy the following
// requirements:
//
// * Include this comment: "See Note [Writing Nondeterministic Operations]"
//
// * Include a comment explaining why the operation is nondeterministic.
//
// * Throw an error when `Context::deterministicAlgorithms()` is true. Most
// of the time, this should be accomplished by calling
// `at::globalContext().alertNotDeterminstic()`. However, if the
// nondeterministic behavior is caused by the CuBLAS workspace
// configuration in CUDA >= 10.2,
// `at::globalContext().alertCuBLASConfigNotDeterministic()` should be
// called instead (in this case, a comment explaining why the operation is
// nondeterministic is not necessary). See below for details on these
// methods.
//
// * Have an entry in the list of nondeterministic PyTorch operations in the
// docstring of `use_deterministic_algorithms()` in torch/__init__.py
//
// * Have a test function in `test/test_torch.py` whose name begins with
// `test_nondeterministic_alert_`. Alternatively, if CuBLAS workspace
// configuration is the reason for nondeterminism, the operation should be
// included in the `test_cublas_config_nondeterministic_alert` test. Any new
// tests should ideally follow a pattern similar to the existing ones.
//
// `example_func()` below shows an example of the comments and error-throwing
// code for a nondeterministic operation:
//
// void example_func() {
// // See Note [Writing Nondeterministic Operations]
// // Nondeterministic because <reason>
// at::globalContext().alertNondeterministic("example_func");
// ...
// }
// Throws an error if `Context::deterministicAlgorithms()` is true
static void alertNotDeterministic(c10::string_view const& caller);
// Throws an error if `Context::deterministicAlgorithms()` is true, CUDA
// >= 10.2, and CUBLAS_WORKSPACE_CONFIG is not set to either ":16:8" or
// ":4096:8". For more details:
// https://docs.nvidia.com/cuda/cublas/index.html#results-reproducibility
void alertCuBLASConfigNotDeterministic() const;
void setFloat32MatmulPrecision(const std::string& s);
bool allowTF32CuDNN() const;
void setAllowTF32CuDNN(bool);
bool allowTF32CuBLAS() const;
void setAllowTF32CuBLAS(bool);
Float32MatmulPrecision float32MatmulPrecision() const;
void setFloat32MatmulPrecision(Float32MatmulPrecision p);
bool allowFP16ReductionCuBLAS() const;
void setAllowFP16ReductionCuBLAS(bool);
bool allowBF16ReductionCuBLAS() const;
void setAllowBF16ReductionCuBLAS(bool);
at::QEngine qEngine() const;
void setQEngine(at::QEngine e);
static const std::vector<at::QEngine>& supportedQEngines();
static bool isXNNPACKAvailable();
void setCheckSparseTensorInvariants(bool e);
bool checkSparseTensorInvariants() const;
// This method is used to release the original weight after pre-packing.
// It should be called once before loading/running the model.
// NB: By default it is set to true for mobile builds.
void setReleaseWeightsWhenPrepacking(bool e);
bool releaseWeightsWhenPrepacking() const;
void setDisplayVmapFallbackWarnings(bool enabled);
bool areVmapFallbackWarningsEnabled() const;
void setDefaultMobileCPUAllocator();
void unsetDefaultMobileCPUAllocator();
bool allowFP16ReductionCPU() const;
void setAllowFP16ReductionCPU(bool);
private:
void initCUDAIfNeeded(c10::DeviceType p) {
if (p == c10::DeviceType::CUDA) {
lazyInitCUDA();
}
}
void initHIPIfNeeded(c10::DeviceType p) {
if (p == c10::DeviceType::HIP) {
lazyInitHIP();
}
}
void initXPUIfNeeded(c10::DeviceType p) {
if (p == c10::DeviceType::XPU) {
lazyInitXPU();
}
}
static bool checkCuBLASConfigDeterministic();
c10::once_flag thc_init;
c10::once_flag thh_init;
c10::once_flag thx_init;
c10::once_flag th_mtia_init;
c10::once_flag thp_init;
bool enabled_cudnn = true;
bool deterministic_cudnn = false;
bool _deterministic_algorithms = false;
bool _deterministic_algorithms_warn_only = false;
bool _deterministic_fill_uninitialized_memory = true;
bool enabled_flashSDP = true;
bool enabled_mem_efficientSDP = true;
bool enabled_mathSDP = true;
bool enabled_cudnnSDP = false;
#ifdef USE_ROCM
bool benchmark_cudnn = true;
#else
bool benchmark_cudnn = false;
#endif
Float32MatmulPrecision float32_matmul_precision =
c10::utils::check_env("TORCH_ALLOW_TF32_CUBLAS_OVERRIDE") == true
? at::Float32MatmulPrecision::HIGH
: at::Float32MatmulPrecision::HIGHEST;
int benchmark_limit_cudnn = 10;
bool allow_tf32_cudnn = true;
bool allow_fp16_reduction_cublas = true;
bool allow_bf16_reduction_cublas = true;
bool enabled_mkldnn = true;
bool enabled_nnpack = true;
at::LinalgBackend linalg_preferred_backend =
c10::utils::check_env("TORCH_LINALG_PREFER_CUSOLVER") == true
? at::LinalgBackend::Cusolver
: at::LinalgBackend::Default;
at::BlasBackend blas_preferred_backend =
(c10::utils::check_env("TORCH_BLAS_PREFER_CUBLASLT") == true ||
c10::utils::check_env("TORCH_BLAS_PREFER_HIPBLASLT") == true)
? at::BlasBackend::Cublaslt
: at::BlasBackend::Cublas;
#ifdef C10_MOBILE
bool release_original_weights = true;
#else
bool release_original_weights = false;
#endif
bool display_vmap_fallback_warnings_ = false;
std::optional<at::QEngine> quantized_engine = c10::nullopt;
bool enable_sparse_tensor_invariant_checks = false;
bool allow_fp16_reduction_cpu = false;
Allocator* prev_allocator_ptr_{nullptr};
};
TORCH_API Context& globalContext();
static inline void init() {
globalContext();
}
TORCH_API Allocator* getCPUAllocator();
static inline DeprecatedTypeProperties& getDeprecatedTypeProperties(
Backend p,
ScalarType s) {
return globalDeprecatedTypePropertiesRegistry().getDeprecatedTypeProperties(
p, s);
}
static inline DeprecatedTypeProperties& CPU(ScalarType s) {
return globalDeprecatedTypePropertiesRegistry().getDeprecatedTypeProperties(
Backend::CPU, s);
}
static inline DeprecatedTypeProperties& CUDA(ScalarType s) {
return globalDeprecatedTypePropertiesRegistry().getDeprecatedTypeProperties(
Backend::CUDA, s);
}
static inline DeprecatedTypeProperties& HIP(ScalarType s) {
return globalDeprecatedTypePropertiesRegistry().getDeprecatedTypeProperties(
Backend::HIP, s);
}
static inline DeprecatedTypeProperties& MPS(ScalarType s) {
return globalDeprecatedTypePropertiesRegistry().getDeprecatedTypeProperties(
Backend::MPS, s);
}
static inline bool hasCUDA() {
return globalContext().hasCUDA();
}
static inline bool hasMTIA() {
return globalContext().hasMTIA();
}
static inline bool hasHIP() {
return globalContext().hasHIP();
}
static inline bool hasIPU() {
return globalContext().hasIPU();
}
static inline bool hasXLA() {
return globalContext().hasXLA();
}
static inline bool hasMPS() {
return globalContext().hasMPS();
}
static inline bool hasMAIA() {
return globalContext().hasMAIA();
}
static inline bool hasXPU() {
return globalContext().hasXPU();
}
// Despite its name, this function returns the number of *CUDA* GPUs.
static inline size_t getNumGPUs() {
// WARNING: DO NOT ADD LOGIC TO HANDLE OTHER DEVICE TYPES TO THIS
// FUNCTION. If you are interested in interrogating the number of
// devices for a specific device type, add that function to the
// relevant library (e.g., similar to at::cuda::device_count())
if (hasCUDA() && hasHIP()) {
throw std::runtime_error(
"Enabling both CUDA and HIP in ATen is not supported, as HIP masquerades "
"to be CUDA (e.g., when you say CUDA, on a HIP build of ATen, this actually "
"means HIP. Rebuild PyTorch with one or the other disabled.");
} else if (hasCUDA()) {
return detail::getCUDAHooks().getNumGPUs();
} else if (hasHIP()) {
return detail::getHIPHooks().getNumGPUs();
} else {
return 0;
}
}
static inline bool hasOpenMP() {
return globalContext().hasOpenMP();
}
static inline bool hasMKL() {
return globalContext().hasMKL();
}
static inline bool hasLAPACK() {
return globalContext().hasLAPACK();
}
static inline bool hasMAGMA() {
return globalContext().hasMAGMA();
}
static inline bool hasMKLDNN() {
return globalContext().hasMKLDNN();
}
static inline void manual_seed(uint64_t seed) {
auto gen = globalContext().defaultGenerator(c10::DeviceType::CPU);
{
// See Note [Acquire lock when using random generators]
std::lock_guard<std::mutex> lock(gen.mutex());
gen.set_current_seed(seed);
}
// NB: Sometimes we build with CUDA, but we don't have any GPUs
// available. In that case, we must not seed CUDA; it will fail!
const auto cuda_num_gpus = detail::getCUDAHooks().getNumGPUs();
if (hasCUDA() && cuda_num_gpus > 0) {
for (const auto i : c10::irange(cuda_num_gpus)) {
auto cuda_gen = globalContext().defaultGenerator(
Device(at::kCUDA, static_cast<c10::DeviceIndex>(i)));
{
// See Note [Acquire lock when using random generators]
std::lock_guard<std::mutex> lock(cuda_gen.mutex());
cuda_gen.set_current_seed(seed);
}
}
}
const auto xpu_num_gpus = detail::getXPUHooks().getNumGPUs();
if (hasXPU() && xpu_num_gpus) {
for (const auto i : c10::irange(xpu_num_gpus)) {
auto xpu_gen = globalContext().defaultGenerator(
Device(at::kXPU, static_cast<c10::DeviceIndex>(i)));
{
// See Note [Acquire lock when using random generators]
std::lock_guard<std::mutex> lock(xpu_gen.mutex());
xpu_gen.set_current_seed(seed);
}
}
}
if (hasMPS()) {
auto mps_gen = globalContext().defaultGenerator(c10::DeviceType::MPS);
// See Note [Acquire lock when using random generators]
std::lock_guard<std::mutex> lock(mps_gen.mutex());
mps_gen.set_current_seed(seed);
}
}
// When the global flag `allow_tf32` is set to true, cuBLAS handles are
// automatically configured to use math mode CUBLAS_TF32_TENSOR_OP_MATH.
// For some operators, such as addmv, TF32 offers no performance improvement
// but causes precision loss. To help this case, this class implements
// a RAII guard that can be used to quickly disable TF32 within its scope.
//
// Usage:
// NoTF32Guard disable_tf32;
struct TORCH_API NoTF32Guard {
NoTF32Guard();
~NoTF32Guard();
static bool should_disable_tf32();
private:
bool changed = false;
};
struct TORCH_API ROCmBackwardPassGuard {
ROCmBackwardPassGuard();
~ROCmBackwardPassGuard();
static bool is_backward_pass();
};
} // namespace at