Skip to content

Latest commit

 

History

History
310 lines (257 loc) · 15.6 KB

testing.md

File metadata and controls

310 lines (257 loc) · 15.6 KB

🔬 How to test NARPS open pipelines ?

📣 This file describes the test suite and features for the project.

Static analysis

We use pylint to run static code analysis.

Pylint is a tool that checks for errors in Python code, tries to enforce a coding standard and looks for code smells. It can also look for certain type errors, it can recommend suggestions about how particular blocks can be refactored and can offer you details about the code's complexity.

# Example: this runs the analysis on all files in the narps_open/ directory
pylint ./narps_open

It is also a good idea to use black to automatically conform your code to PEP8.

Black is the uncompromising Python code formatter. By using it, you agree to cede control over minutiae of hand-formatting. In return, Black gives you speed, determinism, and freedom from pycodestyle nagging about formatting. You will save time and mental energy for more important matters.

# Example: run the command on any source file you want to lint, e.g.:
black ./narps_open/runner.py

Automatic tests

Use pytest to run automatic testing and its pytest-cov plugin to control code coverage. Furthermore, pytest-helpers-namespace enables to register helper functions.

The pytest framework makes it easy to write small tests, yet scales to support complex functional testing for applications and libraries.

Tests can be launched manually or while using CI (Continuous Integration).

  • To run the tests : pytest ./tests or pytest
  • To specify a test file to run : pytest test_file.py
  • To specify a test -for which the name contains 'test_pattern'- inside a test file : pytest test_file.py -k "test_pattern"
  • To run a tests with a given mark 'mark' : pytest -m 'mark'
  • To create code coverage data : coverage run -m pytest ./tests then coverage report to see the code coverage result or coverage xml to output a .xml report file

Configuration files for testing

  • pytest.ini is a global configuration files for using pytest (see reference here). It allows to register markers that help to better identify tests. Note that pytest.ini could be replaced by data inside pyproject.toml in the next versions.
  • tests/conftest.py defines common functions, parameters, and helpers that are later available to all tests
  • narps_open/utils/configuration/testing_config.toml sets the parameters for the testing configuration type (see how the configuration module works). This configuration type is automatically used for testing (as defined in tests/conftest.py).

Writing tests

The main idea is to create one test file per source module (eg.: tests/pipelines/test_pipelines.py contains all the unit tests for the module narps_open.pipelines).

Each test file defines a class (in the example: TestPipelines), in which each test is written in a static method beginning with test_.

Finally we use one or several assert ; each one of them making the whole test fail if the assertion is False. One can also use the raises method of pytest, writing with raises(Exception): to test if a piece of code raised the expected Exception. See the reference here.

Use pytest markers to identify the types of test you write. Currently, the following types are available :

Type of test marker Description
unit tests unit_test Unitary test a method/function
pipeline tests pieline_test Compute a whole pipeline and check its outputs are close enough with the team's results

Save time by downsampling data

Running pipelines over all the subjects is time and resource consuming. Ideally, this could be done only once we are confident that the pipeline is correctly reproduced, just to make sure the final values of correlations between original team results and the reproduced ones are above the expected thresholds.

But most of the time we need to run pipelines earlier in the development process, and for this step we need a (quick) answer whether it is going the right way or not.

To save you time while testing your code, you can run pipelines on a smaller subset of participants. This table shows the expected minimum correlations values as a function of the subset size.

Number of subjects 20 40 60 80 108
Correlation value 0.30 0.70 0.80 0.85 0.93

Non regression testing

Here is a procedure on how to perform a regression test, when modifying the code of a pipeline. In the following we test pipeline 2T6S.

  1. Checkout commit c70e820 and launch jupyter inside a docker container
# from inside your repository
git checkout c70e820

# run a docker container
docker run -it --rm -v <path/to/your/narps_open_pipelines/repository>:/home/neuro/code/ -v <path/to/the/dataset/ds001734>:/data/ -v <path/to/the/output/directory/c70e820>:/output/ -p 8888:8888 elodiegermani/open_pipeline

# from inside the container
jupyter notebook --port=8888 --no-browser --ip=0.0.0.0

    To access the notebook, open this file in a browser:
        file:///home/neuro/.local/share/jupyter/runtime/nbserver-17-open.html
    Or copy and paste one of these URLs:
        http://51def897c243:8888/?token=02856fdbf3dbf8b382e28381707b64ff8650cf41b6ec67d8
     or http://127.0.0.1:8888/?token=02856fdbf3dbf8b382e28381707b64ff8650cf41b6ec67d8
  1. Open one of the URLs provided by jupyter, open src/reproduction_2T6S.ipynb, change the following parameters and run the notebook.
exp_dir = '/data/'
result_dir = '/output/'
subject_list=['001', '002', '003', '004']
  1. Check the results.
cd <path/to/the/output/directory/c70e820>
tree NARPS-2T6S-reproduced/l2_analysis_* -P *.nii
    NARPS-2T6S-reproduced/l2_analysis_equalIndifference_nsub_4
    ├── _contrast_id_01
    │      ├── con_0001.nii
    │      ├── con_0002.nii
    │      ├── mask.nii
    │      ├── spmT_0001.nii
    │      ├── spmT_0002.nii
    │      ├── _threshold0
    │      │      └── spmT_0001_thr.nii
    │      └── _threshold1
    │          └── spmT_0002_thr.nii
    ├── _contrast_id_02
    │      ├── con_0001.nii
    │      ├── con_0002.nii
    │      ├── mask.nii
    │      ├── spmT_0001.nii
    │      ├── spmT_0002.nii
    │      ├── _threshold0
    │      │      └── spmT_0001_thr.nii
    │      └── _threshold1
    │          └── spmT_0002_thr.nii
    ├── _contrast_id_03
    │      ├── con_0001.nii
    │      ├── con_0002.nii
    │      ├── mask.nii
    │      ├── spmT_0001.nii
    │      ├── spmT_0002.nii
    │      ├── _threshold0
    │      │      └── spmT_0001_thr.nii
    │      └── _threshold1
    │          └── spmT_0002_thr.nii
    └── _contrast_id_04
        ├── con_0001.nii
        ├── con_0002.nii
        ├── mask.nii
        ├── spmT_0001.nii
        ├── spmT_0002.nii
        ├── _threshold0
        │      └── spmT_0001_thr.nii
        └── _threshold1
            └── spmT_0002_thr.nii
    NARPS-2T6S-reproduced/l2_analysis_equalRange_nsub_4
    ├── _contrast_id_01
    │      ├── con_0001.nii
    │      ├── con_0002.nii
    │      ├── mask.nii
    │      ├── spmT_0001.nii
    │      ├── spmT_0002.nii
    │      ├── _threshold0
    │      │      └── spmT_0001_thr.nii
    │      └── _threshold1
    │          └── spmT_0002_thr.nii
    ├── _contrast_id_02
    │      ├── con_0001.nii
    │      ├── con_0002.nii
    │      ├── mask.nii
    │      ├── spmT_0001.nii
    │      ├── spmT_0002.nii
    │      ├── _threshold0
    │      │      └── spmT_0001_thr.nii
    │      └── _threshold1
    │          └── spmT_0002_thr.nii
    ├── _contrast_id_03
    │      ├── con_0001.nii
    │      ├── con_0002.nii
    │      ├── mask.nii
    │      ├── spmT_0001.nii
    │      ├── spmT_0002.nii
    │      ├── _threshold0
    │      │      └── spmT_0001_thr.nii
    │      └── _threshold1
    │          └── spmT_0002_thr.nii
    └── _contrast_id_04
        ├── con_0001.nii
        ├── con_0002.nii
        ├── mask.nii
        ├── spmT_0001.nii
        ├── spmT_0002.nii
        ├── _threshold0
        │      └── spmT_0001_thr.nii
        └── _threshold1
            └── spmT_0002_thr.nii
    NARPS-2T6S-reproduced/l2_analysis_groupComp_nsub_4
    ├── _contrast_id_01
    │      ├── con_0001.nii
    │      ├── mask.nii
    │      ├── spmT_0001.nii
    │      └── _threshold0
    │          └── spmT_0001_thr.nii
    ├── _contrast_id_02
    │      ├── con_0001.nii
    │      ├── mask.nii
    │      ├── spmT_0001.nii
    │      └── _threshold0
    │          └── spmT_0001_thr.nii
    ├── _contrast_id_03
    │      ├── con_0001.nii
    │      ├── mask.nii
    │      ├── spmT_0001.nii
    │      └── _threshold0
    │          └── spmT_0001_thr.nii
    └── _contrast_id_04
        ├── con_0001.nii
        ├── mask.nii
        ├── spmT_0001.nii
        └── _threshold0
            └── spmT_0001_thr.nii
  1. Switch back to your current development branch (code revision to be tested), and run the pipeline. ⚠️ Choose a different <path/to/the/output/directory/dev> in the docker command line, so that the results from the previous run are not replaced.
# from inside your repository
git switch <your_branch_name>

# run a docker container
docker run -it --rm -v <path/to/your/narps_open_pipelines/repository>:/home/neuro/code/ -v <path/to/the/dataset/ds001734>:/data/ -v <path/to/the/output/directory/dev>:/output/ elodiegermani/open_pipeline

# from inside the container
cd /home/neuro/code
source activate neuro
pip install .
python narps_open/runner.py -t 2T6S -s 1 2 3 4 -d /data/ -o /output/

# leave the container
exit
  1. At this point, you can check the results (as in step 3)
cd <path/to/the/output/directory/dev>
tree NARPS-2T6S-reproduced/l2_analysis_* -P *.nii

...
  1. Open a container again, to compare the results
# run a docker container
docker run -it --rm -v <path/to/your/narps_open_pipelines/repository>:/home/neuro/code/ -v <path/to/the/output/directory/c70e820>:/output_1/ -v <path/to/the/output/directory/dev>:/output_2/ elodiegermani/open_pipeline

# from inside the container
cd /home/neuro/code
source activate neuro
pip install .
  1. Launch the following python code from inside the container
from narps_open.utils.correlation import get_correlation_coefficient

output_files_c70e820 = [
    '/output_1/NARPS-2T6S-reproduced/l2_analysis_equalIndifference_nsub_4/_contrast_id_01/con_0001.nii',
    '/output_1/NARPS-2T6S-reproduced/l2_analysis_equalIndifference_nsub_4/_contrast_id_01/con_0002.nii',
    '/output_1/NARPS-2T6S-reproduced/l2_analysis_equalIndifference_nsub_4/_contrast_id_02/con_0001.nii',
    '/output_1/NARPS-2T6S-reproduced/l2_analysis_equalIndifference_nsub_4/_contrast_id_02/con_0002.nii',
    '/output_1/NARPS-2T6S-reproduced/l2_analysis_equalIndifference_nsub_4/_contrast_id_03/con_0001.nii',
    '/output_1/NARPS-2T6S-reproduced/l2_analysis_equalIndifference_nsub_4/_contrast_id_03/con_0002.nii',
    '/output_1/NARPS-2T6S-reproduced/l2_analysis_equalIndifference_nsub_4/_contrast_id_04/con_0001.nii',
    '/output_1/NARPS-2T6S-reproduced/l2_analysis_equalIndifference_nsub_4/_contrast_id_04/con_0002.nii',
    '/output_1/NARPS-2T6S-reproduced/l2_analysis_equalRange_nsub_4/_contrast_id_01/con_0001.nii',
    '/output_1/NARPS-2T6S-reproduced/l2_analysis_equalRange_nsub_4/_contrast_id_01/con_0002.nii',
    '/output_1/NARPS-2T6S-reproduced/l2_analysis_equalRange_nsub_4/_contrast_id_02/con_0001.nii',
    '/output_1/NARPS-2T6S-reproduced/l2_analysis_equalRange_nsub_4/_contrast_id_02/con_0002.nii',
    '/output_1/NARPS-2T6S-reproduced/l2_analysis_equalRange_nsub_4/_contrast_id_03/con_0001.nii',
    '/output_1/NARPS-2T6S-reproduced/l2_analysis_equalRange_nsub_4/_contrast_id_03/con_0002.nii',
    '/output_1/NARPS-2T6S-reproduced/l2_analysis_equalRange_nsub_4/_contrast_id_04/con_0001.nii',
    '/output_1/NARPS-2T6S-reproduced/l2_analysis_equalRange_nsub_4/_contrast_id_04/con_0002.nii',
    '/output_1/NARPS-2T6S-reproduced/l2_analysis_groupComp_nsub_4/_contrast_id_01/con_0001.nii',
    '/output_1/NARPS-2T6S-reproduced/l2_analysis_groupComp_nsub_4/_contrast_id_02/con_0001.nii',
    '/output_1/NARPS-2T6S-reproduced/l2_analysis_groupComp_nsub_4/_contrast_id_03/con_0001.nii',
    '/output_1/NARPS-2T6S-reproduced/l2_analysis_groupComp_nsub_4/_contrast_id_04/con_0001.nii'
]

output_files_dev = [
    '/output_2/NARPS-2T6S-reproduced/l2_analysis_equalIndifference_nsub_4/_contrast_id_0001/con_0001.nii',
    '/output_2/NARPS-2T6S-reproduced/l2_analysis_equalIndifference_nsub_4/_contrast_id_0001/con_0002.nii',
    '/output_2/NARPS-2T6S-reproduced/l2_analysis_equalIndifference_nsub_4/_contrast_id_0002/con_0001.nii',
    '/output_2/NARPS-2T6S-reproduced/l2_analysis_equalIndifference_nsub_4/_contrast_id_0002/con_0002.nii',
    '/output_2/NARPS-2T6S-reproduced/l2_analysis_equalIndifference_nsub_4/_contrast_id_0003/con_0001.nii',
    '/output_2/NARPS-2T6S-reproduced/l2_analysis_equalIndifference_nsub_4/_contrast_id_0003/con_0002.nii',
    '/output_2/NARPS-2T6S-reproduced/l2_analysis_equalIndifference_nsub_4/_contrast_id_0004/con_0001.nii',
    '/output_2/NARPS-2T6S-reproduced/l2_analysis_equalIndifference_nsub_4/_contrast_id_0004/con_0002.nii',
    '/output_2/NARPS-2T6S-reproduced/l2_analysis_equalRange_nsub_4/_contrast_id_0001/con_0001.nii',
    '/output_2/NARPS-2T6S-reproduced/l2_analysis_equalRange_nsub_4/_contrast_id_0001/con_0002.nii',
    '/output_2/NARPS-2T6S-reproduced/l2_analysis_equalRange_nsub_4/_contrast_id_0002/con_0001.nii',
    '/output_2/NARPS-2T6S-reproduced/l2_analysis_equalRange_nsub_4/_contrast_id_0002/con_0002.nii',
    '/output_2/NARPS-2T6S-reproduced/l2_analysis_equalRange_nsub_4/_contrast_id_0003/con_0001.nii',
    '/output_2/NARPS-2T6S-reproduced/l2_analysis_equalRange_nsub_4/_contrast_id_0003/con_0002.nii',
    '/output_2/NARPS-2T6S-reproduced/l2_analysis_equalRange_nsub_4/_contrast_id_0004/con_0001.nii',
    '/output_2/NARPS-2T6S-reproduced/l2_analysis_equalRange_nsub_4/_contrast_id_0004/con_0002.nii',
    '/output_2/NARPS-2T6S-reproduced/l2_analysis_groupComp_nsub_4/_contrast_id_0001/con_0001.nii',
    '/output_2/NARPS-2T6S-reproduced/l2_analysis_groupComp_nsub_4/_contrast_id_0002/con_0001.nii',
    '/output_2/NARPS-2T6S-reproduced/l2_analysis_groupComp_nsub_4/_contrast_id_0003/con_0001.nii',
    '/output_2/NARPS-2T6S-reproduced/l2_analysis_groupComp_nsub_4/_contrast_id_0004/con_0001.nii'
]

for file_1, file_2 in zip(output_files_c70e820, output_files_dev):
    print(get_correlation_coefficient(file_1, file_2))