diff --git a/.gitattributes b/.gitattributes new file mode 100644 index 00000000..2edf64ac --- /dev/null +++ b/.gitattributes @@ -0,0 +1 @@ +*.bib linguist-vendored diff --git a/.github/workflows/ci.yml b/.github/workflows/ci.yml index 7ad83f1f..51394854 100644 --- a/.github/workflows/ci.yml +++ b/.github/workflows/ci.yml @@ -45,3 +45,30 @@ jobs: chmod +x codecov ./codecov -t ${{ secrets.CODECOV_TOKEN }} + + check_unused_variables: + runs-on: ubuntu-latest + + steps: + - name: Checkout code + uses: actions/checkout@v2 + + - name: Set up Python + uses: actions/setup-python@v2 + with: + python-version: 3.x # Choose your desired Python version + + - name: Install vulture + run: pip install vulture + + - name: Check for unused variables + continue-on-error: true + run: vulture h_transport_materials/property_database + + - name: Check vulture output + run: | + vulture_output=$(vulture h_transport_materials/property_database) || true + if [[ $vulture_output == *"unused variable"* ]]; then + echo "Error: Unused variables found." + exit 1 + fi diff --git a/.gitignore b/.gitignore index b6e47617..8897dfad 100644 --- a/.gitignore +++ b/.gitignore @@ -127,3 +127,6 @@ dmypy.json # Pyre type checker .pyre/ + +# macOS stuff +.DS_Store diff --git a/.readthedocs.yaml b/.readthedocs.yaml index 92ffa8cc..a12e3c7a 100644 --- a/.readthedocs.yaml +++ b/.readthedocs.yaml @@ -11,4 +11,3 @@ python: - requirements: docs/requirements.txt - method: pip path: . - system_packages: false \ No newline at end of file diff --git a/docs/requirements.txt b/docs/requirements.txt index b471f9dd..986e1dc7 100644 --- a/docs/requirements.txt +++ b/docs/requirements.txt @@ -1,4 +1,5 @@ sphinx==6.2.1 sphinx-design==0.4.1 sphinx_book_theme==1.0.1 -matplotlib==3.7.1 \ No newline at end of file +matplotlib==3.7.1 +numpy<2 diff --git a/docs/user/groups.rst b/docs/user/groups.rst index d1c85bd5..859a0c95 100644 --- a/docs/user/groups.rst +++ b/docs/user/groups.rst @@ -178,8 +178,8 @@ It is also possible to export some of the data to a latex table with: \begin{tabular}{ c c c c} Material & pre-exp. factor & Act. energy & Reference \\ - & $1.00\times 10^{0}\ \frac{\mathrm{m}^{2}}{\mathrm{s}}$ & 0.10 eV/particle & \cite{} \\ - & $2.00\times 10^{0}\ \frac{\mathrm{particle}}{\left(\mathrm{Pa} \cdot \mathrm{m}^{3}\right)}$ & 0.20 eV/particle & \cite{} \\ + & $1.00\times 10^{0}\ \frac{\mathrm{m}^{2}}{\mathrm{s}}$ & 0.10 eV/particle & \cite{} \\ + & $2.00\times 10^{0}\ \frac{\mathrm{particle}}{\left(\mathrm{m}^{3} \cdot \mathrm{Pa}\right)}$ & 0.20 eV/particle & \cite{} \\ \end{tabular} \end{center} diff --git a/h_transport_materials/material.py b/h_transport_materials/material.py index 32847908..68646d2d 100644 --- a/h_transport_materials/material.py +++ b/h_transport_materials/material.py @@ -109,9 +109,15 @@ def __init__(self): class MoltenSalt(Material): family = "molten salt" + class FeCrAl(Steel): family = "fecral" + +class PalladiumAlloy(Alloy): + family = "palladium alloy" + + TUNGSTEN = Tungsten() BERYLLIUM = Beryllium() CARBON = Carbon() @@ -144,8 +150,10 @@ class FeCrAl(Steel): FLINAK = MoltenSalt("flinak") LIPB = Alloy("lipb") LITHIUM = PureMetal("lithium", "Li") -PDAG = Alloy("pdag") +PDAG = PalladiumAlloy("pdag") ZIRCONIUM = PureMetal("zirconium", "Zr") +YTTRIUM = PureMetal("yttrium", "Y") +CHROMIUM = PureMetal("chromium", "Cr") ALUMINA = Compound("alumina") EUROFER = Steel("eurofer_97") @@ -157,3 +165,9 @@ class FeCrAl(Steel): THERMACORE_OXIDIZED = FeCrAl("thermacore_oxidized") FE22CR5AL = FeCrAl("fe22cr5al") OXIDIZED_1605 = FeCrAl("oxidized_1605") + +TZM = Alloy("tzm") + +PD60CU40 = PalladiumAlloy("60pd40cu") +PD52CU = PalladiumAlloy("pd52cu") +SIC = Compound("sic") diff --git a/h_transport_materials/properties_group.py b/h_transport_materials/properties_group.py index 590fe85a..7a81f9cb 100644 --- a/h_transport_materials/properties_group.py +++ b/h_transport_materials/properties_group.py @@ -6,6 +6,8 @@ from h_transport_materials import ureg, ArrheniusProperty, __version__ +warnings.filterwarnings("always", message="No property matching the requirements") + class PropertiesGroup(list): @property diff --git a/h_transport_materials/property.py b/h_transport_materials/property.py index 64fc421c..709a8ad3 100644 --- a/h_transport_materials/property.py +++ b/h_transport_materials/property.py @@ -619,12 +619,8 @@ def data_y(self, value): self._data_y = value def set_law_from_quantity(self, quantity): - sievert_units = ( - ureg.particle * ureg.meter**-1 * ureg.second**-1 * ureg.Pa**-0.5 - ) - henry_units = ( - ureg.particle * ureg.meter**-1 * ureg.second**-1 * ureg.Pa**-1 - ) + sievert_units = ureg.particle * ureg.meter**-1 * ureg.second**-1 * ureg.Pa**-0.5 + henry_units = ureg.particle * ureg.meter**-1 * ureg.second**-1 * ureg.Pa**-1 if quantity.check(sievert_units): self.law = "sievert" elif quantity.check(henry_units): @@ -637,9 +633,7 @@ def set_law_from_quantity(self, quantity): @property def units(self): if self.law == "sievert": - return ( - ureg.particle * ureg.meter**-1 * ureg.second**-1 * ureg.Pa**-0.5 - ) + return ureg.particle * ureg.meter**-1 * ureg.second**-1 * ureg.Pa**-0.5 elif self.law == "henry": return ureg.particle * ureg.meter**-1 * ureg.second**-1 * ureg.Pa**-1 diff --git a/h_transport_materials/property_database/FeCrAl/__init__.py b/h_transport_materials/property_database/FeCrAl/__init__.py index b43cc631..7704e8d3 100644 --- a/h_transport_materials/property_database/FeCrAl/__init__.py +++ b/h_transport_materials/property_database/FeCrAl/__init__.py @@ -5,4 +5,3 @@ from . import t54y from . import thermacore from . import thermacore_oxidized - diff --git a/h_transport_materials/property_database/FeCrAl/apmt/apmt.py b/h_transport_materials/property_database/FeCrAl/apmt/apmt.py index 1f199690..07de0010 100644 --- a/h_transport_materials/property_database/FeCrAl/apmt/apmt.py +++ b/h_transport_materials/property_database/FeCrAl/apmt/apmt.py @@ -1,7 +1,7 @@ import h_transport_materials as htm from h_transport_materials import ( Permeability, -) +) import numpy as np u = htm.ureg @@ -12,8 +12,8 @@ ) Hu_perm = Permeability( - data_T=(1000 / data[:,0]) * u.K, - data_y=data[:,1] * u.mol * u.m**(-1) * u.s**(-1) * u.MPa**(-0.5), + data_T=(1000 / data[:, 0]) * u.K, + data_y=data[:, 1] * u.mol * u.m ** (-1) * u.s ** (-1) * u.MPa ** (-0.5), source="hu_hydrogen_2015", isotope="H", note="Figure 6", diff --git a/h_transport_materials/property_database/FeCrAl/fe22cr5al/__init__.py b/h_transport_materials/property_database/FeCrAl/fe22cr5al/__init__.py index d6c699b3..6086a48b 100644 --- a/h_transport_materials/property_database/FeCrAl/fe22cr5al/__init__.py +++ b/h_transport_materials/property_database/FeCrAl/fe22cr5al/__init__.py @@ -1,2 +1 @@ from . import fe22cr5al - diff --git a/h_transport_materials/property_database/FeCrAl/fe22cr5al/fe22cr5al.py b/h_transport_materials/property_database/FeCrAl/fe22cr5al/fe22cr5al.py index fb92e627..c9a80555 100644 --- a/h_transport_materials/property_database/FeCrAl/fe22cr5al/fe22cr5al.py +++ b/h_transport_materials/property_database/FeCrAl/fe22cr5al/fe22cr5al.py @@ -1,7 +1,7 @@ import h_transport_materials as htm from h_transport_materials import ( Permeability, -) +) import numpy as np u = htm.ureg @@ -12,8 +12,8 @@ ) xu_perm = Permeability( - data_T=(1000 / data[:,0]) * u.K, - data_y=data[:,1] * u.mol * u.m**(-1) * u.s**(-1) * u.Pa**(-.5), + data_T=(1000 / data[:, 0]) * u.K, + data_y=data[:, 1] * u.mol * u.m ** (-1) * u.s ** (-1) * u.Pa ** (-0.5), source="xu_studies_2016", isotope="D", note="Figure 1, oxidised", diff --git a/h_transport_materials/property_database/FeCrAl/oxidized_1605/__init__.py b/h_transport_materials/property_database/FeCrAl/oxidized_1605/__init__.py index d212d270..13807a2e 100644 --- a/h_transport_materials/property_database/FeCrAl/oxidized_1605/__init__.py +++ b/h_transport_materials/property_database/FeCrAl/oxidized_1605/__init__.py @@ -1,2 +1 @@ from . import oxidized_1605 - diff --git a/h_transport_materials/property_database/FeCrAl/oxidized_1605/oxidized_1605.py b/h_transport_materials/property_database/FeCrAl/oxidized_1605/oxidized_1605.py index 970f00a5..527511e1 100644 --- a/h_transport_materials/property_database/FeCrAl/oxidized_1605/oxidized_1605.py +++ b/h_transport_materials/property_database/FeCrAl/oxidized_1605/oxidized_1605.py @@ -1,7 +1,7 @@ import h_transport_materials as htm from h_transport_materials import ( Permeability, -) +) import numpy as np u = htm.ureg @@ -12,8 +12,8 @@ ) ash_perm = Permeability( - data_T=(1000 / data[:,0]) * u.K, - data_y=data[:,1] * u.micromol * u.m**(-1) * u.s**(-1) * u.kPa**(-.5), + data_T=(1000 / data[:, 0]) * u.K, + data_y=data[:, 1] * u.micromol * u.m ** (-1) * u.s ** (-1) * u.kPa ** (-0.5), source="ashdown_alloy_1980", isotope="H", ) diff --git a/h_transport_materials/property_database/FeCrAl/t35y/__init__.py b/h_transport_materials/property_database/FeCrAl/t35y/__init__.py index d7f3ca5e..0bcc1997 100644 --- a/h_transport_materials/property_database/FeCrAl/t35y/__init__.py +++ b/h_transport_materials/property_database/FeCrAl/t35y/__init__.py @@ -1,2 +1 @@ from . import t35y - diff --git a/h_transport_materials/property_database/FeCrAl/t35y/t35y.py b/h_transport_materials/property_database/FeCrAl/t35y/t35y.py index 5ad775d5..89ba2116 100644 --- a/h_transport_materials/property_database/FeCrAl/t35y/t35y.py +++ b/h_transport_materials/property_database/FeCrAl/t35y/t35y.py @@ -1,7 +1,7 @@ import h_transport_materials as htm from h_transport_materials import ( Permeability, -) +) import numpy as np u = htm.ureg @@ -12,8 +12,8 @@ ) Hu_perm = Permeability( - data_T=(1000 / data[:,0]) * u.K, - data_y=data[:,1] * u.mol * u.m**(-1) * u.s**(-1) * u.MPa**(-.5), + data_T=(1000 / data[:, 0]) * u.K, + data_y=data[:, 1] * u.mol * u.m ** (-1) * u.s ** (-1) * u.MPa ** (-0.5), source="hu_hydrogen_2015", isotope="H", note="Figure 6", diff --git a/h_transport_materials/property_database/FeCrAl/t54y/__init__.py b/h_transport_materials/property_database/FeCrAl/t54y/__init__.py index 2b03860e..40902a2b 100644 --- a/h_transport_materials/property_database/FeCrAl/t54y/__init__.py +++ b/h_transport_materials/property_database/FeCrAl/t54y/__init__.py @@ -1,2 +1 @@ from . import t54y - diff --git a/h_transport_materials/property_database/FeCrAl/t54y/t54y.py b/h_transport_materials/property_database/FeCrAl/t54y/t54y.py index 9b847b72..e82201e9 100644 --- a/h_transport_materials/property_database/FeCrAl/t54y/t54y.py +++ b/h_transport_materials/property_database/FeCrAl/t54y/t54y.py @@ -1,7 +1,7 @@ import h_transport_materials as htm from h_transport_materials import ( Permeability, -) +) import numpy as np u = htm.ureg @@ -12,8 +12,8 @@ ) Hu_perm = Permeability( - data_T=(1000 / data[:,0]) * u.K, - data_y=data[:,1] * u.mol * u.m**(-1) * u.s**(-1) * u.MPa**(-.5), + data_T=(1000 / data[:, 0]) * u.K, + data_y=data[:, 1] * u.mol * u.m ** (-1) * u.s ** (-1) * u.MPa ** (-0.5), source="hu_hydrogen_2015", isotope="H", note="Figure 6", diff --git a/h_transport_materials/property_database/FeCrAl/thermacore/__init__.py b/h_transport_materials/property_database/FeCrAl/thermacore/__init__.py index ff4bc76f..7364aa0a 100644 --- a/h_transport_materials/property_database/FeCrAl/thermacore/__init__.py +++ b/h_transport_materials/property_database/FeCrAl/thermacore/__init__.py @@ -1,2 +1 @@ from . import thermacore - diff --git a/h_transport_materials/property_database/FeCrAl/thermacore/thermacore.py b/h_transport_materials/property_database/FeCrAl/thermacore/thermacore.py index 5cf7784c..0349712d 100644 --- a/h_transport_materials/property_database/FeCrAl/thermacore/thermacore.py +++ b/h_transport_materials/property_database/FeCrAl/thermacore/thermacore.py @@ -1,7 +1,7 @@ import h_transport_materials as htm from h_transport_materials import ( Permeability, -) +) import numpy as np u = htm.ureg @@ -12,8 +12,8 @@ ) van_perm = Permeability( - data_T=(1000 / data[:,0]) * u.K, - data_y=data[:,1] * u.micromol * u.m**(-1) * u.s**(-1) * u.kPa**(-.5), + data_T=(1000 / data[:, 0]) * u.K, + data_y=data[:, 1] * u.micromol * u.m ** (-1) * u.s ** (-1) * u.kPa ** (-0.5), source="vandeventer_hydrogen_1980", isotope="H", note="Figure 2", diff --git a/h_transport_materials/property_database/FeCrAl/thermacore_oxidized/__init__.py b/h_transport_materials/property_database/FeCrAl/thermacore_oxidized/__init__.py index 83db5516..4c2458f8 100644 --- a/h_transport_materials/property_database/FeCrAl/thermacore_oxidized/__init__.py +++ b/h_transport_materials/property_database/FeCrAl/thermacore_oxidized/__init__.py @@ -1,2 +1 @@ from . import thermacore_oxidized - diff --git a/h_transport_materials/property_database/FeCrAl/thermacore_oxidized/thermacore_oxidized.py b/h_transport_materials/property_database/FeCrAl/thermacore_oxidized/thermacore_oxidized.py index 394f1248..40d41e0c 100644 --- a/h_transport_materials/property_database/FeCrAl/thermacore_oxidized/thermacore_oxidized.py +++ b/h_transport_materials/property_database/FeCrAl/thermacore_oxidized/thermacore_oxidized.py @@ -1,7 +1,7 @@ import h_transport_materials as htm from h_transport_materials import ( Permeability, -) +) import numpy as np u = htm.ureg @@ -12,8 +12,8 @@ ) van_perm = Permeability( - data_T=(1000 / data[:,0]) * u.K, - data_y=data[:,1] * u.micromol * u.m**(-1) * u.s**(-1) * u.kPa**(-.5), + data_T=(1000 / data[:, 0]) * u.K, + data_y=data[:, 1] * u.micromol * u.m ** (-1) * u.s ** (-1) * u.kPa ** (-0.5), source="vandeventer_hydrogen_1980", isotope="H", note="Figure 2", diff --git a/h_transport_materials/property_database/__init__.py b/h_transport_materials/property_database/__init__.py index b08bbe36..b51a4f39 100644 --- a/h_transport_materials/property_database/__init__.py +++ b/h_transport_materials/property_database/__init__.py @@ -64,3 +64,13 @@ from . import vanadium_alloy from . import FeCrAl + +from . import yttrium + +from . import tzm + +from . import palladium_copper + +from . import sic + +from . import chromium diff --git a/h_transport_materials/property_database/alumina/alumina.py b/h_transport_materials/property_database/alumina/alumina.py index af67a65f..cae9e3fa 100644 --- a/h_transport_materials/property_database/alumina/alumina.py +++ b/h_transport_materials/property_database/alumina/alumina.py @@ -4,7 +4,6 @@ Solubility, Permeability, ) -from pathlib import Path import numpy as np u = htm.ureg diff --git a/h_transport_materials/property_database/beryllium.py b/h_transport_materials/property_database/beryllium.py index e5762952..754a8498 100644 --- a/h_transport_materials/property_database/beryllium.py +++ b/h_transport_materials/property_database/beryllium.py @@ -37,8 +37,10 @@ dolan_recombination = RecombinationCoeff( pre_exp=1.46e-29 * u.m**4 * u.s**-1 * u.particle**-1, act_energy=0.214 * u.eV * u.particle**-1, + range=(333 * u.K, 800 * u.K), source="dolan_assessment_1994", isotope="H", + note="Comes from a review (p. 14). The data from Hsu 1990 https://doi.org/10.1016/0022-3115(90)90049-S (range taking from them) seems to have been used by the PERI code to extract D/2kr then using D from another source Dolan obtained Kr.", ) diff --git a/h_transport_materials/property_database/carbon.py b/h_transport_materials/property_database/carbon.py index 3b303764..15dcfac1 100644 --- a/h_transport_materials/property_database/carbon.py +++ b/h_transport_materials/property_database/carbon.py @@ -26,11 +26,153 @@ atsumi_solubility = Solubility( S_0=1.9e-1 * u.mol * u.m**-3 * u.Pa**-0.5, E_S=-19.2 * u.kJ * u.mol**-1, + range=( + u.Quantity(850, u.degC), + u.Quantity(1050, u.degC), + ), source="atsumi_absorption_1988", isotope="H", ) -properties = [causey_diffusivity, atsumi_diffusivity, atsumi_solubility] +data_T_petucci_graphite = [ + 90.0, + 100.0, + 110.0, + 125.0, + 150.0, + 175.0, + 200.0, + 250.0, + 300.0, + 350.0, + 400.0, + 450.0, + 500.0, + 550.0, + 600.0, + 650.0, + 700.0, +] * u.K +data_y_petucci_graphite = ( + [ + 2.16, + 2.97, + 3.16, + 3.56, + 4.08, + 6.10, + 10.95, + 16.96, + 25.76, + 33.61, + 38.41, + 43.77, + 60.75, + 69.45, + 82.01, + 86.16, + 89.95, + ] + * u.angstrom**2 + * u.ps**-1 +) + +petucci_diffusivity_graphite = Diffusivity( + data_T=data_T_petucci_graphite, + data_y=data_y_petucci_graphite, + source="petucci_diffusion_2013", + isotope="H", + note="H2 diffusion in graphite calculated by molecular dynamics. Data from table III", +) + + +data_T_petucci_graphene = [40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0] * u.K +data_y_petucci_graphene = ( + [175.71, 385.92, 490.17, 656.99, 789.03, 849.91, 1082.79] * u.angstrom**2 * u.ps**-1 +) +petucci_diffusivity_graphene = Diffusivity( + data_T=data_T_petucci_graphene, + data_y=data_y_petucci_graphene, + source="petucci_diffusion_2013", + isotope="H", + note="H2 diffusion in graphene calculated by molecular dynamics. Data from table III", +) + +import numpy as np + +graphite_density = 2.266 * u.g / u.cm**3 + +carbon_atomic_mass = 12.011 * u.g / u.mol + +graphite_atomic_density = graphite_density / carbon_atomic_mass + +shirasu_solubility_IG_110U = Solubility( + S_0=np.exp(-14.5) * graphite_atomic_density * u.Pa**-0.5, + E_S=-18.2 * u.kJ / u.mol, + source="shirasu_thermodynamic_1993", + note="graphite IG-110U, data from Table 1", + range=(u.Quantity(700, u.degC), u.Quantity(1000, u.degC)), + isotope="H", +) + +shirasu_solubility_POCO_AXS_5Q = Solubility( + S_0=np.exp(-15.6) * graphite_atomic_density * u.Pa**-0.5, + E_S=-21.5 * u.kJ / u.mol, + source="shirasu_thermodynamic_1993", + note="graphite POCO AXS-5Q, data from Table 1", + range=(u.Quantity(700, u.degC), u.Quantity(1000, u.degC)), + isotope="H", +) + +shirasu_solubility_ISO_880U_low_temp = Solubility( + S_0=np.exp(-15.8) * graphite_atomic_density * u.Pa**-0.5, + E_S=-22.0 * u.kJ / u.mol, + source="shirasu_thermodynamic_1993", + note="graphite ISO-880U, data from Table 1", + range=(u.Quantity(700, u.degC), u.Quantity(900, u.degC)), + isotope="H", +) + +shirasu_solubility_ISO_880U_high_temp = Solubility( + S_0=np.exp(-18.5) * graphite_atomic_density * u.Pa**-0.5, + E_S=-48.2 * u.kJ / u.mol, + source="shirasu_thermodynamic_1993", + note="graphite ISO-880U, data from Table 1", + range=(u.Quantity(900, u.degC), u.Quantity(1000, u.degC)), + isotope="H", +) + +shirasu_solubility_EK_98_low_temp = Solubility( + S_0=np.exp(-14.7) * graphite_atomic_density * u.Pa**-0.5, + E_S=-13.5 * u.kJ / u.mol, + source="shirasu_thermodynamic_1993", + note="graphite EK-98, data from Table 1", + range=(u.Quantity(700, u.degC), u.Quantity(800, u.degC)), + isotope="H", +) + +shirasu_solubility_EK_98_high_temp = Solubility( + S_0=np.exp(-18.5) * graphite_atomic_density * u.Pa**-0.5, + E_S=-47.6 * u.kJ / u.mol, + source="shirasu_thermodynamic_1993", + note="graphite EK-98, data from Table 1", + range=(u.Quantity(800, u.degC), u.Quantity(1000, u.degC)), + isotope="H", +) + +properties = [ + causey_diffusivity, + atsumi_diffusivity, + atsumi_solubility, + petucci_diffusivity_graphite, + petucci_diffusivity_graphene, + shirasu_solubility_IG_110U, + shirasu_solubility_POCO_AXS_5Q, + shirasu_solubility_ISO_880U_low_temp, + shirasu_solubility_ISO_880U_high_temp, + shirasu_solubility_EK_98_low_temp, + shirasu_solubility_EK_98_high_temp, +] for prop in properties: prop.material = htm.CARBON diff --git a/h_transport_materials/property_database/chromium.py b/h_transport_materials/property_database/chromium.py new file mode 100644 index 00000000..ebee4a95 --- /dev/null +++ b/h_transport_materials/property_database/chromium.py @@ -0,0 +1,81 @@ +import h_transport_materials as htm +from h_transport_materials import Diffusivity + +u = htm.ureg + +zhou_diffusivity_chromium_h_model1 = Diffusivity( + D_0=1.680e-7 * u.m**2 * u.s**-1, + E_D=0.0994 * u.eV * u.particle**-1, + range=(297 * u.K, 1000 * u.K), + source="zhou_thermal_2024", + isotope="H", + note="Table 2. Model 1 considering only hydrogen isotope vibrations", +) + +zhou_diffusivity_chromium_h_model4 = Diffusivity( + D_0=1.366e-7 * u.m**2 * u.s**-1, + E_D=0.0998 * u.eV * u.particle**-1, + range=(297 * u.K, 1000 * u.K), + source="zhou_thermal_2024", + isotope="H", + note=( + "Table 2. Model 4 considering lattice pDOS coupled " + "with hydrogen isotope vibrations and thermal expansion" + ), +) + +zhou_diffusivity_chromium_d_model1 = Diffusivity( + D_0=1.383e-7 * u.m**2 * u.s**-1, + E_D=0.111 * u.eV * u.particle**-1, + range=(297 * u.K, 1000 * u.K), + source="zhou_thermal_2024", + isotope="D", + note="Table S2 of suplementary materials. Model 1 considering only hydrogen isotope vibrations", +) + +zhou_diffusivity_chromium_d_model4 = Diffusivity( + D_0=1.110e-7 * u.m**2 * u.s**-1, + E_D=0.110 * u.eV * u.particle**-1, + range=(297 * u.K, 1000 * u.K), + source="zhou_thermal_2024", + isotope="D", + note=( + "Table S2 of suplementary materials. Model 4 considering lattice pDOS coupled " + "with hydrogen isotope vibrations and thermal expansion" + ), +) + +zhou_diffusivity_chromium_t_model1 = Diffusivity( + D_0=1.204e-7 * u.m**2 * u.s**-1, + E_D=0.114 * u.eV * u.particle**-1, + range=(297 * u.K, 1000 * u.K), + source="zhou_thermal_2024", + isotope="T", + note="Table S2 of suplementary materials. Model 1 considering only hydrogen isotope vibrations", +) + +zhou_diffusivity_chromium_t_model4 = Diffusivity( + D_0=9.539e-8 * u.m**2 * u.s**-1, + E_D=0.114 * u.eV * u.particle**-1, + range=(297 * u.K, 1000 * u.K), + source="zhou_thermal_2024", + isotope="T", + note=( + "Table S2 of suplementary materials. Model 4 considering lattice pDOS coupled " + "with hydrogen isotope vibrations and thermal expansion" + ), +) + +properties = [ + zhou_diffusivity_chromium_h_model1, + zhou_diffusivity_chromium_h_model4, + zhou_diffusivity_chromium_d_model1, + zhou_diffusivity_chromium_d_model4, + zhou_diffusivity_chromium_t_model1, + zhou_diffusivity_chromium_t_model4, +] + +for prop in properties: + prop.material = htm.CHROMIUM + +htm.database += properties diff --git a/h_transport_materials/property_database/copper/copper.py b/h_transport_materials/property_database/copper/copper.py index e3281f38..c9775e27 100644 --- a/h_transport_materials/property_database/copper/copper.py +++ b/h_transport_materials/property_database/copper/copper.py @@ -233,6 +233,7 @@ anderl_recombination = RecombinationCoeff( pre_exp=9.1e-18 * u.m**4 * u.s**-1 * u.particle**-1, act_energy=0.99 * u.eV * u.particle**-1, + range=(700.0 * u.K, 800.0 * u.K), isotope="D", source="anderl_deuterium_1999", ) @@ -242,6 +243,7 @@ pre_exp=3e-6 * u.mol * u.m**-1 * u.s**-1 * u.mbar**-0.5, act_energy=77 * u.kJ * u.mol**-1, source="houben_comparison_2022", + range=(u.Quantity(300, u.degC), u.Quantity(550, u.degC)), isotope="D", ) diff --git a/h_transport_materials/property_database/cucrzr/cucrzr.py b/h_transport_materials/property_database/cucrzr/cucrzr.py index 04b34fd4..4ab2643d 100644 --- a/h_transport_materials/property_database/cucrzr/cucrzr.py +++ b/h_transport_materials/property_database/cucrzr/cucrzr.py @@ -8,13 +8,6 @@ u = htm.ureg -anderl_recombination = Diffusivity( - D_0=2.9e-14 * u.m**2 * u.s**-1, - E_D=1.92 * u.eV * u.particle**-1, - source="anderl_deuterium_1999", - isotope="D", -) - # diffusivity data_diffusivity_serra = htm.structure_data_from_wpd("serra_diffusivity_1998.csv") @@ -114,6 +107,7 @@ anderl_recombination = RecombinationCoeff( pre_exp=2.9e-14 * u.meter**4 * u.second**-1 * u.particle**-1, act_energy=1.92 * u.eV * u.particle**-1, + range=(700.0 * u.K, 800.0 * u.K), isotope="D", source="anderl_deuterium_1999", ) @@ -122,6 +116,7 @@ houben_permeability = Permeability( pre_exp=6e-6 * u.mol * u.m**-1 * u.s**-1 * u.mbar**-0.5, act_energy=79 * u.kJ * u.mol**-1, + range=(u.Quantity(300, u.degC), u.Quantity(550, u.degC)), source="houben_comparison_2022", isotope="D", ) diff --git a/h_transport_materials/property_database/eurofer_97/eurofer_97.py b/h_transport_materials/property_database/eurofer_97/eurofer_97.py index c90ebfe4..39ec6dc5 100644 --- a/h_transport_materials/property_database/eurofer_97/eurofer_97.py +++ b/h_transport_materials/property_database/eurofer_97/eurofer_97.py @@ -8,11 +8,7 @@ aiello_permeability_H = Permeability( data_T=1000 / aiello_permeability_data["H"]["x"] * u.K, - data_y=aiello_permeability_data["H"]["y"] - * u.mol - * u.m**-1 - * u.Pa**-0.5 - * u.s**-1, + data_y=aiello_permeability_data["H"]["y"] * u.mol * u.m**-1 * u.Pa**-0.5 * u.s**-1, source="aiello_hydrogen_2002", isotope="H", note="in the paper, only the 3 hottest points are fitted to measure lattice diffusion only", @@ -21,16 +17,14 @@ aiello_permeability_D = Permeability( data_T=1000 / aiello_permeability_data["D"]["x"] * u.K, - data_y=aiello_permeability_data["D"]["y"] - * u.mol - * u.m**-1 - * u.Pa**-0.5 - * u.s**-1, + data_y=aiello_permeability_data["D"]["y"] * u.mol * u.m**-1 * u.Pa**-0.5 * u.s**-1, source="aiello_hydrogen_2002", isotope="D", note="in the paper, only the 3 hottest points are fitted to measure lattice diffusion only", ) + + aiello_diffusivity_data = htm.structure_data_from_wpd("aiello_2002/diffusivity.csv") aiello_diffusivity_H = Diffusivity( @@ -50,6 +44,24 @@ note="in the paper, only the 3 hottest points are fitted to measure lattice diffusion only", ) +aiello_solubility_D = Solubility( + S_0=aiello_permeability_D.pre_exp/aiello_diffusivity_D.pre_exp, + E_S=aiello_permeability_D.act_energy - aiello_diffusivity_D.act_energy, + range=aiello_permeability_D.range, + source="aiello_hydrogen_2002", + isotope="D", + note="there is a typo in Eq 2 of the paper. This property is obtained by dividing the permeability by the diffusivity.", +) + +aiello_solubility_H = Solubility( + S_0=aiello_permeability_H.pre_exp/aiello_diffusivity_H.pre_exp, + E_S=aiello_permeability_H.act_energy - aiello_diffusivity_H.act_energy, + range=aiello_permeability_H.range, + source="aiello_hydrogen_2002", + isotope="H", + note="This property is obtained by dividing the permeability by the diffusivity.", +) + chen_permeability_data = np.genfromtxt( htm.absolute_path("chen_2021/permeability.csv"), delimiter=",", @@ -92,11 +104,7 @@ esteban_permeability = Permeability( data_T=1000 / esteban_permeability_data[:, 0] * u.K, - data_y=esteban_permeability_data[:, 1] - * u.mol - * u.m**-1 - * u.Pa**-0.5 - * u.s**-1, + data_y=esteban_permeability_data[:, 1] * u.mol * u.m**-1 * u.Pa**-0.5 * u.s**-1, source="esteban_hydrogen_2007", isotope="H", ) @@ -153,11 +161,30 @@ isotope="H", ) +houben_permeability = Permeability( + pre_exp=5.7e-7 * u.mol * u.m**-1 * u.ms**-1 * u.mbar**-0.5, + act_energy=41.6 * u.kJ * u.mol**-1, + range=(u.Quantity(300, u.degC), u.Quantity(550, u.degC)), + isotope="d", + source="houben_comparison_2019", +) + +houben_permeability_oxidised = Permeability( + pre_exp=5.0e-7 * u.mol * u.m**-1 * u.ms**-1 * u.mbar**-0.5, + act_energy=46 * u.kJ * u.mol**-1, + range=(u.Quantity(300, u.degC), u.Quantity(600, u.degC)), + isotope="d", + source="houben_comparison_2019", + note="oxidised", +) + properties = [ aiello_permeability_H, aiello_permeability_D, aiello_diffusivity_H, aiello_diffusivity_D, + aiello_solubility_H, + aiello_solubility_D, chen_permeability, chen_diffusivity, chen_solubility, @@ -167,6 +194,8 @@ montupet_leblond_permeability, montupet_leblond_diffusivity, montupet_leblond_solubility, + houben_permeability, + houben_permeability_oxidised, ] for prop in properties: diff --git a/h_transport_materials/property_database/flinak/flinak.py b/h_transport_materials/property_database/flinak/flinak.py index 67f60860..65825400 100644 --- a/h_transport_materials/property_database/flinak/flinak.py +++ b/h_transport_materials/property_database/flinak/flinak.py @@ -15,6 +15,7 @@ data_y=data_fukada[:-1, 1] * u.m**2 * u.s**-1, source="fukada_hydrogen_2006", isotope="H", + note="in original paper, the equation displayed on Fig 5 doesn't match the plotted line.", ) @@ -46,9 +47,7 @@ ) data_nakamura_sol_flinak_T = 1 / data_nakamura["sol_flinakx"] * u.K -data_nakamura_sol_flinak_y = ( - data_nakamura["sol_flinaky"] * u.mol * u.m**-3 * u.Pa**-1 -) +data_nakamura_sol_flinak_y = data_nakamura["sol_flinaky"] * u.mol * u.m**-3 * u.Pa**-1 nakamura_solubility_h = Solubility( data_T=data_nakamura_sol_flinak_T, data_y=data_nakamura_sol_flinak_y, @@ -105,6 +104,7 @@ data_y=data_zeng[:, 1] * u.m**2 * u.s**-1, source="zeng_behavior_2019", isotope="H", + note="in original paper, the legend of Fig 5 is mixed up: red points correspond to Fukada and Morisaki.", ) data_zeng_S = np.genfromtxt( diff --git a/h_transport_materials/property_database/hastelloy_n.py b/h_transport_materials/property_database/hastelloy_n.py index 9606de0c..70151f70 100644 --- a/h_transport_materials/property_database/hastelloy_n.py +++ b/h_transport_materials/property_database/hastelloy_n.py @@ -68,6 +68,49 @@ source="zhang_diffusion_2020", ) +fuerst_permeability_h = Permeability( + pre_exp=5.70e-7 * u.mol * u.m**-1 * u.Pa**-0.5 * u.s**-1, + act_energy=66.2 * u.kJ * u.mol**-1, + range=(u.Quantity(500, u.degC), u.Quantity(700, u.degC)), + isotope="H", + source="fuerst_hastelloyn_2024", +) +fuerst_permeability_d = Permeability( + pre_exp=2.40e-7 * u.mol * u.m**-1 * u.Pa**-0.5 * u.s**-1, + act_energy=62.3 * u.kJ * u.mol**-1, + range=(u.Quantity(500, u.degC), u.Quantity(700, u.degC)), + isotope="D", + source="fuerst_hastelloyn_2024", +) +fuerst_diffusivity_h = Diffusivity( + D_0=2.89e-6 * u.m**2 * u.s**-1, + E_D=55.9 * u.kJ * u.mol**-1, + range=(u.Quantity(500, u.degC), u.Quantity(700, u.degC)), + isotope="H", + source="fuerst_hastelloyn_2024", +) +fuerst_diffusivity_d = Diffusivity( + D_0=1.95e-6 * u.m**2 * u.s**-1, + E_D=54.7 * u.kJ * u.mol**-1, + range=(u.Quantity(500, u.degC), u.Quantity(700, u.degC)), + isotope="D", + source="fuerst_hastelloyn_2024", +) +fuerst_solubility_h = Solubility( + S_0=1.97e-1 * u.mol * u.m**-3 * u.Pa**-0.5, + E_S=10.2 * u.kJ * u.mol**-1, + range=(u.Quantity(500, u.degC), u.Quantity(700, u.degC)), + isotope="H", + source="fuerst_hastelloyn_2024", +) +fuerst_solubility_d = Solubility( + S_0=1.23e-1 * u.mol * u.m**-3 * u.Pa**-0.5, + E_S=7.50 * u.kJ * u.mol**-1, + range=(u.Quantity(500, u.degC), u.Quantity(700, u.degC)), + isotope="D", + source="fuerst_hastelloyn_2024", +) + properties = [ webb_permeability, zhang_permeability_h, @@ -76,6 +119,12 @@ zhang_diffusivity_d, zhang_solubility_h, zhang_solubility_d, + fuerst_permeability_h, + fuerst_permeability_d, + fuerst_solubility_h, + fuerst_solubility_d, + fuerst_diffusivity_h, + fuerst_diffusivity_d, ] for prop in properties: diff --git a/h_transport_materials/property_database/incoloy_800.py b/h_transport_materials/property_database/incoloy_800.py index 190f860c..daba1505 100644 --- a/h_transport_materials/property_database/incoloy_800.py +++ b/h_transport_materials/property_database/incoloy_800.py @@ -25,6 +25,7 @@ act_energy=56.6 * u.kJ * u.mol**-1, isotope="H", source="schmidt_studies_1985", + range=(1023 * u.K, 1223 * u.K), note="sample No. 1.2 Material 1.4876 (second line of Table 2 in Schmidt's paper)" + "in Shimada 2020 review, the S_0 factor is wrong", ) diff --git a/h_transport_materials/property_database/iron.py b/h_transport_materials/property_database/iron.py index 942a7b55..74821572 100644 --- a/h_transport_materials/property_database/iron.py +++ b/h_transport_materials/property_database/iron.py @@ -8,7 +8,9 @@ u = htm.ureg -IRON_MOLAR_VOLUME = 7.09e-6 # m3/mol https://www.aqua-calc.com/calculate/mole-to-volume-and-weight/substance/iron +# TODO give units to IRON_MOLAR_VOLUME +# https://www.aqua-calc.com/calculate/mole-to-volume-and-weight/substance/iron +IRON_MOLAR_VOLUME = 7.09e-6 # m3/mol volkl_diffusivity = Diffusivity( D_0=4.00e-8 * u.m**2 * u.s**-1, @@ -34,6 +36,24 @@ source="tahara_measurements_1985", ) +tahara_permeability_h = Permeability( + pre_exp=1.77e-5 * u.mol * u.m**-1 * u.s**-1 * u.MPa**-0.5, + act_energy=31.6 * u.kJ * u.mol**-1, + isotope="H", + range=(500 * u.K, 1000 * u.K), + source="tahara_measurements_1985", + note="equation 4", +) + +tahara_permeability_d = Permeability( + pre_exp=1.05e-5 * u.mol * u.m**-1 * u.s**-1 * u.MPa**-0.5, + act_energy=32.4 * u.kJ * u.mol**-1, + isotope="D", + range=(500 * u.K, 1000 * u.K), + source="tahara_measurements_1985", + note="equation 5", +) + eichenauer_solubility = Solubility( S_0=4.90e-6 / IRON_MOLAR_VOLUME * u.mol * u.m**-3 * u.Pa**-0.5, E_S=24.3 * u.kJ * u.mol**-1, @@ -104,16 +124,87 @@ note="gamma phase", ) +zhou_diffusivity_iron_h_model1 = Diffusivity( + D_0=1.458e-7 * u.m**2 * u.s**-1, + E_D=0.0817 * u.eV * u.particle**-1, + range=(297 * u.K, 1000 * u.K), + source="zhou_thermal_2024", + isotope="H", + note="Table 2. Model 1 considering only hydrogen isotope vibrations", +) + +zhou_diffusivity_iron_h_model4 = Diffusivity( + D_0=1.076e-7 * u.m**2 * u.s**-1, + E_D=0.0734 * u.eV * u.particle**-1, + range=(297 * u.K, 1000 * u.K), + source="zhou_thermal_2024", + isotope="H", + note=( + "Table 2. Model 4 considering lattice pDOS coupled " + "with hydrogen isotope vibrations and thermal expansion" + ), +) + +zhou_diffusivity_iron_d_model1 = Diffusivity( + D_0=1.143e-7 * u.m**2 * u.s**-1, + E_D=0.0874 * u.eV * u.particle**-1, + range=(297 * u.K, 1000 * u.K), + source="zhou_thermal_2024", + isotope="D", + note="Table S2 of suplementary materials. Model 1 considering only hydrogen isotope vibrations", +) + +zhou_diffusivity_iron_d_model4 = Diffusivity( + D_0=8.482e-8 * u.m**2 * u.s**-1, + E_D=0.0810 * u.eV * u.particle**-1, + range=(297 * u.K, 1000 * u.K), + source="zhou_thermal_2024", + isotope="D", + note=( + "Table S2 of suplementary materials. Model 4 considering lattice pDOS coupled " + "with hydrogen isotope vibrations and thermal expansion" + ), +) + +zhou_diffusivity_iron_t_model1 = Diffusivity( + D_0=9.754e-8 * u.m**2 * u.s**-1, + E_D=0.0889 * u.eV * u.particle**-1, + range=(297 * u.K, 1000 * u.K), + source="zhou_thermal_2024", + isotope="T", + note="Table S2 of suplementary materials. Model 1 considering only hydrogen isotope vibrations", +) + +zhou_diffusivity_iron_t_model4 = Diffusivity( + D_0=7.190e-8 * u.m**2 * u.s**-1, + E_D=0.0833 * u.eV * u.particle**-1, + range=(297 * u.K, 1000 * u.K), + source="zhou_thermal_2024", + isotope="T", + note=( + "Table S2 of suplementary materials. Model 4 considering lattice pDOS coupled " + "with hydrogen isotope vibrations and thermal expansion" + ), +) + properties = [ volkl_diffusivity, tahara_diffusivity_H, tahara_diffusivity_D, + tahara_permeability_h, + tahara_permeability_d, eichenauer_solubility, nagasaki_recombination_alpha, nagasaki_recombination_gamma, addach_diffusivity, masui_permeability_alpha, masui_permeability_gamma, + zhou_diffusivity_iron_h_model1, + zhou_diffusivity_iron_h_model4, + zhou_diffusivity_iron_d_model1, + zhou_diffusivity_iron_d_model4, + zhou_diffusivity_iron_t_model1, + zhou_diffusivity_iron_t_model4, ] for prop in properties: diff --git a/h_transport_materials/property_database/lipb/lipb.py b/h_transport_materials/property_database/lipb/lipb.py index ba55f86a..2d93b49d 100644 --- a/h_transport_materials/property_database/lipb/lipb.py +++ b/h_transport_materials/property_database/lipb/lipb.py @@ -368,6 +368,25 @@ def atom_density_lipb(nb_li: int, nb_pb: int): source="okada_analysis_2012", ) + +data_okuno = htm.structure_data_from_wpd("okuno_1986/data.csv") + +okuno_diffusivity_li7pb2 = Diffusivity( + data_T=1000 / (data_okuno["li7pb2"]["x"] * u.K**-1), + data_y=data_okuno["li7pb2"]["y"] * u.cm**2 * u.s**-1, + isotope="T", + note="Li7Pb2, figure 6", + source="okuno_thermal_1986", +) + +okuno_diffusivity_li45pb55 = Diffusivity( + data_T=1000 / (data_okuno["li45pb55"]["x"] * u.K**-1), + data_y=data_okuno["li45pb55"]["y"] * u.cm**2 * u.s**-1, + isotope="T", + note="Li45Pb55, figure 6", + source="okuno_thermal_1986", +) + properties = [ fauvet_diffusivity, reiter_diffusivity_h, @@ -400,6 +419,8 @@ def atom_density_lipb(nb_li: int, nb_pb: int): okada_diffusivity_d, okada_solubility_h, okada_solubility_d, + okuno_diffusivity_li7pb2, + okuno_diffusivity_li45pb55, ] for prop in properties: diff --git a/h_transport_materials/property_database/lipb/okuno_1986/__init__.py b/h_transport_materials/property_database/lipb/okuno_1986/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/h_transport_materials/property_database/lipb/okuno_1986/data.csv b/h_transport_materials/property_database/lipb/okuno_1986/data.csv new file mode 100644 index 00000000..be4a2cec --- /dev/null +++ b/h_transport_materials/property_database/lipb/okuno_1986/data.csv @@ -0,0 +1,9 @@ +li7pb2,,li45pb55, +X,Y,X,Y +1.4350149117929534,8.62814036352441e-7,1.5960243643532324,0.00001778124183545961 +1.483875044229894,8.017403962232112e-7,1.6224258201486124,0.000013093173944457945 +1.5258049840772379,5.472322233195856e-7,1.7681570034878429,0.000006403234897480673 +1.658464338068038,2.5868940882077394e-7,1.79565788808573,0.00000538074161012584 +1.7444017590860839,1.8715585017188328e-7,1.8493858363241165,0.000004287802241820604 +1.7863165343982204,1.305855012181062e-7,1.8708891472476368,0.000003847236329978641 +,,1.9247308295000756,0.0000025994953574831877 diff --git a/h_transport_materials/property_database/lipb/okuno_1986/okuno_1986.tar b/h_transport_materials/property_database/lipb/okuno_1986/okuno_1986.tar new file mode 100644 index 00000000..167ac776 Binary files /dev/null and b/h_transport_materials/property_database/lipb/okuno_1986/okuno_1986.tar differ diff --git a/h_transport_materials/property_database/molybdenum.py b/h_transport_materials/property_database/molybdenum.py index c6ef11b9..901f9c42 100644 --- a/h_transport_materials/property_database/molybdenum.py +++ b/h_transport_materials/property_database/molybdenum.py @@ -32,6 +32,7 @@ S_0=np.exp(8.703) * u.mol * u.m**-3 * u.Pa**-0.5, E_S=7.863e3 * u.K * htm.k_B, isotope="H", + range=(833 * u.K, 1193 * u.K), source="katsuta_diffusivity_1982", ) @@ -48,12 +49,25 @@ source="frauenfelder_permeation_1968", ) +guthrie_permeability = Permeability( + pre_exp=3.8e-3 * u.ccSTP * u.cm**-1 * u.s**-1 * u.atm**-0.5, + act_energy=17.4 * u.kcal * u.mol**-1, + isotope="D", + range=( + u.Quantity(270, u.degC), + u.Quantity(640, u.degC), + ), + source="guthrie_permeation_1974", + note="Figure 7", +) + properties = [ tanabe_diffusivity, katsuta_diffusivity, tanabe_solubility, katsuta_solubility, frauenfelder_permeability, + guthrie_permeability, ] for prop in properties: diff --git a/h_transport_materials/property_database/niobium.py b/h_transport_materials/property_database/niobium.py index 6c232f51..d51c0841 100644 --- a/h_transport_materials/property_database/niobium.py +++ b/h_transport_materials/property_database/niobium.py @@ -3,8 +3,6 @@ u = htm.ureg -NIOBIUM_MOLAR_VOLUME = 1.08e-8 # m3/mol https://www.aqua-calc.com/calculate/mole-to-volume-and-weight/substance/niobium - volkl_diffusivity = Diffusivity( D_0=5.00e-8 * u.m**2 * u.s**-1, E_D=10.2 * u.kJ * u.mol**-1, @@ -13,10 +11,51 @@ isotope="H", ) -schober_diffusivity = Diffusivity( - D_0=4.4e-8 * u.m**2 * u.s**-1, - E_D=12.8 * u.kJ * u.mol**-1, - source="schober_h_1990", +qi_diffusivity_t = Diffusivity( + D_0=4.4e-4 * u.cm**2 * u.s**-1, + E_D=0.133 * u.eV * u.particle**-1, + range=( + u.Quantity(-140, u.degC), + u.Quantity(100, u.degC), + ), + source="qi_tritium_1983", + note="table 1, temperature range from Fig 1", + isotope="T", +) + +qi_diffusivity_d = Diffusivity( + D_0=5.2e-4 * u.cm**2 * u.s**-1, + E_D=0.127 * u.eV * u.particle**-1, + range=( + u.Quantity(-140, u.degC), + u.Quantity(100, u.degC), + ), + source="qi_tritium_1983", + note="table 1, temperature range from Fig 1", + isotope="D", +) + +qi_diffusivity_h_high_temp = Diffusivity( + D_0=5e-4 * u.cm**2 * u.s**-1, + E_D=0.106 * u.eV * u.particle**-1, + range=( + 250 * u.K, + u.Quantity(100, u.degC), + ), + source="qi_tritium_1983", + note="table 1, temperature range from Fig 1", + isotope="H", +) + +qi_diffusivity_h_low_temp = Diffusivity( + D_0=0.9e-4 * u.cm**2 * u.s**-1, + E_D=0.068 * u.eV * u.particle**-1, + range=( + u.Quantity(-160, u.degC), + 250 * u.K, + ), + source="qi_tritium_1983", + note="table 1, temperature range from Fig 1", isotope="H", ) @@ -28,18 +67,39 @@ isotope="H", ) -reiter_solubility = Solubility( - S_0=3.6e-6 / NIOBIUM_MOLAR_VOLUME * u.mol * u.m**-3 * u.Pa**-0.5, - E_S=-33.9 * u.kJ * u.mol**-1, - source="reiter_compilation_1996", +sherman_diffusivity_h = Diffusivity( + D_0=4.4e-8 * u.m**2 * u.s**-1, + E_D=12.8 * u.kJ * u.mol**-1, + range=( + u.Quantity(860, u.degC), + u.Quantity(1120, u.degC), + ), + source="sherman_hydrogen_1983", + note="equation 13, range taken from figure 9", isotope="H", ) +sherman_diffusivity_d = Diffusivity( + D_0=3.1e-8 * u.m**2 * u.s**-1, + E_D=14.0 * u.kJ * u.mol**-1, + range=( + u.Quantity(860, u.degC), + u.Quantity(1012, u.degC), + ), + source="sherman_hydrogen_1983", + note="equation after 14, range taken from figure 9", + isotope="D", +) + properties = [ volkl_diffusivity, - schober_diffusivity, + qi_diffusivity_t, + qi_diffusivity_d, + qi_diffusivity_h_low_temp, + qi_diffusivity_h_high_temp, veleckis_solubility, - reiter_solubility, + sherman_diffusivity_h, + sherman_diffusivity_d, ] for prop in properties: diff --git a/h_transport_materials/property_database/palladium.py b/h_transport_materials/property_database/palladium.py index 69ff5491..39b1a2c3 100644 --- a/h_transport_materials/property_database/palladium.py +++ b/h_transport_materials/property_database/palladium.py @@ -1,12 +1,9 @@ import h_transport_materials as htm -from h_transport_materials import Diffusivity, Solubility +from h_transport_materials import Diffusivity, Solubility, RecombinationCoeff import numpy as np u = htm.ureg -PALLADIUM_MOLAR_VOLUME = ( - 8.85e-6 * u.m**3 * u.mol**-1 -) # m3/mol https://www.aqua-calc.com/calculate/mole-to-volume-and-weight/palladium PALLADIUM_VOLUMIC_DENSITY = ( 8.32e-8 * u.m**3 @@ -472,6 +469,14 @@ source="powell_surface_1991", ) +takagi_recombination_d = RecombinationCoeff( + pre_exp=1.5e-27 * u.m**4 * u.s**-1 * u.particle**-1, + act_energy=0.48 * u.eV * u.particle**-1, + range=(398 * u.K, 571 * u.K), + isotope="D", + source="takagi_asymmetric_2003", + note="Equation 6", +) properties = [ volkl_diffusivity, @@ -481,6 +486,7 @@ solubility_powell_d, diffusivity_powell_h, diffusivity_powell_d, + takagi_recombination_d, ] for prop in properties: diff --git a/h_transport_materials/property_database/palladium_copper.py b/h_transport_materials/property_database/palladium_copper.py new file mode 100644 index 00000000..a5c02cef --- /dev/null +++ b/h_transport_materials/property_database/palladium_copper.py @@ -0,0 +1,82 @@ +import h_transport_materials as htm +from h_transport_materials import ( + Permeability, + Diffusivity, +) +import numpy as np + +u = htm.ureg + +li_data_T = ( + np.array( + [ + 350, + 375, + 400, + 425, + ] + ) + * u.degC +) + +li_data_y = ( + np.array( + [ + 1.45e-8, + 1.51e-8, + 1.55e-8, + 1.60e-8, + ] + ) + * u.mol + * u.m**-1 + * u.Pa**-0.5 + * u.s**-1 +) + +li_permeability_h = Permeability( + data_T=li_data_T, + data_y=li_data_y, + source="li_low_2023", + isotope="H", + note="SI Table 1 (supporting information)", + material=htm.PD60CU40, +) + +piper_diffusivity_h = Diffusivity( + D_0=3e-3 * u.cm**2 * u.s**-1, + E_D=2400 * u.cal * u.mol**-1, + range=(u.Quantity(50, u.degC), u.Quantity(600, u.degC)), + isotope="H", + source="piper_diffusion_2004", + note="Equation 6 - this Arrhenius fit holds for when the alloy is in the beta phase for 52.5 percent copper. These range values were found outside of the paper.", + material=htm.PD52CU, +) + +onaka_diffusivity = Diffusivity( + D_0=2.9e-8 * u.m**2 * u.s**-1, + E_D=0.048 * u.eV * u.particle**-1, + isotope="D", + range=(u.Quantity(350, u.K), u.Quantity(600, u.K)), + source="onaka_characteristic_2016", + material=htm.PD60CU40, +) + +onaka_recombination = htm.RecombinationCoeff( + pre_exp=1.43e-26 * u.m**4 * u.s**-1 * u.particle**-1, + act_energy=0.40 * u.eV * u.particle**-1, + isotope="D", + range=(u.Quantity(350, u.K), u.Quantity(600, u.K)), + source="onaka_characteristic_2016", + material=htm.PD60CU40, +) + +properties = [ + li_permeability_h, + piper_diffusivity_h, + onaka_recombination, + onaka_diffusivity, +] + + +htm.database += properties diff --git a/h_transport_materials/property_database/pdag/palladium_silver.py b/h_transport_materials/property_database/pdag/palladium_silver.py index 3d617349..56e4b5a4 100644 --- a/h_transport_materials/property_database/pdag/palladium_silver.py +++ b/h_transport_materials/property_database/pdag/palladium_silver.py @@ -114,6 +114,23 @@ note="equation 17 + probably an error in the units of the activation energy in the original paper", ) +serra_permeability_h = Permeability( + pre_exp=5.58e-8 * u.mol * u.m**-1 * u.Pa**-0.5 * u.s**-1, + act_energy=6304 * u.J * u.mol**-1, + range=(373 * u.K, 773 * u.K), + isotope="H", + source="serra_hydrogen_1998-2", + note="Figure 2 or Equation 6", +) + +serra_permeability_d = Permeability( + pre_exp=3.43e-8 * u.mol * u.m**-1 * u.Pa**-0.5 * u.s**-1, + act_energy=6156 * u.J * u.mol**-1, + range=(373 * u.K, 773 * u.K), + isotope="D", + source="serra_hydrogen_1998-2", + note="Figure 2 or Equation 7", +) properties = [ serra_diffusivity_h, serra_diffusivity_d, @@ -127,6 +144,8 @@ vadrucci_permeability_wt150, vadrucci_permeability_wt200, vadrucci_dissociation_h, + serra_permeability_h, + serra_permeability_d, ] for prop in properties: diff --git a/h_transport_materials/property_database/rafm_steel.py b/h_transport_materials/property_database/rafm_steel.py index eac9a2d0..f02bd55d 100644 --- a/h_transport_materials/property_database/rafm_steel.py +++ b/h_transport_materials/property_database/rafm_steel.py @@ -222,6 +222,69 @@ ) +xu_permeability_h = htm.Permeability( + pre_exp=1.0e-9 * u.mol * u.cm**-1 * u.s**-1 * u.Pa**-0.5, + act_energy=0.46 * u.eV * u.particle**-1, + range=(u.Quantity(150, u.degC), u.Quantity(500, u.degC)), + isotope="H", + source="xu_bi-directional_2017", + note="Eq 2, F82H", +) + +xu_permeability_d = htm.Permeability( + pre_exp=6.8e-10 * u.mol * u.cm**-1 * u.s**-1 * u.Pa**-0.5, + act_energy=0.46 * u.eV * u.particle**-1, + range=(u.Quantity(150, u.degC), u.Quantity(500, u.degC)), + isotope="D", + source="xu_bi-directional_2017", + note="Eq 3, F82H", +) + +xu_diffusivity_h = htm.Diffusivity( + D_0=9.9e-4 * u.cm**2 * u.s**-1, + E_D=0.14 * u.eV * u.particle**-1, + range=(u.Quantity(250, u.degC), u.Quantity(500, u.degC)), + isotope="H", + source="xu_bi-directional_2017", + note="Eq 5, F82H, effective diffusivity", +) + +xu_diffusivity_d = htm.Diffusivity( + D_0=7.2e-4 * u.cm**2 * u.s**-1, + E_D=0.14 * u.eV * u.particle**-1, + range=(u.Quantity(250, u.degC), u.Quantity(500, u.degC)), + isotope="D", + source="xu_bi-directional_2017", + note="Eq 6, F82H, effective diffusivity", +) + +xu_solubility_h = htm.Solubility( + S_0=1.0e-6 * u.mol * u.cm**-3 * u.Pa**-0.5, + E_S=0.32 * u.eV * u.particle**-1, + range=(u.Quantity(250, u.degC), u.Quantity(500, u.degC)), + isotope="H", + source="xu_bi-directional_2017", + note="Eq 8, F82H", +) + +xu_solubility_d = htm.Solubility( + S_0=9.4e-7 * u.mol * u.cm**-3 * u.Pa**-0.5, + E_S=0.32 * u.eV * u.particle**-1, + range=(u.Quantity(250, u.degC), u.Quantity(500, u.degC)), + isotope="D", + source="xu_bi-directional_2017", + note="Eq 9, F82H", +) + +xu_recombination_coeff_d = htm.RecombinationCoeff( + pre_exp=3.8e-17 * u.particle**-1 * u.cm**4 * u.s**-1, + act_energy=-0.20 * u.eV * u.particle**-1, + range=(u.Quantity(250, u.degC), u.Quantity(510, u.degC)), + isotope="D", + source="xu_bi-directional_2017", + note="Eq 11, F82H", +) + properties = [ causey_diffusivity, forcey_diffusivity, @@ -245,6 +308,13 @@ kulsartov_solubility_d, serra_solubility_f82h, serra_solubility_batman, + xu_permeability_h, + xu_permeability_d, + xu_diffusivity_h, + xu_diffusivity_d, + xu_solubility_h, + xu_solubility_d, + xu_recombination_coeff_d, ] for prop in properties: diff --git a/h_transport_materials/property_database/sic.py b/h_transport_materials/property_database/sic.py new file mode 100644 index 00000000..abac6290 --- /dev/null +++ b/h_transport_materials/property_database/sic.py @@ -0,0 +1,91 @@ +import h_transport_materials as htm +from h_transport_materials import Diffusivity, Solubility + +u = htm.ureg + +causey_alpha_diffusivity = Diffusivity( + D_0=1.09e-2 * u.cm**2 * u.s**-1, + E_D=54.9 * u.kcal * u.mol**-1, + note="alpha-SiC single crystal", + range=(u.Quantity(800, u.degC), u.Quantity(1400, u.degC)), + source="causey_hydrogen_1978", + isotope="T", +) + +causey_beta_diffusivity = Diffusivity( + D_0=28e-2 * u.cm**2 * u.s**-1, + E_D=65.0 * u.kcal * u.mol**-1, + note="beta-SiC single crystal", + range=(u.Quantity(800, u.degC), u.Quantity(1000, u.degC)), + source="causey_hydrogen_1978", + isotope="T", +) + +causey_al_doped_alpha_diffusivity = Diffusivity( + D_0=4.04e-4 * u.cm**2 * u.s**-1, + E_D=34.0 * u.kcal * u.mol**-1, + note="Al-doped alpha-SiC single crystal", + range=(u.Quantity(500, u.degC), u.Quantity(900, u.degC)), + source="causey_hydrogen_1978", + isotope="T", +) + +causey_vapor_dep_beta_diffusivity = Diffusivity( + D_0=1.58e-4 * u.cm**2 * u.s**-1, + E_D=73.6 * u.kcal * u.mol**-1, + note="vapor-deposited beta-SiC", + range=(u.Quantity(1000, u.degC), u.Quantity(1300, u.degC)), + source="causey_hydrogen_1978", + isotope="T", +) + +causey_hot_pressed_alpha_diffusivity = Diffusivity( + D_0=0.904e-4 * u.cm**2 * u.s**-1, + E_D=48.2 * u.kcal * u.mol**-1, + note="hot-pressed alpha-SiC", + range=(u.Quantity(500, u.degC), u.Quantity(800, u.degC)), + source="causey_hydrogen_1978", + isotope="T", +) + +causey_sintered_beta_diffusivity = Diffusivity( + D_0=8.54e-4 * u.cm**2 * u.s**-1, + E_D=64.2 * u.kcal * u.mol**-1, + note="sintered beta-SiC", + range=(u.Quantity(800, u.degC), u.Quantity(1100, u.degC)), + source="causey_hydrogen_1978", + isotope="T", +) + +sic_density = ( + 3.21 * u.g * u.cm**-3 +) # ref: https://pubchem.ncbi.nlm.nih.gov/compound/Silicon-carbide +sic_molecular_weight = ( + 40.096 * u.g * u.mol**-1 +) # ref: https://pubchem.ncbi.nlm.nih.gov/compound/Silicon-carbide +sic_atom_density = sic_density / sic_molecular_weight + + +causey_beta_vapor_dep_solubility = Solubility( + S_0=8.77e-9 * u.atm**-0.5 * sic_atom_density, + E_S=-37.0 * u.kcal * u.mol**-1, + range=(u.Quantity(1000, u.degC), u.Quantity(1400, u.degC)), + note="vapor-deposited beta-SiC, at 1 atm", + isotope="D", + source="causey_hydrogen_1978", +) + +properties = [ + causey_alpha_diffusivity, + causey_beta_diffusivity, + causey_al_doped_alpha_diffusivity, + causey_vapor_dep_beta_diffusivity, + causey_hot_pressed_alpha_diffusivity, + causey_sintered_beta_diffusivity, + causey_beta_vapor_dep_solubility, +] + +for prop in properties: + prop.material = htm.SIC + +htm.database += properties diff --git a/h_transport_materials/property_database/ss_304/__init__.py b/h_transport_materials/property_database/ss_304/__init__.py index 3a05405b..b1e0b7e3 100644 --- a/h_transport_materials/property_database/ss_304/__init__.py +++ b/h_transport_materials/property_database/ss_304/__init__.py @@ -1,2 +1 @@ from . import ss_304 - diff --git a/h_transport_materials/property_database/ss_304/ss_304.py b/h_transport_materials/property_database/ss_304/ss_304.py index 0dcea931..97db312c 100644 --- a/h_transport_materials/property_database/ss_304/ss_304.py +++ b/h_transport_materials/property_database/ss_304/ss_304.py @@ -96,21 +96,22 @@ # TODO fit this ourselves braun_diffusivity = Diffusivity( D_0=0.18 * u.cm**2 * u.s**-1, - E_D=14800 * u.J * u.mol**-1, + E_D=14800 * u.cal * u.mol**-1, range=(u.Quantity(100, u.degC), u.Quantity(600, u.degC)), isotope="D", source="braun_determination_1980", - note="Braun doesn't plot the permeability and assumes a solubility from N.L. Hawkins, Report KAPL 863 (1953)", + note="Braun doesn't plot the permeability and assumes a solubility from N.L. Hawkins, Report KAPL 863 (1953). However we can't find this report.", ) hawkins_solubility = Solubility( S_0=2.2e19 * u.particle * u.cm**-3 * u.bar**-0.5, - E_S=1700 * u.J * u.mol**-1, + E_S=1700 * u.cal * u.mol**-1, + range=(u.Quantity(300, u.degC), u.Quantity(800, u.degC)), source="N.L. Hawkins, Report KAPL 863 (1953)", author="N.L. Hawkins", isotope="H", year=1953, - note="Found in Braun 1980 paper but couldn't find the original reference", + note="Found in Braun 1980 braun_determination_1980 paper but couldn't find the original reference. Range is assumed from https://doi.org/10.2172/4414215", ) braun_permeability = Permeability( @@ -125,12 +126,13 @@ # TODO fit this ourselves braun_recombination_coeff = RecombinationCoeff( pre_exp=5.4e-19 * u.particle * u.cm**4 * u.particle**-2 * u.s**-1, - act_energy=15600 * u.J * u.mol**-1, + act_energy=15600 * u.cal * u.mol**-1, range=(u.Quantity(150, u.degC), u.Quantity(400, u.degC)), isotope="D", source="braun_determination_1980", ) +# @FuerstT: I'm having a hard time finding the original ref for Hawkins solubility. This differs from your review. Any thoughts? braun_dissociation_coeff = DissociationCoeff( pre_exp=braun_recombination_coeff.pre_exp * hawkins_solubility.pre_exp**2, act_energy=braun_recombination_coeff.act_energy + 2 * hawkins_solubility.act_energy, @@ -145,8 +147,8 @@ delimiter=",", ) Hu_perm = Permeability( - data_T=(1000 / data[:,0]) * u.K, - data_y=data[:,1] * u.mol * u.m**(-1) * u.s**(-1) * u.MPa**(-0.5), + data_T=(1000 / data[:, 0]) * u.K, + data_y=data[:, 1] * u.mol * u.m ** (-1) * u.s ** (-1) * u.MPa ** (-0.5), source="hu_hydrogen_2015", isotope="H", note="Figure 6", diff --git a/h_transport_materials/property_database/steel_316L/steel_316L.py b/h_transport_materials/property_database/steel_316L/steel_316L.py index d8c2edb3..36f5849b 100644 --- a/h_transport_materials/property_database/steel_316L/steel_316L.py +++ b/h_transport_materials/property_database/steel_316L/steel_316L.py @@ -6,11 +6,17 @@ DissociationCoeff, RecombinationCoeff, ) -from h_transport_materials.property_database.iron import IRON_MOLAR_VOLUME import numpy as np u = htm.ureg +STEEL_316L_DENSITY = ( + 8.0 * u.g * u.cm**-3 +) # ref https://doi.org/10.31399/asm.hb.mhde2.9781627081993 +STEEL_316L_MOLAR_MASS = 56.52 * u.g * u.mol**-1 # TODO compute it from composition +STEEL_316L_MOLAR_VOLUME = STEEL_316L_DENSITY / STEEL_316L_MOLAR_MASS + + reiter_diffusivity = Diffusivity( D_0=3.70e-7 * u.m**2 * u.s**-1, E_D=51.9 * u.kJ * u.mol**-1, @@ -21,7 +27,7 @@ ) reiter_solubility = Solubility( - S_0=5.8e-6 / IRON_MOLAR_VOLUME * u.mol * u.m**-3 * u.Pa**-0.5, + S_0=5.8e-6 * u.Pa**-0.5 * STEEL_316L_MOLAR_VOLUME, E_S=13.1 * u.kJ * u.mol**-1, range=(500 * u.K, 1200 * u.K), isotope="H", @@ -29,13 +35,153 @@ note="this is an average of 5 papers on diffusivity from Reiter compilation review", ) -houben_permeability = Permeability( +# TODO fit this ourselves +reiter_1985_solubility_h = Solubility( + S_0=1.84e-6 * u.Pa**-0.5 * STEEL_316L_MOLAR_VOLUME, + E_S=6880 * u.J * u.mol**-1, + range=(600 * u.K, 900 * u.K), + isotope="h", + source="reiter_interaction_1985", + note="probably a unit mistake in the activation energies in original paper", +) + +reiter_1985_solubility_d = Solubility( + S_0=1.96e-6 * u.Pa**-0.5 * STEEL_316L_MOLAR_VOLUME, + E_S=8090 * u.J * u.mol**-1, + range=(600 * u.K, 900 * u.K), + isotope="d", + source="reiter_interaction_1985", + note="probably a unit mistake in the activation energies in original paper", +) + +reiter_1985_diffusivity_h = Diffusivity( + D_0=2.99e-6 * u.m**2 * u.s**-1, + E_D=59700 * u.J * u.mol**-1, + range=(600 * u.K, 900 * u.K), + isotope="h", + source="reiter_interaction_1985", + note="probably a unit mistake in the activation energies in original paper", +) + +reiter_1985_diffusivity_d = Diffusivity( + D_0=1.74e-6 * u.m**2 * u.s**-1, + E_D=58100 * u.J * u.mol**-1, + range=(600 * u.K, 900 * u.K), + isotope="d", + source="reiter_interaction_1985", + note="probably a unit mistake in the activation energies in original paper", +) + +reiter_1985_permeability_h = reiter_1985_diffusivity_h * reiter_1985_solubility_h +reiter_1985_permeability_h.range = reiter_1985_diffusivity_h.range +reiter_1985_permeability_h.isotope = reiter_1985_diffusivity_h.isotope +reiter_1985_permeability_h.source = reiter_1985_diffusivity_h.source +reiter_1985_permeability_h.note = "calculated in HTM" + + +reiter_1985_permeability_d = reiter_1985_diffusivity_d * reiter_1985_solubility_d +reiter_1985_permeability_d.range = reiter_1985_diffusivity_d.range +reiter_1985_permeability_d.isotope = reiter_1985_diffusivity_d.isotope +reiter_1985_permeability_d.source = reiter_1985_diffusivity_d.source +reiter_1985_permeability_d.note = "calculated in HTM" + + +# TODO fit this ourselves +reiter_1985_solubility_h = Solubility( + S_0=1.84e-6 * u.Pa**-0.5 * STEEL_316L_MOLAR_VOLUME, + E_S=6880 * u.J * u.mol**-1, + range=(600 * u.K, 900 * u.K), + isotope="h", + source="reiter_interaction_1985", + note="probably a unit mistake in the activation energies in original paper", +) + +reiter_1985_solubility_d = Solubility( + S_0=1.96e-6 * u.Pa**-0.5 * STEEL_316L_MOLAR_VOLUME, + E_S=8090 * u.J * u.mol**-1, + range=(600 * u.K, 900 * u.K), + isotope="d", + source="reiter_interaction_1985", + note="probably a unit mistake in the activation energies in original paper", +) + +reiter_1985_diffusivity_h = Diffusivity( + D_0=2.99e-6 * u.m**2 * u.s**-1, + E_D=59700 * u.J * u.mol**-1, + range=(600 * u.K, 900 * u.K), + isotope="h", + source="reiter_interaction_1985", + note="probably a unit mistake in the activation energies in original paper", +) + +reiter_1985_diffusivity_d = Diffusivity( + D_0=1.74e-6 * u.m**2 * u.s**-1, + E_D=58100 * u.J * u.mol**-1, + range=(600 * u.K, 900 * u.K), + isotope="d", + source="reiter_interaction_1985", + note="probably a unit mistake in the activation energies in original paper", +) + +reiter_1985_permeability_h = reiter_1985_diffusivity_h * reiter_1985_solubility_h +reiter_1985_permeability_h.range = reiter_1985_diffusivity_h.range +reiter_1985_permeability_h.isotope = reiter_1985_diffusivity_h.isotope +reiter_1985_permeability_h.source = reiter_1985_diffusivity_h.source +reiter_1985_permeability_h.note = "calculated in HTM" + + +reiter_1985_permeability_d = reiter_1985_diffusivity_d * reiter_1985_solubility_d +reiter_1985_permeability_d.range = reiter_1985_diffusivity_d.range +reiter_1985_permeability_d.isotope = reiter_1985_diffusivity_d.isotope +reiter_1985_permeability_d.source = reiter_1985_diffusivity_d.source +reiter_1985_permeability_d.note = "calculated in HTM" + + +houben_permeability_2022 = Permeability( pre_exp=8e-7 * u.mol * u.m**-1 * u.s**-1 * u.mbar**-0.5, act_energy=58 * u.kJ * u.mol**-1, + range=( + u.Quantity(300, u.degC), + u.Quantity(550, u.degC), + ), source="houben_comparison_2022", isotope="D", ) +houben_diffusivity_2019 = Diffusivity( + D_0=6e-7 * u.m**2 * u.s**-1, + E_D=51 * u.kJ * u.mol**-1, + range=(u.Quantity(400, u.degC), u.Quantity(500, u.degC)), + isotope="d", + source="houben_comparison_2019", +) + +houben_permeability_2019 = Permeability( + pre_exp=8e-7 * u.mol * u.m**-1 * u.ms**-1 * u.mbar**-0.5, + act_energy=58 * u.kJ * u.mol**-1, + range=(u.Quantity(300, u.degC), u.Quantity(550, u.degC)), + isotope="d", + source="houben_comparison_2019", +) + +houben_permeability_2019_rough = Permeability( + pre_exp=7e-7 * u.mol * u.m**-1 * u.ms**-1 * u.mbar**-0.5, + act_energy=63 * u.kJ * u.mol**-1, + range=(u.Quantity(300, u.degC), u.Quantity(550, u.degC)), + isotope="d", + source="houben_comparison_2019", + note="rough", +) + +houben_solubility_2019 = Solubility( + S_0=1 * u.mol * u.m**-3 * u.mbar**-0.5, + E_S=7 * u.kJ * u.mol**-1, + range=(u.Quantity(400, u.degC), u.Quantity(500, u.degC)), + isotope="d", + source="houben_comparison_2019", +) + + kishimoto_permeability = Permeability( pre_exp=7.1e3 * u.ccNTP * u.mm * u.cm**-2 * u.h**-1 * u.MPa**-0.5, act_energy=0.69 * u.eV * u.particle**-1, @@ -212,10 +358,96 @@ source="serra_hydrogen_2004", ) + +shan_permeability_h = Permeability( + data_T=[500.0, 550.0, 600.0, 650.0, 700.0, 723.0] * u.K, + data_y=[8.95e-11, 3.46e-10, 1.07e-9, 2.78e-9, 6.30e-9, 8.84e-9] + * u.mol + * u.m**-1 + * u.s**-1 + * u.MPa**-0.5, + isotope="h", + source="shan_behavior_1991", + note="Table 1", +) + +shan_permeability_t = Permeability( + data_T=[500.0, 550.0, 600.0, 650.0, 700.0, 723.0] * u.K, + data_y=[1.72e-11, 6.39e-11, 1.91e-10, 4.82e-10, 1.07e-9, 1.48e-9] + * u.mol + * u.m**-1 + * u.s**-1 + * u.MPa**-0.5, + isotope="t", + source="shan_behavior_1991", + note="Table 1", +) + +shan_diffusivity_h = Diffusivity( + data_T=[500.0, 550.0, 600.0, 650.0, 700.0, 723.0] * u.K, + data_y=[1.39e-12, 4.51e-12, 1.20e-11, 2.76e-11, 5.64e-11, 7.57e-11] + * u.m**2 + * u.s**-1, + isotope="h", + source="shan_behavior_1991", + note="Table 1", +) + +shan_diffusivity_t = Diffusivity( + data_T=[500.0, 550.0, 600.0, 650.0, 700.0, 723.0] * u.K, + data_y=[6.00e-12, 8.35e-12, 1.10e-11, 1.39e-11, 1.70e-11, 1.84e-11] + * u.m**2 + * u.s**-1, + isotope="t", + source="shan_behavior_1991", + note="Table 1", +) + +shan_solubility_h = Solubility( + S_0=shan_permeability_h.pre_exp / shan_diffusivity_h.pre_exp, + E_S=shan_permeability_h.act_energy - shan_diffusivity_h.act_energy, + range=shan_permeability_h.range, + isotope="h", + source="shan_behavior_1991", + note="calculated in HTM", +) + + +shan_solubility_t = Solubility( + S_0=shan_permeability_t.pre_exp / shan_diffusivity_t.pre_exp, + E_S=shan_permeability_t.act_energy - shan_diffusivity_t.act_energy, + range=shan_permeability_t.range, + isotope="t", + source="shan_behavior_1991", + note="calculated in HTM", +) + +penzhorn_diffusivity_1 = Diffusivity( + D_0=1.9e-2 * u.cm**2 * u.s**-1, + E_D=61300 * u.J * u.mol**-1, + range=(373.0, 473.0) * u.K, + isotope="T", + source="penzhorn_distribution_2010", + note="Section III.B, temperature range is unclear", +) + +penzhorn_diffusivity_2 = Diffusivity( + D_0=1.5e-2 * u.cm**2 * u.s**-1, + E_D=57300 * u.J * u.mol**-1, + range=(373.0, 473.0) * u.K, + isotope="T", + source="penzhorn_distribution_2010", + note="Section III.C, temperature range is unclear", +) + properties = [ reiter_diffusivity, reiter_solubility, - houben_permeability, + houben_permeability_2022, + houben_diffusivity_2019, + houben_solubility_2019, + houben_permeability_2019, + houben_permeability_2019_rough, kishimoto_permeability, kishimoto_diffusivity, kishimoto_solubility, @@ -234,6 +466,20 @@ serra_permeability, serra_diffusivity, serra_solubility, + reiter_1985_solubility_h, + reiter_1985_solubility_d, + reiter_1985_diffusivity_h, + reiter_1985_diffusivity_d, + reiter_1985_permeability_h, + reiter_1985_permeability_d, + shan_permeability_h, + shan_permeability_t, + shan_diffusivity_h, + shan_diffusivity_t, + shan_solubility_h, + shan_solubility_t, + penzhorn_diffusivity_1, + penzhorn_diffusivity_2, ] for prop in properties: diff --git a/h_transport_materials/property_database/tantalum.py b/h_transport_materials/property_database/tantalum.py index 6d777c84..6b19ba2d 100644 --- a/h_transport_materials/property_database/tantalum.py +++ b/h_transport_materials/property_database/tantalum.py @@ -19,7 +19,63 @@ source="veleckis_thermodynamic_1969", ) -properties = [volkl_diffusivity, veleckis_solubility] + +qi_diffusivity_h_low_temp = Diffusivity( + D_0=0.028e-4 * u.cm**2 * u.s**-1, + E_D=0.042 * u.eV * u.particle**-1, + range=( + u.Quantity(-180, u.degC), + 250 * u.K, + ), + note="table 1, temperature range from Fig 1", + source="qi_tritium_1983", + isotope="H", +) + +qi_diffusivity_h_high_temp = Diffusivity( + D_0=4.2e-4 * u.cm**2 * u.s**-1, + E_D=0.136 * u.eV * u.particle**-1, + range=( + 250 * u.K, + u.Quantity(100, u.degC), + ), + note="table 1, temperature range from Fig 1", + source="qi_tritium_1983", + isotope="H", +) + +qi_diffusivity_d = Diffusivity( + D_0=3.8e-4 * u.cm**2 * u.s**-1, + E_D=0.153 * u.eV * u.particle**-1, + range=( + u.Quantity(-140, u.degC), + u.Quantity(100, u.degC), + ), + note="table 1, temperature range from Fig 1", + source="qi_tritium_1983", + isotope="D", +) + +qi_diffusivity_t = Diffusivity( + D_0=3.7e-4 * u.cm**2 * u.s**-1, + E_D=0.162 * u.eV * u.particle**-1, + range=( + u.Quantity(-140, u.degC), + u.Quantity(100, u.degC), + ), + note="table 1, temperature range from Fig 1", + source="qi_tritium_1983", + isotope="T", +) + +properties = [ + volkl_diffusivity, + veleckis_solubility, + qi_diffusivity_h_low_temp, + qi_diffusivity_h_high_temp, + qi_diffusivity_d, + qi_diffusivity_t, +] for prop in properties: prop.material = htm.TANTALUM diff --git a/h_transport_materials/property_database/titanium.py b/h_transport_materials/property_database/titanium.py index a8f795f5..9d71bc79 100644 --- a/h_transport_materials/property_database/titanium.py +++ b/h_transport_materials/property_database/titanium.py @@ -21,7 +21,56 @@ source="reiter_compilation_1996", ) -properties = [reiter_diffusivity, reiter_solubility] +wille_diffusivity_1 = Diffusivity( + D_0=0.9e-2 * u.cm**2 * u.s**-1, + E_D=12400 * u.cal * u.mol**-1, + range=(873 * u.K, 1123 * u.K), + source="wille_hydrogen_1981", + isotope="H", + note=( + "Table 3-1, item a, Commercial Pure Ti, alpha phase. " + "Range is unknown and not specified in the report, " + "assuming same as for Reiter 1996. The report cites " + "another paper from 1958, but don't have access to it." + ), +) + +wille_diffusivity_2 = Diffusivity( + D_0=0.27e-2 * u.cm**2 * u.s**-1, + E_D=14200 * u.cal * u.mol**-1, + range=(873 * u.K, 1123 * u.K), + source="wille_hydrogen_1981", + isotope="H", + note=( + "Table 3-1, item b, Commercial Pure Ti, alpha phase. " + "Range is unknown and not specified in the report, " + "assuming same as for Reiter 1996. The report cites " + "a master thesis from Schleicher, H but don't have access to it." + ), +) + +wille_diffusivity_3 = Diffusivity( + D_0=0.06e-2 * u.cm**2 * u.s**-1, + E_D=14400 * u.cal * u.mol**-1, + range=(873 * u.K, 1123 * u.K), + source="wille_hydrogen_1981", + isotope="H", + note=( + "Table 3-1, item d, Commercial Pure Ti, alpha phase. " + "Range is unknown and not specified in the report, " + "assuming same as for Reiter 1996. The report cites " + "another report from Covington 1979, but don't have access to it." + ), +) + + +properties = [ + reiter_diffusivity, + reiter_solubility, + wille_diffusivity_1, + wille_diffusivity_2, + wille_diffusivity_3, +] for prop in properties: prop.material = htm.TITANIUM diff --git a/h_transport_materials/property_database/tungsten/buchenauer_2016/__init__.py b/h_transport_materials/property_database/tungsten/buchenauer_2016/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/h_transport_materials/property_database/tungsten/buchenauer_2016/buchenauer_2016.tar b/h_transport_materials/property_database/tungsten/buchenauer_2016/buchenauer_2016.tar new file mode 100644 index 00000000..ba3696b8 Binary files /dev/null and b/h_transport_materials/property_database/tungsten/buchenauer_2016/buchenauer_2016.tar differ diff --git a/h_transport_materials/property_database/tungsten/buchenauer_2016/data.csv b/h_transport_materials/property_database/tungsten/buchenauer_2016/data.csv new file mode 100644 index 00000000..447f58af --- /dev/null +++ b/h_transport_materials/property_database/tungsten/buchenauer_2016/data.csv @@ -0,0 +1,22 @@ +foil,,ITER grade,,UFG, +X,Y,X,Y,X,Y +0.7850678733031674,2.9836472402833464e-9,0.787228848821082,4.47183156237293e-9,0.7842857142857144,5.0469651168844165e-9 +0.7873303167420814,2.364489412645407e-9,0.7871733703190017,3.576004513317607e-9,0.7857142857142858,5.643066283354803e-9 +0.8167420814479638,2.104904144512022e-9,0.8191123439667131,2.7964170522600126e-9,0.8514285714285715,2.7312637228008525e-9 +0.8167420814479638,1.8025704857129353e-9,0.8202274618585298,2.5006807584394466e-9,0.8528571428571429,2.3101297000831677e-9 +0.8506787330316741,1.4849682622544696e-9,0.853253814147018,1.5637767696795445e-9,0.9314285714285715,9.45709116858659e-10 +0.8529411764705883,1.2716778427840875e-9,0.8532260748959778,1.3983988816231286e-9,0.9314285714285715,8.69749002617787e-10 +0.8914027149321266,8.971435783762863e-10,0.8897142857142858,1.000000000000004e-9,1.0285714285714285,3.096770996935361e-10 +0.8868778280542986,7.68284171060383e-10,0.8931428571428573,1.000000000000004e-9,1.0257142857142858,2.848035868435805e-10 +0.9321266968325792,5.634323137373142e-10,0.9329042995839113,3.8240562494177024e-10,1.1442857142857141,8.576958985908981e-11 +0.9276018099547512,5.420092945285339e-10,0.9340138696255204,3.3440429337866087e-10,1.1464285714285716,7.888050765828567e-11 +0.9751131221719456,3.0302710828663933e-10,0.9762274618585299,2.5006807584394467e-10,1.2942857142857143,1.7969891485325993e-11 +0.9728506787330318,2.697593030955549e-10,0.97849653259362,2.338471271155493e-10,1.2957142857142856,1.747528400007683e-11 +1.0248868778280544,1.5677838820970854e-10,1.0285714285714285,1e-10,, +1.0226244343891402,1.4508287784959432e-10,1.0296699029126217,8.362383819915535e-11,, +1.081447963800905,7.220809018385456e-11,1.0832676837725383,5.2293366566664866e-11,, +1.081447963800905,7.220809018385456e-11,1.0855478502080445,5.1137308255404765e-11,, +1.1447963800904977,2.635575251984567e-11,,,, +1.1402714932126696,2.635575251984567e-11,,,, +1.2126696832579185,1.167723626451988e-11,,,, +1.2104072398190044,1.1233240329780266e-11,,,, diff --git a/h_transport_materials/property_database/tungsten/ikeda_2011/__init__.py b/h_transport_materials/property_database/tungsten/ikeda_2011/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/h_transport_materials/property_database/tungsten/ikeda_2011/data.csv b/h_transport_materials/property_database/tungsten/ikeda_2011/data.csv new file mode 100644 index 00000000..66438d21 --- /dev/null +++ b/h_transport_materials/property_database/tungsten/ikeda_2011/data.csv @@ -0,0 +1,3 @@ +2.9072802482760913, 2.03459542798285e-13 +3.0910705246823946, 8.313487656491743e-14 +3.2415858303391394, 5.673354200786486e-14 diff --git a/h_transport_materials/property_database/tungsten/ikeda_2011/ikeda_2011.tar b/h_transport_materials/property_database/tungsten/ikeda_2011/ikeda_2011.tar new file mode 100644 index 00000000..5df5201e Binary files /dev/null and b/h_transport_materials/property_database/tungsten/ikeda_2011/ikeda_2011.tar differ diff --git a/h_transport_materials/property_database/tungsten/tungsten.py b/h_transport_materials/property_database/tungsten/tungsten.py index 8db0d66e..c559647a 100644 --- a/h_transport_materials/property_database/tungsten/tungsten.py +++ b/h_transport_materials/property_database/tungsten/tungsten.py @@ -9,19 +9,22 @@ u = htm.ureg -frauenfelder_src = "frauenfelder_solution_1969" frauenfelder_diffusivity = Diffusivity( - D_0=4.1e-7 * u.m**2 * u.s**-1, - E_D=0.39 * u.eV * u.particle**-1, + D_0=4.1e-3 * u.cm**2 * u.s**-1, + E_D=9000 * u.cal * u.mol**-1, range=(1100 * u.K, 2400 * u.K), - source=frauenfelder_src, + source="frauenfelder_solution_1969", isotope="H", ) + +S_0 = 2.9e-1 * u.torr * u.liter * u.cm**-3 * u.torr**-0.5 +T_ref = 273 * u.K +S_0 = S_0 / (htm.Rg * T_ref) frauenfelder_solubility = Solubility( - S_0=1.87e24 * u.particle * u.m**-3 * u.Pa**-0.5, - E_S=1.04 * u.eV * u.particle**-1, + S_0=S_0, + E_S=24000 * u.cal * u.mol**-1, range=(1100 * u.K, 2400 * u.K), - source=frauenfelder_src, + source="frauenfelder_solution_1969", isotope="H", ) @@ -40,14 +43,17 @@ heinola_diffusivity_tungsten = Diffusivity( D_0=5.2e-8 * u.m**2 * u.s**-1, E_D=0.21 * u.eV * u.particle**-1, + range=(300 * u.K, 1200 * u.K), source=heinola_src, isotope="H", + note="temperature range not given by author. DFT", ) johnson_src = "johnson_hydrogen_2010" johnson_diffusivity_tungsten_h = Diffusivity( D_0=6.32e-7 * u.m**2 * u.s**-1, E_D=0.39 * u.eV * u.particle**-1, + range=(500 * u.K, 1450 * u.K), source=johnson_src, isotope="H", ) @@ -55,6 +61,7 @@ johnson_diffusivity_tungsten_t = Diffusivity( D_0=5.16e-7 * u.m**2 * u.s**-1, E_D=0.40 * u.eV * u.particle**-1, + range=(500 * u.K, 1450 * u.K), source=johnson_src, isotope="T", ) @@ -62,10 +69,8 @@ moore_diffusivity_tungsten_h = Diffusivity( data_T=[1783.0, 1890.0, 1960.0, 2045.0, 2175.0] * u.K, - data_y=np.array([6.45e-9, 1.26e-8, 1.81e-8, 3.01e-8, 5.15e-8]) - * u.cm**2 - * u.s**-1, - source="moore_thermal_2004", + data_y=np.array([6.45e-9, 1.26e-8, 1.81e-8, 3.01e-8, 5.15e-8]) * u.cm**2 * u.s**-1, + source="moore_thermal_1964", isotope="H", note="data in table IV. Units are not given but on page 2651 the equation indiquates that D is in cm2/s", ) @@ -73,9 +78,7 @@ zakharov_diffusivity_tungsten_h = Diffusivity( data_T=u.Quantity(np.array([400, 600, 800, 1000, 1200]), u.degC), - data_y=np.array([6.43e-8, 4.22e-6, 5.99e-5, 3.67e-4, 1.38e-3]) - * u.cm**2 - * u.s**-1, + data_y=np.array([6.43e-8, 4.22e-6, 5.99e-5, 3.67e-4, 1.38e-3]) * u.cm**2 * u.s**-1, source="zakharov_hydrogen_1975", isotope="H", note="the author gives activation energies in cal", @@ -166,19 +169,19 @@ anderl_recomb = RecombinationCoeff( pre_exp=3.2e-15 * u.m**4 * u.s**-1 * u.particle**-1, act_energy=1.16 * u.eV * u.particle**-1, + range=(610 * u.K, 823 * u.K), isotope="D", source="anderl_deuterium_1992", ) frauenfelder_p_0 = 1.5e-3 * u.torr * u.liter * u.cm**-1 * u.s**-1 * u.torr**-0.5 +T_ref = 273 * u.K +frauenfelder_p_0 *= 1 / (htm.Rg * T_ref) frauenfelder_permeability = Permeability( - pre_exp=frauenfelder_p_0 / (htm.Rg * 300 * u.K), + pre_exp=frauenfelder_p_0, act_energy=31.5 * u.kcal * u.mol**-1, isotope="H", - range=( - u.Quantity(1050, u.degC), - u.Quantity(2400, u.degC), - ), + range=(1050 * u.K, 2400 * u.K), source="frauenfelder_permeation_1968", ) @@ -269,11 +272,7 @@ rolled_114um_data_invT = liu_permeability_data["rolled_114umX"] * u.K**-1 rolled_114um_data_y = ( - liu_permeability_data["rolled_114umY"] - * u.mol - * u.m**-1 - * u.s**-1 - * u.Pa**-0.5 + liu_permeability_data["rolled_114umY"] * u.mol * u.m**-1 * u.s**-1 * u.Pa**-0.5 ) liu_permeability_rolled_114um = Permeability( data_T=1 / rolled_114um_data_invT, @@ -285,11 +284,7 @@ rolled_240um_data_invT = liu_permeability_data["rolled_240umX"] * u.K**-1 rolled_240um_data_y = ( - liu_permeability_data["rolled_240umY"] - * u.mol - * u.m**-1 - * u.s**-1 - * u.Pa**-0.5 + liu_permeability_data["rolled_240umY"] * u.mol * u.m**-1 * u.s**-1 * u.Pa**-0.5 ) liu_permeability_rolled_240um = Permeability( data_T=1 / rolled_240um_data_invT, @@ -301,11 +296,7 @@ annealed_50um_data_invT = liu_permeability_data["annealed_50umX"] * u.K**-1 annealed_50um_data_y = ( - liu_permeability_data["annealed_50umY"] - * u.mol - * u.m**-1 - * u.s**-1 - * u.Pa**-0.5 + liu_permeability_data["annealed_50umY"] * u.mol * u.m**-1 * u.s**-1 * u.Pa**-0.5 ) liu_permeability_annealed_50um = Permeability( data_T=1 / annealed_50um_data_invT, @@ -317,11 +308,7 @@ annealed_250um_data_invT = liu_permeability_data["annealed_250umX"] * u.K**-1 annealed_250um_data_y = ( - liu_permeability_data["annealed_250umY"] - * u.mol - * u.m**-1 - * u.s**-1 - * u.Pa**-0.5 + liu_permeability_data["annealed_250umY"] * u.mol * u.m**-1 * u.s**-1 * u.Pa**-0.5 ) liu_permeability_annealed_250um = Permeability( data_T=1 / annealed_250um_data_invT, @@ -391,9 +378,7 @@ ) -recrystallized_250um_data_invT = ( - liu_diffusivity_data["recrystallized_250umX"] * u.K**-1 -) +recrystallized_250um_data_invT = liu_diffusivity_data["recrystallized_250umX"] * u.K**-1 recrystallized_250um_data_y = ( liu_diffusivity_data["recrystallized_250umY"] * u.m**2 * u.s**-1 ) @@ -405,6 +390,166 @@ isotope="H", ) +buchenauer_data = htm.structure_data_from_wpd("buchenauer_2016/data.csv") + +bauchenaeur_permeability_foil = Permeability( + data_T=1000 / (buchenauer_data["foil"]["x"] * u.K**-1), + data_y=buchenauer_data["foil"]["y"] * u.mol * u.m**-1 * u.s**-1 * u.MPa**-0.5, + source="buchenauer_permeation_2016", + isotope="D", +) + +bauchenaeur_permeability_iter_grade = Permeability( + data_T=1000 / (buchenauer_data["ITER_grade"]["x"] * u.K**-1), + data_y=buchenauer_data["ITER_grade"]["y"] * u.mol * u.m**-1 * u.s**-1 * u.MPa**-0.5, + source="buchenauer_permeation_2016", + isotope="D", + note="ITER grade Tungsten", +) + +bauchenaeur_permeability_ufg = Permeability( + data_T=1000 / (buchenauer_data["UFG"]["x"] * u.K**-1), + data_y=buchenauer_data["UFG"]["y"] * u.mol * u.m**-1 * u.s**-1 * u.MPa**-0.5, + source="buchenauer_permeation_2016", + isotope="D", + note="Ultra-Fine-Grain (UFG) tungsten", +) + + +otsuka_diffusivity = Diffusivity( + D_0=3e-7 * u.m**2 * u.s**-1, + E_D=0.39 * u.eV * u.particle**-1, + range=(473.0 * u.K, 673.0 * u.K), + isotope="T", + note="likely an apparent diffusivity", + source="otsuka_visualization_2009", +) + +data_ikeda = np.genfromtxt(htm.absolute_path("ikeda_2011/data.csv"), delimiter=",") +ikeda_diffusivity = Diffusivity( + data_T=1000 / (data_ikeda[:, 0] * u.K**-1), + data_y=data_ikeda[:, 1] * u.m**2 * u.s**-1, + source="ikeda_application_2011", + isotope="T", +) + +shimada_permeability = Permeability( + pre_exp=2.13e-9 * u.mol * u.m**-1 * u.Pa**-0.5 * u.s**-1, + act_energy=93.32 * u.kJ * u.mol**-1, + isotope="T", + range=(573 * u.K, 873 * u.K), + note="polycristalline tungsten, pressure range 5.8e-2-6.8e-2 Pa, details in table 1", + source="shimada_tritium_2019", +) + + +data_T_byeon = u.Quantity([650, 700, 750, 850], u.degC) +data_y_byeon_diff_IG = [3.13e-11, 4.88e-11, 7.31e-11, 1.70e-10] * u.m**2 * u.s**-1 + +byeon_diffusivity_IG = Diffusivity( + data_T=data_T_byeon, + data_y=data_y_byeon_diff_IG, + isotope="D", + source="byeon_deuterium_2021", + note="Table 2, ITER grade", +) + +data_y_byeon_diff_CR = [1.38e-11, 2.79e-11, 4.76e-11, 1.24e-10] * u.m**2 * u.s**-1 + +byeon_diffusivity_CR = Diffusivity( + data_T=data_T_byeon, + data_y=data_y_byeon_diff_CR, + isotope="D", + source="byeon_deuterium_2021", + note="Table 2 CR", +) + +data_y_byeon_perm_IG = ( + [7.12e-15, 1.77e-14, 4.08e-14, 2.12e-13] * u.mol * u.m**-1 * u.s**-1 * u.Pa**-0.5 +) + +byeon_permeability_IG = Permeability( + data_T=data_T_byeon, + data_y=data_y_byeon_perm_IG, + isotope="D", + source="byeon_deuterium_2021", + note="Table 2, ITER grade", +) + +data_y_byeon_perm_CR = ( + [2.12e-14, 4.54e-14, 9.50e-14, 3.45e-13] * u.mol * u.m**-1 * u.s**-1 * u.Pa**-0.5 +) + +byeon_permeability_CR = Permeability( + data_T=data_T_byeon, + data_y=data_y_byeon_perm_CR, + isotope="D", + source="byeon_deuterium_2021", + note="Table 2 CR", +) + +zhou_diffusivity_tungsten_h_model1 = Diffusivity( + D_0=1.934e-7 * u.m**2 * u.s**-1, + E_D=0.201 * u.eV * u.particle**-1, + range=(297 * u.K, 1000 * u.K), + source="zhou_thermal_2024", + isotope="H", + note="Table 2. Model 1 considering only hydrogen isotope vibrations", +) + +zhou_diffusivity_tungsten_h_model4 = Diffusivity( + D_0=1.876e-7 * u.m**2 * u.s**-1, + E_D=0.201 * u.eV * u.particle**-1, + range=(297 * u.K, 1000 * u.K), + source="zhou_thermal_2024", + isotope="H", + note=( + "Table 2. Model 4 considering lattice pDOS coupled " + "with hydrogen isotope vibrations and thermal expansion" + ), +) + +zhou_diffusivity_tungsten_d_model1 = Diffusivity( + D_0=1.509e-7 * u.m**2 * u.s**-1, + E_D=0.206 * u.eV * u.particle**-1, + range=(297 * u.K, 1000 * u.K), + source="zhou_thermal_2024", + isotope="D", + note="Table S2 of suplementary materials. Model 1 considering only hydrogen isotope vibrations", +) + +zhou_diffusivity_tungsten_d_model4 = Diffusivity( + D_0=1.460e-7 * u.m**2 * u.s**-1, + E_D=0.206 * u.eV * u.particle**-1, + range=(297 * u.K, 1000 * u.K), + source="zhou_thermal_2024", + isotope="D", + note=( + "Table S2 of suplementary materials. Model 4 considering lattice pDOS coupled " + "with hydrogen isotope vibrations and thermal expansion" + ), +) + +zhou_diffusivity_tungsten_t_model1 = Diffusivity( + D_0=1.270e-7 * u.m**2 * u.s**-1, + E_D=0.207 * u.eV * u.particle**-1, + range=(297 * u.K, 1000 * u.K), + source="zhou_thermal_2024", + isotope="T", + note="Table S2 of suplementary materials. Model 1 considering only hydrogen isotope vibrations", +) + +zhou_diffusivity_tungsten_t_model4 = Diffusivity( + D_0=1.226e-7 * u.m**2 * u.s**-1, + E_D=0.207 * u.eV * u.particle**-1, + range=(297 * u.K, 1000 * u.K), + source="zhou_thermal_2024", + isotope="T", + note=( + "Table S2 of suplementary materials. Model 4 considering lattice pDOS coupled " + "with hydrogen isotope vibrations and thermal expansion" + ), +) properties = [ frauenfelder_diffusivity, @@ -444,6 +589,22 @@ liu_diffusivity_annealed_102um, liu_diffusivity_annealed_250um, liu_diffusivity_recrystallized_250um, + bauchenaeur_permeability_foil, + bauchenaeur_permeability_iter_grade, + bauchenaeur_permeability_ufg, + otsuka_diffusivity, + ikeda_diffusivity, + shimada_permeability, + byeon_diffusivity_IG, + byeon_diffusivity_CR, + byeon_permeability_IG, + byeon_permeability_CR, + zhou_diffusivity_tungsten_h_model1, + zhou_diffusivity_tungsten_h_model4, + zhou_diffusivity_tungsten_d_model1, + zhou_diffusivity_tungsten_d_model4, + zhou_diffusivity_tungsten_t_model1, + zhou_diffusivity_tungsten_t_model4, ] for prop in properties: diff --git a/h_transport_materials/property_database/tzm.py b/h_transport_materials/property_database/tzm.py new file mode 100644 index 00000000..868908a3 --- /dev/null +++ b/h_transport_materials/property_database/tzm.py @@ -0,0 +1,135 @@ +import h_transport_materials as htm +from h_transport_materials import ( + Permeability, + Diffusivity, + Solubility, + DissociationCoeff, + RecombinationCoeff, +) +import numpy as np + +u = htm.ureg + +forcey_permeability_d = Permeability( + pre_exp=8.32e-8 * u.mol * u.m**-1 * u.Pa**-0.5 * u.s**-1, + act_energy=75.5 * u.kJ * u.mol**-1, + range=(515 * u.K, 742 * u.K), + isotope="D", + source="forcey_permeability_1993", + note="Equation 8", +) + +forcey_diffusivity_d = Diffusivity( + D_0=3.18e-4 * u.m**2 * u.s**-1, + E_D=88.1 * u.kJ * u.mol**-1, + range=(515 * u.K, 742 * u.K), + isotope="D", + source="forcey_permeability_1993", + note="Equation 9", +) + +tominetti_diffusivity_d = Diffusivity( + D_0=1.96e-4 * u.m**2 * u.s**-1, + E_D=95.5 * u.kJ * u.mol**-1, + range=(673 * u.K, 873 * u.K), + isotope="D", + source="tominetti_solubility_1990", + note="Equation 9", +) + +tominetti_diffusivity_h = Diffusivity( + D_0=5.53e-5 * u.m**2 * u.s**-1, + E_D=84.6 * u.kJ * u.mol**-1, + range=(673 * u.K, 873 * u.K), + isotope="H", + source="tominetti_solubility_1990", + note="Equation 8", +) + +forcey_solubility_d = Solubility( + S_0=2.62e-4 * u.mol * u.m**-3 * u.Pa**-0.5, + E_S=-12.6 * u.kJ * u.mol**-1, + range=(515 * u.K, 742 * u.K), + isotope="D", + source="forcey_permeability_1993", + note="Equation 10", +) + +tominetti_solubility_d = Solubility( + S_0=3.58e-4 * u.mol * u.m**-3 * u.Pa**-0.5, + E_S=-16.9 * u.kJ * u.mol**-1, + range=(673 * u.K, 873 * u.K), + isotope="D", + source="tominetti_solubility_1990", + note="Equation 13", +) + +tominetti_solubility_h = Solubility( + S_0=6.90e-4 * u.mol * u.m**-3 * u.Pa**-0.5, + E_S=-11.8 * u.kJ * u.mol**-1, + range=(673 * u.K, 873 * u.K), + isotope="H", + source="tominetti_solubility_1990", + note="Equation 12", +) + +tominetti_dissociation_d = DissociationCoeff( + pre_exp=0.71e-6 * u.mol * u.m**-2 * u.s**-1 * u.Pa**-1, + act_energy=75.9 * u.kJ * u.mol**-1, + range=(673 * u.K, 873 * u.K), + isotope="D", + source="tominetti_solubility_1990", + note="Equation 16", +) + +tominetti_dissociation_h = DissociationCoeff( + pre_exp=8.81e-8 * u.mol * u.m**-2 * u.s**-1 * u.Pa**-1, + act_energy=61.2 * u.kJ * u.mol**-1, + range=(673 * u.K, 873 * u.K), + isotope="H", + source="tominetti_solubility_1990", + note="Equation 15", +) + +tominetti_recombination_d = RecombinationCoeff( + pre_exp=10.27 * u.m**4 * u.s**-1 * u.mol**-1, + act_energy=111.6 * u.kJ * u.mol**-1, + range=(673 * u.K, 873 * u.K), + isotope="D", + source="tominetti_solubility_1990", + note="Equation 16", +) + +tominetti_recombination_h = RecombinationCoeff( + pre_exp=0.26 * u.m**4 * u.s**-1 * u.mol**-1, + act_energy=87.0 * u.kJ * u.mol**-1, + range=(673 * u.K, 873 * u.K), + isotope="H", + source="tominetti_solubility_1990", + note="Equation 15", +) + +tominetti_permeability_h = tominetti_diffusivity_h * tominetti_solubility_h +tominetti_permeability_h.source = "tominetti_solubility_1990" +tominetti_permeability_h.isotope = "H" +tominetti_permeability_h.range = (673 * u.K, 873 * u.K) + +properties = [ + forcey_permeability_d, + forcey_diffusivity_d, + tominetti_diffusivity_d, + tominetti_diffusivity_h, + forcey_solubility_d, + tominetti_solubility_d, + tominetti_solubility_h, + tominetti_dissociation_d, + tominetti_dissociation_h, + tominetti_recombination_d, + tominetti_recombination_h, + tominetti_permeability_h, +] + +for prop in properties: + prop.material = htm.TZM + +htm.database += properties diff --git a/h_transport_materials/property_database/vanadium.py b/h_transport_materials/property_database/vanadium.py index 38baa7ab..70e72828 100644 --- a/h_transport_materials/property_database/vanadium.py +++ b/h_transport_materials/property_database/vanadium.py @@ -1,8 +1,6 @@ import h_transport_materials as htm from h_transport_materials import Diffusivity, Solubility, Permeability -VANADIUM_MOLAR_VOLUME = 8.34e-6 # m3/mol https://www.aqua-calc.com/calculate/mole-to-volume-and-weight/substance/vanadium - u = htm.ureg volk_diffusivity = Diffusivity( @@ -21,25 +19,42 @@ source="veleckis_thermodynamic_1969", ) -schober_diffusivity = Diffusivity( - D_0=5.6e-8 * u.m**2 * u.s**-1, - E_D=9.1 * u.kJ * u.mol**-1, +qi_diffusivity_h = Diffusivity( + D_0=3.1e-4 * u.cm**2 * u.s**-1, + E_D=0.045 * u.eV * u.particle**-1, range=( - u.Quantity(-150, u.degC), + u.Quantity(-130, u.degC), u.Quantity(200, u.degC), ), - source="schober_h_1990", + source="qi_tritium_1983", + note="table 1, temperature range from Fig 1", isotope="H", - note="found in Assessment of Database for Interaction of Tritium with ITER Plasma Facing Materials", -) # TODO get data from experimental points, see issue #64 +) -reiter_solubility = Solubility( - S_0=2.1e-6 / VANADIUM_MOLAR_VOLUME * u.mol * u.m**-3 * u.Pa**-0.5, - E_S=-32.2 * u.kJ * u.mol**-1, - source="reiter_compilation_1996", - isotope="H", +qi_diffusivity_d = Diffusivity( + D_0=3.8e-4 * u.cm**2 * u.s**-1, + E_D=0.073 * u.eV * u.particle**-1, + range=( + u.Quantity(-130, u.degC), + u.Quantity(200, u.degC), + ), + source="qi_tritium_1983", + note="table 1, temperature range from Fig 1", + isotope="D", ) +qi_diffusivity_t = Diffusivity( + D_0=5.6e-4 * u.cm**2 * u.s**-1, + E_D=0.094 * u.eV * u.particle**-1, + range=( + u.Quantity(-130, u.degC), + u.Quantity(200, u.degC), + ), + source="qi_tritium_1983", + note="table 1, temperature range from Fig 1", + isotope="T", +) # TODO get data from experimental points, see issue #64 + malo_permeability = Permeability( pre_exp=1.27e-04 * u.mol * u.m**-1 * u.s**-1 * u.Pa**-0.5, act_energy=8667 * u.K * htm.k_B, @@ -54,8 +69,9 @@ properties = [ volk_diffusivity, veleckis_solubility, - schober_diffusivity, - reiter_solubility, + qi_diffusivity_h, + qi_diffusivity_d, + qi_diffusivity_t, malo_permeability, ] diff --git a/h_transport_materials/property_database/yttrium.py b/h_transport_materials/property_database/yttrium.py new file mode 100644 index 00000000..65f946bc --- /dev/null +++ b/h_transport_materials/property_database/yttrium.py @@ -0,0 +1,51 @@ +import h_transport_materials as htm +from h_transport_materials.property import ( + Diffusivity, + RecombinationCoeff, + Solubility, + Permeability, +) +import numpy as np + +u = htm.ureg + + +# https://www.aqua-calc.com/calculate/mole-to-volume-and-weight/substance/yttrium +YTTRIUM_MOLAR_VOLUME = 1.99e-5 * u.m**3 * u.mol**-1 + +begun_solubility_h = Solubility( + data_T=u.Quantity([1000, 950, 900, 850, 800, 750, 700], u.degC), + data_y=[0.321, 0.471, 0.722, 1.13, 1.80, 3.08, 5.44] + * u.torr**-0.5 + / YTTRIUM_MOLAR_VOLUME, + isotope="H", + source="begun_equilibrium_2008", + note="table I", +) + +begun_solubility_d = Solubility( + data_T=u.Quantity([1000, 950, 900, 850, 800, 750, 700], u.degC), + data_y=[0.291, 0.428, 0.648, 0.998, 1.60, 2.79, 4.51] + * u.torr**-0.5 + / YTTRIUM_MOLAR_VOLUME, + isotope="D", + source="begun_equilibrium_2008", + note="table I", +) + +begun_solubility_t = Solubility( + data_T=u.Quantity([1000, 950, 900, 850, 800, 750, 700], u.degC), + data_y=[0.240, 0.358, 0.545, 0.840, 1.28, 2.13, 3.34] + * u.torr**-0.5 + / YTTRIUM_MOLAR_VOLUME, + isotope="T", + source="begun_equilibrium_2008", + note="table I", +) + +properties = [begun_solubility_h, begun_solubility_d, begun_solubility_t] + +for prop in properties: + prop.material = htm.YTTRIUM + +htm.database += properties diff --git a/h_transport_materials/property_database/zirconium/zirconium.py b/h_transport_materials/property_database/zirconium/zirconium.py index e0d3f1ee..976472c8 100644 --- a/h_transport_materials/property_database/zirconium/zirconium.py +++ b/h_transport_materials/property_database/zirconium/zirconium.py @@ -14,13 +14,6 @@ source="kearns_diffusion_1972", ) -hsu_diffusivity = Diffusivity( - D_0=2.7e-8 * u.m**2 * u.s**-1, - E_D=24.9 * u.kJ * u.mol**-1, - isotope="T", - source="hsu_palladium-catalyzed_1986", -) - kearns_solubility = Solubility( S_0=4.30e-1 * u.mol * u.m**-3 * u.Pa**-0.5, E_S=-49.5 * u.kJ * u.mol**-1, @@ -49,7 +42,6 @@ properties = [ kearns_diffusivity, - hsu_diffusivity, kearns_solubility, yamanaka_solubility, ] diff --git a/h_transport_materials/references.bib b/h_transport_materials/references.bib index 462c4a87..70e9b668 100644 --- a/h_transport_materials/references.bib +++ b/h_transport_materials/references.bib @@ -16,7 +16,6 @@ @incollection{causey_416_2012 doi = {10.1016/B978-0-08-056033-5.00116-6}, keywords = {Hydrogen, Barriers, Carbides, Deuterium, Diffusion, First wall materials, Fusion, Metals, Nitrides, Oxides, Permeation, Recombination, Solubility, Structural materials, Tritium}, pages = {511--549}, - file = {ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\QFUEQZ2R\\Causey et al. - 2012 - 4.16 - Tritium Barriers and Tritium Diffusion in F.pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\Z3AYIJMQ\\B9780080560335001166.html:text/html}, } @article{zhang_diffusion_2020, @@ -35,7 +34,6 @@ @article{zhang_diffusion_2020 \_eprint: https://doi.org/10.1080/15361055.2020.1725368}, keywords = {fluoride salt, Hastelloy N alloy, permeation, surface oxidation}, pages = {543--552}, - file = {Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\L47DVY64\\Zhang et al. - 2020 - Diffusion Characterization of Hydrogen Isotopes in.pdf:application/pdf;Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\M5GTWE8E\\15361055.2020.html:text/html}, } @article{anderl_deuteriumtritium_2004, @@ -52,7 +50,6 @@ @article{anderl_deuteriumtritium_2004 author = {Anderl, R. A and Fukada, S and Smolik, G. R and Pawelko, R. J and Schuetz, S. T and Sharpe, J. P and Merrill, B. J and Petti, D. A and Nishimura, H and Terai, T and Tanaka, S}, year = {2004}, pages = {1327--1331}, - file = {ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\57J3NPFW\\Anderl et al. - 2004 - Deuteriumtritium behavior in Flibe and Flibe-faci.pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\GYW23JA4\\S0022311504003952.html:text/html}, } @article{rota_measurements_1982, @@ -76,7 +73,6 @@ @article{rota_measurements_1982 Dissociation coefficients   }, - file = {Rota et al. - 1982 - Measurements of surface and bulk properties for th.pdf:C\:\\Users\\remidm\\Zotero\\storage\\U62D5GXG\\Rota et al. - 1982 - Measurements of surface and bulk properties for th.pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\EQ3BYI4K\\0022311582902148.html:text/html;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\2JNIGJ8S\\0022311582902148.html:text/html}, } @article{ishikawa_diffusivity_1986, @@ -98,7 +94,6 @@ @article{ishikawa_diffusivity_1986 month = jun, year = {1986}, pages = {1091--1095}, - file = {Ishikawa et McLellan - 1986 - The diffusivity of hydrogen in aluminum.pdf:C\:\\Users\\remidm\\Zotero\\storage\\5FZ75BFB\\Ishikawa et McLellan - 1986 - The diffusivity of hydrogen in aluminum.pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\REBNCUJ8\\0001616086902191.html:text/html}, } @article{serra_hydrogen_1998, @@ -115,7 +110,6 @@ @article{serra_hydrogen_1998 month = oct, year = {1998}, pages = {1028--1032}, - file = {ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\5LM85Y23\\S0022311598002761.html:text/html;Serra et Perujo - 1998 - Hydrogen and deuterium transport and inventory par.pdf:C\:\\Users\\remidm\\Zotero\\storage\\U6JFAQGI\\Serra et Perujo - 1998 - Hydrogen and deuterium transport and inventory par.pdf:application/pdf;Serra et Perujo - 1998 - Hydrogen and deuterium transport and inventory par.pdf:C\:\\Users\\remidm\\Zotero\\storage\\G96R346E\\Serra et Perujo - 1998 - Hydrogen and deuterium transport and inventory par.pdf:application/pdf}, } @article{anderl_hydrogen_1990, @@ -133,7 +127,6 @@ @article{anderl_hydrogen_1990 year = {1990}, keywords = {Experiment, Copper}, pages = {683--689}, - file = {Anderl et al. - 1990 - Hydrogen transport behavior of metal coatings for .pdf:C\:\\Users\\remidm\\Zotero\\storage\\9N46YH75\\Anderl et al. - 1990 - Hydrogen transport behavior of metal coatings for .pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\A94XN6LD\\0022311590901279.html:text/html}, } @article{penalva_interaction_2012, @@ -148,7 +141,6 @@ @article{penalva_interaction_2012 month = mar, year = {2012}, keywords = {Experiment, Copper}, - file = {Peñalva et al. - 2012 - Interaction of Copper Alloys with Hydrogen.pdf:C\:\\Users\\remidm\\Zotero\\storage\\585MS3D4\\Peñalva et al. - 2012 - Interaction of Copper Alloys with Hydrogen.pdf:application/pdf}, } @article{magnusson_self-diffusion_2013, @@ -181,7 +173,6 @@ @article{magnusson_self-diffusion_2013 year = {2013}, keywords = {Experiment, Copper}, pages = {33}, - file = {Magnusson et Frisk - Self-diffusion and impurity diffusion of hydrogen,.pdf:C\:\\Users\\remidm\\Zotero\\storage\\4NKYXHFM\\Magnusson et Frisk - Self-diffusion and impurity diffusion of hydrogen,.pdf:application/pdf}, } @article{anderl_deuterium_1992, @@ -215,8 +206,7 @@ @article{anderl_deuterium_1999 year = {1999}, keywords = {Experiment}, pages = {761--765}, - file = {Anderl et al. - 1999 - Deuterium transport in Cu, CuCrZr, and CuBe.pdf:C\:\\Users\\remidm\\Zotero\\storage\\WXFLBVUE\\Anderl et al. - 1999 - Deuterium transport in Cu, CuCrZr, and CuBe.pdf:application/pdf}, -} + } @article{frauenfelder_solution_1969, title = {Solution and {Diffusion} of {Hydrogen} in {Tungsten}}, @@ -248,8 +238,7 @@ @article{katz_diffusion_1971 year = {1971}, note = {Publisher: American Physical Society}, pages = {330--341}, - file = {APS Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\T5W5Q7MA\\PhysRevB.4.html:text/html;Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\A74KDIFR\\4034502-diffusion-sub-sub-sub-single-crystal-ni-cu.html:text/html}, -} + } @article{lam_impact_2021, title = {The impact of hydrogen valence on its bonding and transport in molten fluoride salts}, @@ -304,8 +293,7 @@ @article{lam_impact_2021 In Flibe, H+ is mainly (50\%) present in the HF form.    }, - file = {Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\HE2H5H4D\\Lam et al. - 2021 - The impact of hydrogen valence on its bonding and .pdf:application/pdf;Lam et al. - 2021 - The impact of hydrogen valence on its bonding and .pdf:C\:\\Users\\remidm\\Zotero\\storage\\YN7LXZJM\\Lam et al. - 2021 - The impact of hydrogen valence on its bonding and .pdf:application/pdf;Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\BV2BZKQY\\d0ta10576g.html:text/html;Supplementary Information PDF:C\:\\Users\\remidm\\Zotero\\storage\\UYDU9QAG\\Lam et al. - 2021 - The impact of hydrogen valence on its bonding and .pdf:application/pdf}, -} + } @article{liu_hydrogen_2014, series = {Proceedings of the 16th {International} {Conference} on {Fusion} {Reactor} {Materials} ({ICFRM}-16)}, @@ -325,8 +313,7 @@ @article{liu_hydrogen_2014 year = {2014}, keywords = {molecular dynamics}, pages = {676--680}, - file = {ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\XAHNCMLY\\S0022311514005911.html:text/html}, -} + } @article{zeng_behavior_2019, title = {Behavior characteristics of hydrogen and its isotope in molten salt of {LiF}-{NaF}-{KF} ({FLiNaK})}, @@ -351,8 +338,7 @@ @article{zeng_behavior_2019   CAREFUL THERE'S A MIXUP IN THE STUDIES }, - file = {ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\DP9BZPFU\\Zeng et al. - 2019 - Behavior characteristics of hydrogen and its isoto.pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\9VVKKZZR\\S1738573318301967.html:text/html}, -} + } @article{zeng_apparatus_2014, title = {Apparatus for determining permeability of hydrogen isotopes in molten-salt}, @@ -363,8 +349,7 @@ @article{zeng_apparatus_2014 author = {Zeng, Youshi and Sheng-Wei, Wu and Yuan, Qian and Guang-Hua, Wang and Lin, Du and Wei, Liu and Zheng-Hai, Xia}, month = aug, year = {2014}, - file = {You-Shi et al. - 2014 - Apparatus for determining permeability of hydrogen.pdf:C\:\\Users\\remidm\\Zotero\\storage\\BTWRJJGJ\\You-Shi et al. - 2014 - Apparatus for determining permeability of hydrogen.pdf:application/pdf}, -} + } @article{shibuya_isothermal_1987, title = {Isothermal release of tritium from neutron-irradiated {Li17Pb83}}, @@ -381,8 +366,7 @@ @article{shibuya_isothermal_1987 month = nov, year = {1987}, pages = {286--291}, - file = {ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\I4RSHXH4\\0022311587900067.html:text/html}, -} + } @article{sakamoto_electrochemical_1982, title = {The {Electrochemical} {Determination} of {Diffusivity} and {Solubility} of {Hydrogen} in {Copper}}, @@ -396,8 +380,7 @@ @article{sakamoto_electrochemical_1982 year = {1982}, keywords = {Experiment, Copper}, pages = {285--290}, - file = {Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\QG77JNDI\\Sakamoto et Takao - 1982 - The Electrochemical Determination of Diffusivity a.pdf:application/pdf;J-Stage - Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\CCJFTBT6\\en.html:text/html;Sakamoto et Takao - 1982 - The Electrochemical Determination of Diffusivity a.pdf:C\:\\Users\\remidm\\Zotero\\storage\\7YM46RCF\\Sakamoto et Takao - 1982 - The Electrochemical Determination of Diffusivity a.pdf:application/pdf}, -} + } @article{nakamura_hydrogen_2015, title = {Hydrogen isotopes permeation in a fluoride molten salt for nuclear fusion blanket}, @@ -406,8 +389,7 @@ @article{nakamura_hydrogen_2015 author = {Nakamura, Akira and Fukada, Satoshi and Nishiumi, Ryosuke}, year = {2015}, pages = {5}, - file = {Nakamura et al. - Hydrogen isotopes permeation in a fluoride molten .pdf:C\:\\Users\\remidm\\Zotero\\storage\\RN3G2BNI\\Nakamura et al. - Hydrogen isotopes permeation in a fluoride molten .pdf:application/pdf;Nakamura et al. - Hydrogen isotopes permeation in a fluoride molten .pdf:C\:\\Users\\remidm\\Zotero\\storage\\BKLAAYU5\\Nakamura et al. - Hydrogen isotopes permeation in a fluoride molten .pdf:application/pdf}, -} + } @article{johnson_hydrogen_2010, title = {Hydrogen in tungsten: {Absorption}, diffusion, vacancy trapping, and decohesion}, @@ -425,8 +407,7 @@ @article{johnson_hydrogen_2010 month = feb, year = {2010}, pages = {315--327}, - file = {Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\3MUCZVIK\\Johnson et Carter - 2010 - Hydrogen in tungsten Absorption, diffusion, vacan.pdf:application/pdf}, -} + } @article{holzner_solute_2020, title = {Solute diffusion of hydrogen isotopes in tungsten—a gas loading experiment}, @@ -443,8 +424,7 @@ @article{holzner_solute_2020 year = {2020}, note = {Publisher: IOP Publishing}, pages = {014034}, - file = {Version soumise:C\:\\Users\\remidm\\Zotero\\storage\\Q8RAWZVY\\Holzner et al. - 2020 - Solute diffusion of hydrogen isotopes in tungsten—.pdf:application/pdf}, -} + } @article{fukada_hydrogen_2006, title = {Hydrogen permeability through a mixed molten salt of {LiF}, {NaF} and {KF} ({Flinak}) as a heat-transfer fluid}, @@ -461,8 +441,7 @@ @article{fukada_hydrogen_2006 month = nov, year = {2006}, pages = {235--242}, - file = {ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\I28NCMQV\\Fukada et Morisaki - 2006 - Hydrogen permeability through a mixed molten salt .pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\PLDNDRA6\\S0022311506004089.html:text/html}, -} + } @article{fernandez_hydrogen_2015, title = {Hydrogen diffusion and vacancies formation in tungsten: {Density} {Functional} {Theory} calculations and statistical models}, @@ -479,8 +458,7 @@ @article{fernandez_hydrogen_2015 year = {2015}, keywords = {Tungsten, Density Functional Theory, Hydrogen, DFT, Vacancies, Nuclear material}, pages = {307--318}, - file = {Fernandez et al. - 2015 - Hydrogen diffusion and vacancies formation in tung.pdf:C\:\\Users\\remidm\\Zotero\\storage\\UIPYD8RG\\Fernandez et al. - 2015 - Hydrogen diffusion and vacancies formation in tung.pdf:application/pdf;ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\ICC5AYHS\\Fernandez et al. - 2015 - Hydrogen diffusion and vacancies formation in tung.pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\VQBUYKST\\S1359645415003043.html:text/html}, -} + } @article{alberro_experimental_2015, series = {Proceedings of the 28th {Symposium} {On} {Fusion} {Technology} ({SOFT}-28)}, @@ -498,8 +476,7 @@ @article{alberro_experimental_2015 year = {2015}, keywords = {Breeding blanket, Diffusivity, Experimental values, Sieverts’ constant, Tritium extraction}, pages = {1919--1923}, - file = {ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\5N96XEXM\\S0920379615300119.html:text/html}, -} + } @article{katsuta_hydrogen_1985, title = {Hydrogen solubility in liquid {Li17Pb83}}, @@ -515,8 +492,7 @@ @article{katsuta_hydrogen_1985 month = aug, year = {1985}, pages = {167--170}, - file = {ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\LZFE5J2V\\0022311585901278.html:text/html}, -} + } @article{wampler_precipitation_1976, title = {Precipitation and trapping of hydrogen in copper}, @@ -533,8 +509,7 @@ @article{wampler_precipitation_1976 month = jul, year = {1976}, pages = {129--141}, - file = {Wampler et al. - 1976 - Precipitation and trapping of hydrogen in copper.pdf:C\:\\Users\\remidm\\Zotero\\storage\\3W46JGMI\\Wampler et al. - 1976 - Precipitation and trapping of hydrogen in copper.pdf:application/pdf}, -} + } @article{thomas_solubility_1967, title = {Solubility of hydrogen in solid copper, silver, and gold obtained by a rapid quench and extraction technique}, @@ -562,8 +537,7 @@ @article{otsuka_behavior_2010 year = {2010}, keywords = {Surface, Trapping, Diffusion, Tritium, Release}, pages = {1437--1441}, - file = {ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\CQC4Y7VF\\S0920379610001341.html:text/html;Texte intégral:C\:\\Users\\remidm\\Zotero\\storage\\YI9V6GF6\\Otsuka et Tanabe - 2010 - Behavior of tritium accumulated on materials surfa.pdf:application/pdf}, -} + } @article{eichenauer_notitle_1965, volume = {56}, @@ -588,8 +562,7 @@ @article{tanabe_hydrogen_1987 year = {1987}, keywords = {deuterium, aluminum, copper, diffusion, ion driven permeation, nickel, permeation spike}, pages = {305--308}, - file = {ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\I382FP3L\\0022311587903497.html:text/html}, -} + } @article{perkins_permeation_1973, title = {Permeation and {Outgassing} of {Vacuum} {Materials}}, @@ -630,8 +603,7 @@ @article{esteban_hydrogen_2001 month = may, year = {2001}, pages = {49--56}, - file = {ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\GLH8I96U\\S002231150100486X.html:text/html}, -} + } @article{ryabchikov_notitle_1964, volume = {9}, @@ -656,8 +628,7 @@ @article{zakharov_hydrogen_1975 year = {1975}, keywords = {Tungsten, Hydrogen, Hydrogen Permeability, Molybdenum, Permeability}, pages = {149--153}, - file = {Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\4A7NUX6Q\\Zakharov et al. - 1975 - Hydrogen permeability of polycrystalline and monoc.pdf:application/pdf}, -} + } @article{heinola_diffusion_2010, title = {Diffusion of hydrogen in bcc tungsten studied with first principle calculations}, @@ -690,8 +661,7 @@ @article{terai_diffusion_1992 month = may, year = {1992}, pages = {247--253}, - file = {ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\KBJJATFP\\002231159290504E.html:text/html}, -} + } @article{aiello_determination_2006, series = {Proceedings of the {Seventh} {International} {Symposium} on {Fusion} {Nuclear} {Technology}}, @@ -710,8 +680,7 @@ @article{aiello_determination_2006 year = {2006}, keywords = {Solubility, Lead lithium}, pages = {639--644}, - file = {ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\S9UCXU68\\S092037960500565X.html:text/html}, -} + } @article{reiter_solubility_1991, title = {Solubility and diffusivity of hydrogen isotopes in liquid {Pb}{17Li}}, @@ -728,8 +697,7 @@ @article{reiter_solubility_1991 month = apr, year = {1991}, pages = {207--211}, - file = {ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\MC67H7US\\0920379691900039.html:text/html}, -} + } @article{schumacher_hydrogen_1990, title = {Hydrogen {Solubility} in the {Liquid} {Alloys} {Lithium}-{Indium}, {Lithium}-{Lead}, and {Lithium}-{Tin}}, @@ -747,8 +715,7 @@ @article{schumacher_hydrogen_1990 note = {\_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/bbpc.19900940612}, keywords = {Alloys, Gases in Metals, Hydrogen in Metals, Liquid Metals, Thermodynamics}, pages = {684--691}, - file = {Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\EJTH36EF\\Schumacher et Weiss - 1990 - Hydrogen Solubility in the Liquid Alloys Lithium-I.pdf:application/pdf;Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\85T3FWBR\\bbpc.html:text/html}, -} + } @article{fauvet_hydrogen_1988, title = {Hydrogen behaviour in liquid {17Li83Pb} alloy}, @@ -764,8 +731,7 @@ @article{fauvet_hydrogen_1988 month = jul, year = {1988}, pages = {516--519}, - file = {ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\7JFYMFR2\\0022311588903017.html:text/html}, -} + } @article{chan_thermodynamic_1984, title = {A thermodynamic investigation of dilute solutions of hydrogen in liquid {Li}-{Pb} alloys}, @@ -782,8 +748,7 @@ @article{chan_thermodynamic_1984 month = may, year = {1984}, pages = {935--940}, - file = {ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\TLTFTVBK\\0022311584901983.html:text/html}, -} + } @article{wu_solubility_1983, title = {The solubility of deuterium in lithium-lead alloys}, @@ -800,8 +765,7 @@ @article{wu_solubility_1983 month = feb, year = {1983}, pages = {30--33}, - file = {ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\CER32GRB\\0022311583900697.html:text/html}, -} + } @article{noh_hydrogen-isotope_2016, title = {Hydrogen-isotope transport in an {ELBRODUR} {G} {CuCrZr} alloy for nuclear applications in heat sinks}, @@ -817,8 +781,7 @@ @article{noh_hydrogen-isotope_2016 month = may, year = {2016}, pages = {112--118}, - file = {ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\9W78RIEQ\\S0022311516300319.html:text/html}, -} + } @article{malinauskas_solubilities_1974, title = {The {Solubilities} of {Hydrogen}, {Deuterium}, and {Helium} in {Molten} {Li2BeF4}}, @@ -834,8 +797,7 @@ @article{malinauskas_solubilities_1974 year = {1974}, note = {Publisher: American Chemical Society}, pages = {242--245}, - file = {ACS Full Text Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\6ESEMGR5\\i160051a015.html:text/html;Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\ZQ42LB5R\\Malinauskas et Richardson - 1974 - The Solubilities of Hydrogen, Deuterium, and Heliu.pdf:application/pdf}, -} + } @article{field_solubilities_1967, title = {The solubilities of hydrogen fluoride and deuterium fluoride in molten fluorides}, @@ -851,8 +813,7 @@ @article{field_solubilities_1967 year = {1967}, note = {Publisher: American Chemical Society}, pages = {3218--3222}, - file = {ACS Full Text Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\I8ENZY4H\\j100869a013.html:text/html;Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\TE6UQEJF\\Field et Shaffer - 1967 - The solubilities of hydrogen fluoride and deuteriu.pdf:application/pdf}, -} + } @article{oishi_tritium_1989, title = {Tritium recovery from molten {LiF}-{BeF2} salt}, @@ -868,8 +829,7 @@ @article{oishi_tritium_1989 month = jan, year = {1989}, pages = {317--321}, - file = {ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\I596U36T\\Oishi et al. - 1989 - Tritium recovery from molten LiF-BeF2 salt.pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\ZSS9GTTN\\S0920379689801243.html:text/html}, -} + } @article{houben_comparison_2022, title = {Comparison of the deuterium permeability of copper, {CuCrZr}, and {Cu} layers}, @@ -886,8 +846,7 @@ @article{houben_comparison_2022 year = {2022}, keywords = {Microstructure, Cu and Cu layers, CuCrZr - ITER grade, Gas-driven deuterium permeation, Interface, Magnetron sputter deposition}, pages = {101256}, - file = {ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\VCNHC9BY\\Houben et al. - 2022 - Comparison of the deuterium permeability of copper.pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\89TIUTYS\\S2352179122001375.html:text/html}, -} + } @article{serra_hydrogen_1998-1, title = {Hydrogen isotopes transport parameters in fusion reactor materials}, @@ -904,8 +863,7 @@ @article{serra_hydrogen_1998-1 month = jun, year = {1998}, pages = {105--115}, - file = {ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\769KF72I\\S0022311598000385.html:text/html}, -} + } @article{kulsartov_investigation_2006, series = {Proceedings of the {Seventh} {International} {Symposium} on {Fusion} {Nuclear} {Technology}}, @@ -924,8 +882,7 @@ @article{kulsartov_investigation_2006 year = {2006}, keywords = {Hydrogen, Deuterium, Permeability, Ceramic coating, F82H, Permeation reduction factor}, pages = {701--705}, - file = {ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\2HV796SF\\Kulsartov et al. - 2006 - Investigation of hydrogen isotope permeation throu.pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\MUQG763S\\S0920379605005740.html:text/html}, -} + } @article{dolinski_heavy_2000, series = {9th {Int}. {Conf}. on {Fusion} {Reactor} {Materials}}, @@ -942,8 +899,7 @@ @article{dolinski_heavy_2000 month = dec, year = {2000}, pages = {854--857}, - file = {ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\9T7CGTYS\\S0022311500003147.html:text/html}, -} + } @article{esteban_tritium_2000, title = {Tritium diffusive transport parameters and trapping effects in the reduced activating martensitic steel {OPTIFER}-{IVb}}, @@ -960,8 +916,7 @@ @article{esteban_tritium_2000 month = sep, year = {2000}, pages = {34--41}, - file = {ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\V5JDMR7M\\S0022311500001884.html:text/html}, -} + } @article{pisarev_surface_2001, title = {Surface effects in diffusion measurements: deuterium permeation through {Martensitic} steel}, @@ -979,8 +934,7 @@ @article{pisarev_surface_2001 year = {2001}, note = {Publisher: IOP Publishing}, pages = {121}, - file = {Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\CHW68CXI\\Pisarev et al. - 2001 - Surface effects in diffusion measurements deuteri.pdf:application/pdf;Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\ZUFWMF2Z\\meta.html:text/html}, -} + } @article{serra_influence_1997, title = {Influence of traps on the deuterium behaviour in the low activation martensitic steels {F82H} and {Batman}}, @@ -997,8 +951,7 @@ @article{serra_influence_1997 month = jun, year = {1997}, pages = {108--114}, - file = {ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\7KW2DPF5\\S0022311597000214.html:text/html}, -} + } @article{forcey_hydrogen_1988, title = {Hydrogen transport and solubility in {316L} and 1.4914 steels for fusion reactor applications}, @@ -1015,8 +968,7 @@ @article{forcey_hydrogen_1988 month = dec, year = {1988}, pages = {117--124}, - file = {ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\SPUNKGDX\\Forcey et al. - 1988 - Hydrogen transport and solubility in 316L and 1.49.pdf:application/pdf;ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\HMTU5HM5\\Forcey et al. - 1988 - Hydrogen transport and solubility in 316L and 1.49.pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\UGNR487U\\0022311588900384.html:text/html}, -} + } @article{serra_hydrogen_1998-2, title = {Hydrogen and deuterium in {Pd}-25 pct {Ag} alloy: {Permeation}, diffusion, solubilization, and surface reaction}, @@ -1035,8 +987,7 @@ @article{serra_hydrogen_1998-2 year = {1998}, keywords = {Deuterium, Material Transaction, Permeation Rate, Pressure Rise, Pressure Side}, pages = {1023--1028}, - file = {Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\2USK588H\\Serra et al. - 1998 - Hydrogen and deuterium in Pd-25 pct Ag alloy Perm.pdf:application/pdf}, -} + } @article{klepikov_hydrogen_2000, title = {Hydrogen release from irradiated vanadium alloy {V}–{4Cr}–{4Ti}}, @@ -1053,8 +1004,7 @@ @article{klepikov_hydrogen_2000 year = {2000}, keywords = {Hydrogen retention and release, Irradiated materials, Vanadium alloys}, pages = {127--133}, - file = {ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\32YM8ET9\\S0920379600003057.html:text/html;Version soumise:C\:\\Users\\remidm\\Zotero\\storage\\MG5D63LI\\Klepikov et al. - 2000 - Hydrogen release from irradiated vanadium alloy V–.pdf:application/pdf}, -} + } @article{hashizume_diffusional_2007, title = {Diffusional behavior of tritium in {V}-{4Cr}-{4Ti} alloy}, @@ -1071,8 +1021,7 @@ @article{hashizume_diffusional_2007 year = {2007}, pages = {876--881}, annote = {Funding Information:This work has been conducted with the support of the NIFS LHD Project Research Collaboration and partly through a Grand-in-Aid for Scientific Research (A, 17206092) from the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Government.}, - file = {ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\5HCZUUUQ\\Hashizume et al. - 2007 - Diffusional behavior of tritium in V–4Cr–4Ti alloy.pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\M23X3NT3\\S002231150700503X.html:text/html}, -} + } @article{schmidt_studies_1985, title = {Studies on the permeation of {Hydrogen} and {Tritium} through heat resistant alloys}, @@ -1089,8 +1038,7 @@ @article{schmidt_studies_1985 month = apr, year = {1985}, pages = {247--260}, - file = {ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\9U9GSQWK\\Schmidt et al. - 1985 - Studies on the permeation of Hydrogen and Tritium .pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\B365SH3G\\0022311585904611.html:text/html}, -} + } @article{gervasini_solubility_1984, title = {Solubility and {Diffusivity} {Measurements} of {Protium} and {Deuterium} in {Inconel} 625}, @@ -1125,8 +1073,7 @@ @article{kishimoto_hydrogen_1985 month = jan, year = {1985}, pages = {1--9}, - file = {ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\6FMGXSNS\\Kishimoto et al. - 1985 - Hydrogen diffusion and solution at high temperatur.pdf:application/pdf;ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\5DI8UBQF\\Kishimoto et al. - 1985 - Hydrogen diffusion and solution at high temperatur.pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\DKWY2Q4M\\002231158590056X.html:text/html}, -} + } @article{perng_effects_1986, title = {Effects of deformation on hydrogen permeation in austenitic stainless steels}, @@ -1147,8 +1094,7 @@ @article{perng_effects_1986 month = sep, year = {1986}, pages = {1771--1781}, - file = {ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\L8R2N66A\\Tsong-Pyng et Altstetter - 1986 - Effects of deformation on hydrogen permeation in a.pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\N52457SJ\\0001616086901239.html:text/html}, -} + } @article{alire_transport_1976, title = {Transport of hydrogen in liquid lithium}, @@ -1166,8 +1112,7 @@ @article{alire_transport_1976 note = {Place: United States INIS Reference Number: 8286385}, pages = {1134--1137}, - file = {Alire - 1976 - Transport of hydrogen in liquid lithium.pdf:C\:\\Users\\remidm\\Zotero\\storage\\XKK3TMXM\\Alire - 1976 - Transport of hydrogen in liquid lithium.pdf:application/pdf}, -} + } @article{eichenauer_messung_1962, title = {Messung der {Diffusionsgeschwindigkeit} von {Wasserstoff} in {Gold}}, @@ -1176,8 +1121,7 @@ @article{eichenauer_messung_1962 author = {Eichenauer, W. and Liebscher, Dagmar}, year = {1962}, pages = {355}, - file = {Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\9HGUTQTX\\Eichenauer et Liebscher - 1962 - Notizen Messung der Diffusionsgeschwindigkeit von.pdf:application/pdf;ZNA-1962-17a-0357_n.pdf:C\:\\Users\\remidm\\Zotero\\storage\\TN42QEPA\\ZNA-1962-17a-0357_n.pdf:application/pdf}, -} + } @techreport{dolan_assessment_1994, title = {Assessment of database for interaction of tritium with {ITER} plasma facing materials}, @@ -1190,8 +1134,7 @@ @techreport{dolan_assessment_1994 year = {1994}, doi = {10.2172/10191406}, pages = {EGG--FSP--11348, 10191406}, - file = {Dolan et Anderl - 1994 - Assessment of database for interaction of tritium .pdf:C\:\\Users\\remidm\\Zotero\\storage\\QEFG3RDK\\Dolan et Anderl - 1994 - Assessment of database for interaction of tritium .pdf:application/pdf;Dolan et Anderl - 1994 - Assessment of database for interaction of tritium .pdf:C\:\\Users\\remidm\\Zotero\\storage\\A4ED7EDZ\\Dolan et Anderl - 1994 - Assessment of database for interaction of tritium .pdf:application/pdf;Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\MQVQFBUH\\Dolan et Anderl - 1994 - Assessment of database for interaction of tritium .pdf:application/pdf;Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\9SKIYWB3\\webviewable.html:text/html}, -} + } @article{mclellan_solid_1973, title = {Solid solutions of hydrogen in gold, silver and copper}, @@ -1208,8 +1151,7 @@ @article{mclellan_solid_1973 month = jun, year = {1973}, pages = {1137--1141}, - file = {ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\Q6KRJBD7\\McLellan - 1973 - Solid solutions of hydrogen in gold, silver and co.pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\WQY9E8JH\\S0022369773800228.html:text/html}, -} + } @article{katsuta_diffusivity_1979, title = {Diffusivity of hydrogen in silver}, @@ -1233,8 +1175,7 @@ @article{katsuta_diffusivity_1979 month = jan, year = {1979}, pages = {65--66}, - file = {ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\5WU8A5ES\\Katsuta et B. McLellan - 1979 - Diffusivity of hydrogen in silver.pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\8UU99P9N\\0036974879903910.html:text/html}, -} + } @techreport{favreau_solubility_1954, title = {{THE} {SOLUBILITY} {OF} {HYDROGEN} {AND} {TRITIUM} {IN} {PALLADIUM} {BLACK}}, @@ -1248,8 +1189,7 @@ @techreport{favreau_solubility_1954 month = apr, year = {1954}, doi = {10.2172/4413386}, - file = {Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\NWSKLJ9R\\Favreau et al. - 1954 - THE SOLUBILITY OF HYDROGEN AND TRITIUM IN PALLADIU.pdf:application/pdf;Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\AX8VG732\\4413386.html:text/html}, -} + } @article{katsuta_diffusivity_1982, title = {Diffusivity and permeability of hydrogen in molybdenum}, @@ -1266,8 +1206,7 @@ @article{katsuta_diffusivity_1982 month = jan, year = {1982}, pages = {533--538}, - file = {ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\D3XAI4RU\\Katsuta et al. - 1982 - Diffusivity and permeability of hydrogen in molybd.pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\3RA4RNNH\\0022369782901044.html:text/html}, -} + } @article{tanabe_hydrogen_1992, series = {Fusion {Reactor} {Materials} {Part} {A}}, @@ -1284,8 +1223,7 @@ @article{tanabe_hydrogen_1992 month = sep, year = {1992}, pages = {439--443}, - file = {ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\8GES77TE\\Tanabe et al. - 1992 - Hydrogen permeation and diffusion in molybdenum.pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\EAJYFGBL\\S0022311509800834.html:text/html}, -} + } @article{yamanaka_effect_1989, title = {Effect of {Oxygen} on {Hydrogen} solubility in {Zirconium}}, @@ -1301,8 +1239,7 @@ @article{yamanaka_effect_1989 month = sep, year = {1989}, pages = {231--237}, - file = {ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\T9RBW4J7\\Yamanaka et al. - 1989 - Effect of Oxygen on Hydrogen solubility in Zirconi.pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\RPEPKRBJ\\0022311589904467.html:text/html}, -} + } @article{hsu_palladium-catalyzed_1986, title = {Palladium-catalyzed oxidative diffusion for tritium extraction from breeder-blanket fluids at low concentrations}, @@ -1318,8 +1255,7 @@ @article{hsu_palladium-catalyzed_1986 month = nov, year = {1986}, pages = {238--243}, - file = {ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\8E4H5P3Q\\Hsu et Buxbaum - 1986 - Palladium-catalyzed oxidative diffusion for tritiu.pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\WVZ8P7Q9\\S0022311586800435.html:text/html}, -} + } @article{kearns_diffusion_1972, title = {Diffusion coefficient of hydrogen in alpha zirconium, {Zircaloy}-2 and {Zircaloy}-4}, @@ -1340,8 +1276,7 @@ @article{kearns_diffusion_1972 month = jun, year = {1972}, pages = {330--338}, - file = {ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\U5W8GR3D\\Kearns - 1972 - Diffusion coefficient of hydrogen in alpha zirconi.pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\4Y7YEKX2\\0022311572900657.html:text/html}, -} + } @article{kearns_terminal_1967, title = {Terminal solubility and partitioning of hydrogen in the alpha phase of zirconium, {Zircaloy}-2 and {Zircaloy}-4}, @@ -1362,25 +1297,21 @@ @article{kearns_terminal_1967 month = jun, year = {1967}, pages = {292--303}, - file = {ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\GCQWLADW\\Kearns - 1967 - Terminal solubility and partitioning of hydrogen i.pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\7PDWTV5V\\0022311567900475.html:text/html}, -} + } -@techreport{schober_h_1990, - address = {Germany}, - title = {H and {D} in niobium, tantalum and vanadium}, - abstract = {After a general introduction the hydride and deuteride phases of Nb, Ta and V are -discussed Recent phase diagrams of the systems Nb-H(D), Ta-H(D), and V-H(D) are presented -The key diffusivities of H and D in the above metals are also covered The basic thermodynamic -relations required for an understanding of p-c-T data are given Sieverts and various -p-c-T curves pertaining to H and D in Nb, Ta and V are presented Selected thermodynamic -quantities and heats of phase transformations are included Further topics include -a discussion of localized vibrations, hydride morphologies, permeation, resistivity -and property changes (orig)}, - author = {Schober, T.}, - year = {1990}, - note = {Juel--2347 -INIS Reference Number: 21066754}, - pages = {114}, +@article{qi_tritium_1983, + doi = {10.1088/0305-4608/13/10/015}, + url = {https://dx.doi.org/10.1088/0305-4608/13/10/015}, + year = {1983}, + month = {oct}, + publisher = {}, + volume = {13}, + number = {10}, + pages = {2053}, + author = {Zh Qi and J Volkl and R Lasser and H Wenzl}, + title = {Tritium diffusion in V, Nb and Ta}, + journal = {Journal of Physics F: Metal Physics}, + abstract = {Gorsky-effect measurements of the diffusion coefficient of tritium (T) in V, Nb and Ta are reported. The measurements were performed at small T concentrations (less than about 1.4 at.%), and in the temperature range from -140 degrees C to 100 degrees C. Comparison with results obtained for H and D shows an increase of the activation energy with increasing isotopic mass. For Nb and Ta, the pre-exponential factors are identical for all the isotopes, whereas for V this factor is appreciably larger for T and for H and D. The reduction of the relaxation strength in the presence of precipitation allows a rough determination of the solubility limit, which is found to be isotope independent for Nb and Ta. In V, the solubility limit for T is shifted slightly to lower temperatures. The H, D or T induced lattice expansion calculated from the relaxation strength shows no dependence on isotopic mass.} } @article{louthan_hydrogen_1975, @@ -1402,8 +1333,7 @@ @article{louthan_hydrogen_1975 month = jun, year = {1975}, pages = {745--749}, - file = {ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\XSV77L8G\\Louthan et al. - 1975 - Hydrogen diffusion and trapping in nickel.pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\R6PEBMVG\\0001616075900577.html:text/html}, -} + } @article{tahara_measurements_1985, title = {Measurements of {Permeation} of {Hydrogen} {Isotopes} through α-{Iron} by {Pressure} {Modulation} and {Ion} {Bombarding}}, @@ -1416,8 +1346,7 @@ @article{tahara_measurements_1985 year = {1985}, keywords = {permeation, deuterium, alpha-iron, diffusion coefficient, hydrogen, isotope effect, pressure moduration method}, pages = {869--875}, - file = {Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\MYQBKSB3\\Tahara et Hayashi - 1985 - Measurements of Permeation of Hydrogen Isotopes th.pdf:application/pdf;J-Stage - Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\IIKYGV2W\\_article.html:text/html}, -} + } @article{eichenauer_diffusion_1958, title = {Diffusion und {Löslichkeit} von {Wasserstoff} in a-{Eisen} und {Silber}}, @@ -1451,8 +1380,7 @@ @article{veleckis_thermodynamic_1969 month = mar, year = {1969}, pages = {683--692}, - file = {Veleckis et Edwards - 1969 - Thermodynamic properties in the systems vanadium-h.pdf:C\:\\Users\\remidm\\Zotero\\storage\\LBQYVX2U\\Veleckis et Edwards - 1969 - Thermodynamic properties in the systems vanadium-h.pdf:application/pdf}, -} + } @incollection{volkl_5_1975, title = {5 - {Hydrogen} {Diffusion} in {Metals}}, @@ -1468,8 +1396,7 @@ @incollection{volkl_5_1975 year = {1975}, doi = {10.1016/B978-0-12-522660-8.50010-6}, pages = {231--302}, - file = {ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\QV79TZ5F\\B9780125226608500106.html:text/html}, -} + } @article{young_diffusion_1998, title = {The diffusion and trapping of hydrogen in high purity aluminum}, @@ -1490,8 +1417,7 @@ @article{young_diffusion_1998 month = nov, year = {1998}, pages = {6337--6349}, - file = {ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\ARBAIVV8\\S1359645498003334.html:text/html}, -} + } @article{atsumi_absorption_1988, title = {Absorption and desorption of deuterium on graphite at elevated temperatures}, @@ -1506,8 +1432,7 @@ @article{atsumi_absorption_1988 month = jul, year = {1988}, pages = {241--245}, - file = {Atsumi et al. - 1988 - Absorption and desorption of deuterium on graphite.pdf:C\:\\Users\\remidm\\Zotero\\storage\\C8FE7MBK\\Atsumi et al. - 1988 - Absorption and desorption of deuterium on graphite.pdf:application/pdf}, -} + } @article{causey_interaction_1989, title = {The interaction of tritium with graphite and its impact on tokamak operations}, @@ -1522,8 +1447,7 @@ @article{causey_interaction_1989 month = apr, year = {1989}, pages = {151--161}, - file = {Causey - 1989 - The interaction of tritium with graphite and its i.pdf:C\:\\Users\\remidm\\Zotero\\storage\\ZIU4I73B\\Causey - 1989 - The interaction of tritium with graphite and its i.pdf:application/pdf}, -} + } @misc{noauthor_pii_nodate, title = {{PII}: 0022-3115(89)90265-1 {\textbar} {Elsevier} {Enhanced} {Reader}}, @@ -1558,8 +1482,7 @@ @article{jones_hydrogen_1967 month = mar, year = {1967}, pages = {353--354}, - file = {ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\UN5EC9MW\\Jones et Gibson - 1967 - Hydrogen in beryllium.pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\D7K5CG7U\\0022311567901900.html:text/html}, -} + } @article{abramov_deuterium_1990, title = {Deuterium permeation and diffusion in high-purity beryllium}, @@ -1576,8 +1499,7 @@ @article{abramov_deuterium_1990 month = dec, year = {1990}, pages = {90--95}, - file = {ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\7V46C677\\Abramov et al. - 1990 - Deuterium permeation and diffusion in high-purity .pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\3BEIM8BJ\\002231159090274Q.html:text/html}, -} + } @article{veleckis_lithium-lithium_1974, title = {Lithium-lithium hydride system}, @@ -1593,8 +1515,7 @@ @article{veleckis_lithium-lithium_1974 year = {1974}, note = {Publisher: American Chemical Society}, pages = {1933--1940}, - file = {ACS Full Text Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\RXEKZ5N8\\j100612a013.html:text/html}, -} + } @incollection{shimada_608_2020, address = {Oxford}, @@ -1613,8 +1534,7 @@ @incollection{shimada_608_2020 doi = {10.1016/B978-0-12-803581-8.11754-0}, keywords = {Hydrogen, Deuterium, Diffusion, First wall materials, Permeation, Solubility, Structural materials, Tritium, Diffusivity, Permeability}, pages = {251--273}, - file = {3-s2.0-B9780128035818117540-main.pdf:C\:\\Users\\remidm\\Zotero\\storage\\NV8799KX\\3-s2.0-B9780128035818117540-main.pdf:application/pdf;ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\7QNDI6P9\\Shimada - 2020 - 6.08 - Tritium Transport in Fusion Reactor Materia.pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\DPTUS76V\\B9780128035818117540.html:text/html}, -} + } @book{reiter_compilation_1996, title = {A compilation of tritium : {Material} interaction parameters in fusion reactor materials.}, @@ -1625,9 +1545,9 @@ @book{reiter_compilation_1996 publisher = {Publications Office of the European Union}, author = {Reiter, F. and Forcey, K. S. and Gervasini, G.}, month = jul, + url = {https://op.europa.eu/en/publication-detail/-/publication/60f147a2-fdc8-49c8-8a87-7af6f09b0a61}, year = {1996}, - file = {Union - 1996 - A compilation of tritium Material interaction pa.pdf:C\:\\Users\\remidm\\Zotero\\storage\\B3DLFNWI\\Union - 1996 - A compilation of tritium Material interaction pa.pdf:application/pdf}, -} + } @article{calderoni_measurement_2008, title = {Measurement of tritium permeation in flibe ({2LiF}–{BeF2})}, @@ -1645,8 +1565,7 @@ @article{calderoni_measurement_2008 year = {2008}, keywords = {Fusion, Solubility, Tritium, Molten salt, Diffusivity}, pages = {1331--1334}, - file = {Calderoni et al. - 2008 - Measurement of tritium permeation in flibe (2LiF–B.pdf:C\:\\Users\\remidm\\Zotero\\storage\\Q8GBT577\\Calderoni et al. - 2008 - Measurement of tritium permeation in flibe (2LiF–B.pdf:application/pdf;ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\SN5FMKAY\\Calderoni et al. - 2008 - Measurement of tritium permeation in flibe (2LiF–B.pdf:application/pdf;ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\UZXSHIEW\\Calderoni et al. - 2008 - Measurement of tritium permeation in flibe (2LiF–B.pdf:application/pdf;ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\EVNUP6E2\\Calderoni et al. - 2008 - Measurement of tritium permeation in flibe (2LiF–B.pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\LYH674HW\\S0920379608000926.html:text/html;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\Y6794MLA\\S0920379608000926.html:text/html}, -} + } @techreport{steward_review_1983, title = {Review of {Hydrogen} {Isotope} {Permeability} {Through} {Materials}}, @@ -1660,8 +1579,7 @@ @techreport{steward_review_1983 month = aug, year = {1983}, doi = {10.2172/5277693}, - file = {Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\AG8VII22\\Steward - 1983 - Review of Hydrogen Isotope Permeability Through Ma.pdf:application/pdf}, -} + } @techreport{webb_permeation_1965, title = {{PERMEATION} {OF} {HYDROGEN} {THROUGH} {METALS}}, @@ -1675,8 +1593,7 @@ @techreport{webb_permeation_1965 month = jul, year = {1965}, doi = {10.2172/4583045}, - file = {Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\GHWPCYKU\\Webb - 1965 - PERMEATION OF HYDROGEN THROUGH METALS.pdf:application/pdf}, -} + } @techreport{savage_snap-8_1965, title = {{SNAP}-8 {Corrosion} {Program} {Summary} {Report}}, @@ -1685,8 +1602,7 @@ @techreport{savage_snap-8_1965 urldate = {2023-01-13}, author = {Savage, H. W. and Compere, E. L. and Huntley, W. R. and Fleischer, B. and MacPherson, R. E. and Taboada, A.}, year = {1965}, - file = {19660007016.pdf:C\:\\Users\\remidm\\Zotero\\storage\\7IE5C75B\\19660007016.pdf:application/pdf}, -} + } @article{grant_hydrogen_1987, title = {Hydrogen in 304 steel: {Diffusion}, permeation and surface reaction}, @@ -1704,8 +1620,7 @@ @article{grant_hydrogen_1987 month = jul, year = {1987}, pages = {180--191}, - file = {ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\DXW5INFL\\Grant et al. - 1987 - Hydrogen in 304 steel Diffusion, permeation and s.pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\FA62IDF3\\0022311587904764.html:text/html}, -} + } @article{esteban_diffusive_2002, title = {Diffusive transport parameters and surface rate constants of deuterium in {Incoloy} 800}, @@ -1722,8 +1637,7 @@ @article{esteban_diffusive_2002 month = jan, year = {2002}, pages = {1--6}, - file = {ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\DR3CN5LM\\Esteban et al. - 2002 - Diffusive transport parameters and surface rate co.pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\K5G8G3Y9\\S0022311501007152.html:text/html}, -} + } @article{altunoglu_permeation_1991, title = {Permeation of hydrogen through nickel foils: surface reaction rates at low temperatures}, @@ -1740,8 +1654,7 @@ @article{altunoglu_permeation_1991 month = aug, year = {1991}, pages = {718--726}, - file = {ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\3UT6URT7\\Altunoglu et al. - 1991 - Permeation of hydrogen through nickel foils surfa.pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\H8C72G4C\\002250889190195A.html:text/html}, -} + } @article{perujo_low_1996, title = {Low pressure tritium interaction with {Inconel} 625 and {AISI} 316 {L} stainless steel surfaces: an evaluation of the recombination and adsorption constants}, @@ -1759,8 +1672,7 @@ @article{perujo_low_1996 month = jun, year = {1996}, pages = {101--108}, - file = {Perujo et al. - 1996 - Low pressure tritium interaction with Inconel 625 .pdf:C\:\\Users\\remidm\\Zotero\\storage\\PSRLT8YT\\Perujo et al. - 1996 - Low pressure tritium interaction with Inconel 625 .pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\7U9PAZWZ\\092037969400434X.html:text/html}, -} + } @article{nagasaki_ion-driven_1993, title = {Ion-driven permeation and surface recombination coefficient of deuterium for ion}, @@ -1777,8 +1689,7 @@ @article{nagasaki_ion-driven_1993 month = jul, year = {1993}, pages = {228--238}, - file = {ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\G8SLXBPF\\002231159390392C.html:text/html}, -} + } @article{edao_experiments_2011, series = {Proceedings of {ICFRM}-14}, @@ -1796,8 +1707,7 @@ @article{edao_experiments_2011 month = oct, year = {2011}, pages = {723--726}, - file = {ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\ID7BXANT\\Edao et al. - 2011 - Experiments of hydrogen isotope permeation, diffus.pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\CM4YZSV4\\S0022311510009487.html:text/html}, -} + } @article{okitsu_analysis_2012, series = {Tenth {International} {Symposium} on {Fusion} {Nuclear} {Technology} ({ISFNT}-10)}, @@ -1816,8 +1726,7 @@ @article{okitsu_analysis_2012 year = {2012}, keywords = {Solubility, Diffusivity, Permeability, Liquid blanket, Isotope effects, Lead–lithium}, pages = {1324--1328}, - file = {ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\FPH2LKWX\\Okitsu et al. - 2012 - Analysis of diffusion and dissolution of two-compo.pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\6P9JE23V\\S0920379612002074.html:text/html}, -} + } @article{edao_permeation_2011, title = {Permeation of {Two}-{Component} {Hydrogen} {Isotopes} in {Lithium}-{Lead} {Eutectic} {Alloy}}, @@ -1835,8 +1744,7 @@ @article{edao_permeation_2011 note = {Publisher: Taylor \& Francis \_eprint: https://doi.org/10.13182/FST60-1163}, pages = {1163--1166}, - file = {Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\7VCGNHEC\\Edao et al. - 2011 - Permeation of Two-Component Hydrogen Isotopes in L.pdf:application/pdf}, -} + } @article{xiukui_hydrogen_1989, title = {Hydrogen permeation behaviour in austenitic stainless steels}, @@ -1852,8 +1760,7 @@ @article{xiukui_hydrogen_1989 month = jul, year = {1989}, pages = {179--187}, - file = {ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\J2DDAM6D\\Xiukui et al. - 1989 - Hydrogen permeation behaviour in austenitic stainl.pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\VBLWBRZD\\0921509389908575.html:text/html}, -} + } @article{lee_hydrogen_2011, title = {Hydrogen {Permeability}, {Diffusivity}, and {Solubility} of {SUS} {316L} {Stainless} {Steel} in the {Temperature} {Range} 400 to 800 {C} for {Fusion} {Reactor} {Applications}}, @@ -1870,8 +1777,7 @@ @article{lee_hydrogen_2011 year = {2011}, note = {Publisher: The Korean Physical Society}, pages = {3019--3023}, - file = {Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\IKM72TFG\\Lee et al. - 2011 - Hydrogen Permeability, Diffusivity, and Solubility.pdf:application/pdf}, -} + } @article{eichenauer_notitle_1961, volume = {52}, @@ -1896,8 +1802,7 @@ @article{cochran_permeability_1961 year = {1961}, note = {Publisher: IOP Publishing}, pages = {317}, - file = {Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\AJ8BPYAW\\Cochran - 1961 - The Permeability of Aluminum to Hydrogen.pdf:application/pdf}, -} + } @article{song_study_1997, title = {A study of hydrogen permeation in aluminum alloy treated by various oxidation processes}, @@ -1915,8 +1820,7 @@ @article{song_study_1997 year = {1997}, keywords = {66.30.J, pacs:28.52.F}, pages = {139--143}, - file = {ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\PWF6VTFT\\S0022311597001463.html:text/html}, -} + } @article{saitoh_hydrogen_1994, title = {Hydrogen diffusivity in aluminium measured by a glow discharge permeation method}, @@ -1933,8 +1837,7 @@ @article{saitoh_hydrogen_1994 month = jul, year = {1994}, pages = {2493--2498}, - file = {ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\YH72Y4BN\\Saitoh et al. - 1994 - Hydrogen diffusivity in aluminium measured by a gl.pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\YVQG9R5D\\0956715194903298.html:text/html}, -} + } @article{hashimoto_hydrogen_1983, title = {Hydrogen diffusion in aluminium at high temperatures}, @@ -1951,8 +1854,7 @@ @article{hashimoto_hydrogen_1983 month = jun, year = {1983}, pages = {1157}, - file = {IOP Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\2RTB7R39\\Hashimoto and Kino - 1983 - Hydrogen diffusion in aluminium at high temperatur.pdf:application/pdf}, -} + } @article{ichimura_grain_1991, title = {Grain {Boundary} {Effect} on {Diffusion} of {Hydrogen} in {Pure} {Aluminum}}, @@ -1965,8 +1867,7 @@ @article{ichimura_grain_1991 year = {1991}, keywords = {aluminum, hydrogen, diffusivity, enhanced diffusion, grain boundary, solubility, trapping}, pages = {1109--1114}, - file = {Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\NEBBP679\\Ichimura et al. - 1991 - Grain Boundary Effect on Diffusion of Hydrogen in .pdf:application/pdf;J-Stage - Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\MDGU7WEX\\ja.html:text/html}, -} + } @article{outlaw_diffusion_1982, title = {Diffusion of hydrogen in pure large grain aluminum}, @@ -1983,8 +1884,7 @@ @article{outlaw_diffusion_1982 month = mar, year = {1982}, pages = {287--292}, - file = {ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\XIT24QWK\\Outlaw et al. - 1982 - Diffusion of hydrogen in pure large grain aluminum.pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\F59XSU66\\0036974882903544.html:text/html}, -} + } @article{addach_hydrogen_2005, title = {Hydrogen permeation in iron at different temperatures}, @@ -2002,8 +1902,7 @@ @article{addach_hydrogen_2005 year = {2005}, keywords = {Diffusion, Hydrogen embrittlement, Iron, Desorption, Hydrogen permeation}, pages = {1347--1351}, - file = {ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\8P4456NF\\Addach et al. - 2005 - Hydrogen permeation in iron at different temperatu.pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\VVJ2HGQ8\\S0167577X04009814.html:text/html}, -} + } @article{masui_hydrogen_1978, title = {Hydrogen {Permeation} through {Iron}, {Nickel}, and {Heat} {Resisting} {Alloys} at {Elevated} {Temperatures}}, @@ -2015,8 +1914,7 @@ @article{masui_hydrogen_1978 author = {Masui, Kanji and Yoshida, Heitaro and Watanabe, Yoji}, year = {1978}, pages = {615--620}, - file = {Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\PZBZVQEF\\Masui et al. - 1978 - Hydrogen Permeation through Iron, Nickel, and Heat.pdf:application/pdf;J-Stage - Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\3ZB5SP5H\\_article.html:text/html}, -} + } @article{frauenfelder_permeation_1968, title = {Permeation of {Hydrogen} through {Tungsten} and {Molybdenum}}, @@ -2051,8 +1949,7 @@ @article{zhao_deuterium_2020 \_eprint: https://doi.org/10.1080/15361055.2019.1705727}, keywords = {Tungsten, gas-driven permeation, irradiation damage}, pages = {246--251}, - file = {Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\F5EM4LLM\\Zhao et al. - 2020 - Deuterium Permeation Behavior in Fe Ion Damaged Tu.pdf:application/pdf}, -} + } @article{liang_deuterium_2018, title = {Deuterium permeation behaviors in tungsten implanted with nitrogen}, @@ -2068,8 +1965,7 @@ @article{liang_deuterium_2018 month = jul, year = {2018}, pages = {174--182}, - file = {ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\FRWHJTQG\\Liang et al. - 2018 - Deuterium permeation behaviors in tungsten implant.pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\382BJEIS\\S0022311517314563.html:text/html}, -} + } @article{liu_gas-driven_2016, title = {Gas-driven permeation of deuterium through tungsten with different microstructures}, @@ -2086,8 +1982,7 @@ @article{liu_gas-driven_2016 year = {2016}, keywords = {Tungsten, Diffusion, Permeation, Hydrogen isotopes, Fusion materials}, pages = {216--220}, - file = {ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\SMJBV2UT\\Liu et al. - 2016 - Gas-driven permeation of deuterium through tungste.pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\4YTC4I4G\\S0920379616305701.html:text/html}, -} + } @article{smith_solubility_1979, title = {The solubility and isotopic exchange equilibrium for hydrogen isotopes in lithium}, @@ -2104,8 +1999,7 @@ @article{smith_solubility_1979 month = jan, year = {1979}, pages = {1001--1009}, - file = {ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\S5CMAKKM\\Smith et al. - 1979 - The solubility and isotopic exchange equilibrium f.pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\BW5YM5BM\\0022190279800779.html:text/html}, -} + } @article{vadrucci_hydrogen_2013, title = {Hydrogen permeation through {Pd}–{Ag} membranes: {Surface} effects and {Sieverts}' law}, @@ -2124,8 +2018,7 @@ @article{vadrucci_hydrogen_2013 year = {2013}, keywords = {Dense Pd-membrane, Sieverts' law, Surface effects}, pages = {4144--4152}, - file = {ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\KKAMM4TF\\Vadrucci et al. - 2013 - Hydrogen permeation through Pd–Ag membranes Surfa.pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\F39765XR\\S0360319913002000.html:text/html}, -} + } @article{braun_determination_1980, title = {Determination of deuterium surface recombination rates on stainless steel}, @@ -2142,10 +2035,9 @@ @article{braun_determination_1980 year = {1980}, pages = {861--865}, annote = {coefficient de recombinaison H dans l'acier}, - file = {ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\D7EH4G8B\\Braun et al. - 1980 - Determination of deuterium surface recombination r.pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\4AW33YKP\\0022311580902196.html:text/html;Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\7UPDLW8V\\0022311580902196.html:text/html}, -} + } -@article{moore_thermal_2004, +@article{moore_thermal_1964, title = {Thermal {Dissociation} of {Hydrogen}}, volume = {40}, issn = {0021-9606}, @@ -2157,10 +2049,9 @@ @article{moore_thermal_2004 journal = {The Journal of Chemical Physics}, author = {Moore, George E. and Unterwald, F. C.}, month = jun, - year = {2004}, + year = {1964}, pages = {2639--2652}, - file = {Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\KV3BZHQ7\\Moore and Unterwald - 2004 - Thermal Dissociation of Hydrogen.pdf:application/pdf;Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\X4R5995F\\Thermal-Dissociation-of-Hydrogen.html:text/html}, -} + } @article{fukada_unsolved_2011, series = {Proceedings of {ICFRM}-14}, @@ -2178,8 +2069,7 @@ @article{fukada_unsolved_2011 month = oct, year = {2011}, pages = {727--730}, - file = {ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\W95TVXV6\\Fukada and Edao - 2011 - Unsolved issues on tritium mass transfer in Li–Pb .pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\7WGYCP7L\\S0022311510009499.html:text/html}, -} + } @article{okada_analysis_2012, title = {Analysis of {Simultaneous} {H} and {D} {Permeation} through {Lithium}-{Lead}}, @@ -2194,8 +2084,7 @@ @article{okada_analysis_2012 author = {Okada, Makoto and Edao, Yuki and Okitsu, Hiroaki and Fukada, Satoshi}, year = {2012}, pages = {2405074--2405074}, - file = {Okada et al. - 2012 - Analysis of Simultaneous H and D Permeation throug.pdf:C\:\\Users\\remidm\\Zotero\\storage\\43HSGEAM\\Okada et al. - 2012 - Analysis of Simultaneous H and D Permeation throug.pdf:application/pdf}, -} + } @article{belonoshko_first-principles_2004, title = {First-principles study of hydrogen diffusion in \${\textbackslash}ensuremath\{{\textbackslash}alpha\}{\textbackslash}ensuremath\{-\}\{{\textbackslash}mathrm\{{Al}\}\}\_\{2\}\{{\textbackslash}mathrm\{{O}\}\}\_\{3\}\$ and liquid alumina}, @@ -2211,8 +2100,7 @@ @article{belonoshko_first-principles_2004 year = {2004}, note = {Publisher: American Physical Society}, pages = {024302}, - file = {APS Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\C3ERW9JF\\PhysRevB.69.html:text/html}, -} + } @article{serra_hydrogen_2004, title = {Hydrogen {Permeation} {Measurements} on {Alumina}: {Hydrogen} {Permeation} {Measurements} on {Alumina}}, @@ -2229,8 +2117,7 @@ @article{serra_hydrogen_2004 month = dec, year = {2004}, pages = {15--18}, - file = {Serra et al. - 2004 - Hydrogen Permeation Measurements on Alumina Hydro.pdf:C\:\\Users\\remidm\\Zotero\\storage\\WW32US37\\Serra et al. - 2004 - Hydrogen Permeation Measurements on Alumina Hydro.pdf:application/pdf}, -} + } @article{fowler_tritium_1977, title = {Tritium {Diffusion} in {A12O3} and {BeO}}, @@ -2265,8 +2152,7 @@ @article{esteban_hydrogen_2007 month = aug, year = {2007}, pages = {473--477}, - file = {ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\X2SX29J3\\S0022311507004187.html:text/html}, -} + } @article{montupet_leblond_permeation_2021, title = {Permeation and trapping of hydrogen in {Eurofer97}}, @@ -2283,8 +2169,7 @@ @article{montupet_leblond_permeation_2021 year = {2021}, keywords = {Trapping, Hydrogen, Permeation, Eurofer97, MHIMS, Surfaces, Thermal desorption spectrometry}, pages = {101062}, - file = {ScienceDirect Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\LRT5UXDM\\Montupet-Leblond et al. - 2021 - Permeation and trapping of hydrogen in Eurofer97.pdf:application/pdf}, -} + } @article{chen_deuterium_2021, title = {Deuterium transport and retention properties of representative fusion blanket structural materials}, @@ -2301,8 +2186,7 @@ @article{chen_deuterium_2021 year = {2021}, keywords = {Deuterium retention, Deuterium transport, Reduced activation ferritic-martensitic steels}, pages = {152904}, - file = {ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\X56J64CD\\S0022311521001288.html:text/html}, -} + } @article{aiello_hydrogen_2002, title = {Hydrogen {Isotopes} {Permeability} in {Eurofer} 97 {Martensitic} {Steel}}, @@ -2341,8 +2225,7 @@ @article{malo_experimental_2022 Publisher: Multidisciplinary Digital Publishing Institute}, keywords = {vanadium, H isotope transport phenomena, permeability, surface rate constants}, pages = {579}, - file = {Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\LFJQKTM8\\Malo et al. - 2022 - Experimental Determination of Hydrogen Isotope Tra.pdf:application/pdf}, -} + } @article{powell_surface_1991, title = {Surface conductance and the diffusion of {H} and {D} in {Pd}}, @@ -2358,8 +2241,7 @@ @article{powell_surface_1991 month = mar, year = {1991}, pages = {6968--6976}, - file = {Full Text PDF:C\:\\Users\\remidm\\Zotero\\storage\\LL7A5ANN\\Powell and Kirkpatrick - 1991 - Surface conductance and the diffusion of H and D i.pdf:application/pdf}, -} + } @article{hu_hydrogen_2015, title = {Hydrogen permeation in FeCrAl alloys for LWR cladding application}, @@ -2411,3 +2293,390 @@ @article{ashdown_alloy_1980 year = {1980}, month = {6} } + +@article{houben_comparison_2019, + title = {Comparison of the hydrogen permeation through fusion relevant steels and the influence of oxidized and rough surfaces}, + volume = {19}, + issn = {2352-1791}, + url = {https://www.sciencedirect.com/science/article/pii/S2352179118301832}, + doi = {10.1016/j.nme.2019.01.030}, + abstract = {The development and application of tritium permeation barriers (TPB) are crucial for safe and economical fusion reactor operation. In order to specify the requirements and important characteristics of TPB, the deuterium permeation flux through two different fusion relevant steels, namely Eurofer97 and 316L(N)-IG, were measured and compared. Furthermore, the influence of oxidized and rough surfaces on the deuterium permeation flux was investigated. With this study, the influence of technical or plasma roughened surfaces on the permeation behavior can be estimated.}, + language = {en}, + urldate = {2023-08-11}, + journal = {Nuclear Materials and Energy}, + author = {Houben, A. and Engels, J. and Rasiński, M. and Linsmeier, Ch.}, + month = may, + year = {2019}, + keywords = {316L(N)-IG, Deuterium permeation, Eurofer97, Surface oxidation, Surface roughness}, + pages = {55--58}, +} + +@article{reiter_interaction_1985, + author = {F. Reiter and J. Camposilvan and M. Caorlin and G. Saibenea and R. Sartoria}, + title = {Interaction of Hydrogen Isotopes with Stainless Steel 316 L}, + journal = {Fusion Technology}, + volume = {8}, + number = {2P2}, + pages = {2344-2351}, + year = {1985}, + publisher = {Taylor & Francis}, + doi = {10.13182/FST85-A24629}, +} + +@article{shan_behavior_1991, + title = {The behavior of diffusion and permeation of tritium through 316L stainless steel}, + journal = {Journal of Nuclear Materials}, + volume = {179-181}, + pages = {322-324}, + year = {1991}, + issn = {0022-3115}, + doi = {https://doi.org/10.1016/0022-3115(91)90091-K}, + url = {https://www.sciencedirect.com/science/article/pii/002231159190091K}, + author = {Changqi Shan and Aiju Wu and Qingwang Chen}, + abstract = {Results on diffusivity, solubility coefficient and permeability of tritium through palladium-plated 316L stainless steel are described. An empirical formula for the diffusivity, the solubility coefficient and the permeability of tritium through palladium-plated 316L stainless steel at various temperatures is presented. The influence of tritium pressure on the permeability, and the isotope effect of diffusivity of hydrogen and tritium in 316L stainless steel is discussed.} +} + +@article{penzhorn_distribution_2010, + author = {R.-D. Penzhorn and Y. Torikai and S. Naoe and K. Akaishi and A. Perevezentsev and K. Watanabe and M. Matsuyama}, + title = {Distribution and Mobility of Tritium in Type 316 Stainless Steel}, + journal = {Fusion Science and Technology}, + volume = {57}, + number = {3}, + pages = {185-195}, + year = {2010}, + publisher = {Taylor & Francis}, + doi = {10.13182/FST57-3-185}, +} + +@article{forcey_permeability_1993, + title = {The permeability, diffusivity and solubility of deuterium in TZM}, + journal = {Journal of Nuclear Materials}, + volume = {203}, + number = {1}, + pages = {36-42}, + year = {1993}, + issn = {0022-3115}, + doi = {https://doi.org/10.1016/0022-3115(93)90427-Z}, + url = {https://www.sciencedirect.com/science/article/pii/002231159390427Z}, + author = {K.S. Forcey and A. Perujo and F. Reiter and P.L. Lolli-Ceroni}, + abstract = {A gas permeation technique has been employed to study the permeability, diffusivity and solubility of deuterium in the molybdenum alloy, TZM, a potential divertor material for future fusion machines. The measurements should provide design data useful for the calculation of the retention and recycling rates of hydrogen isotopes from divertors in ITER. Measurements were made on disc-shaped samples of 48 mm diameter and 0.1 mm thickness over the temperature range 515–742 K and for driving deuterium pressures in the range 5–50 kPa. It was found that the permeability varied in the Arrhenius manner and was very similar to that reported for pure molybdenum. However, the solubility was observed to be weakly exothermic, which has not been often observed for molybdenum. There was evidence of deuterium trapping affecting the observed diffusivity and solubility.} +} + +@article{tominetti_solubility_1990, + title = {Solubility and diffusivity of hydrogen and deuterium in TZM}, + journal = {Journal of Nuclear Materials}, + volume = {176-177}, + pages = {672-677}, + year = {1990}, + issn = {0022-3115}, + doi = {https://doi.org/10.1016/0022-3115(90)90125-7}, + url = {https://www.sciencedirect.com/science/article/pii/0022311590901257}, + author = {S. Tominetti and M. Caorlin and J. Camposilvan and A. Perujo and F. Reiter}, + abstract = {A gas evolution method has been used to study the interaction of hydrogen and deuterium with TZM, a potential NET divertor material. Temperatures in the range 673–873 K and loading pressures between 103 and 105 Pa have been used. Hydrogen and deuterium dissolve exothermally in TZM, despite the dominant presence of Mo, which is an endothermal occluder of hydrogen. Their solubility is quite low, i.e. in the range 0.1–1 mol m−3, but higher than in Mo, 10 times at 873 K. The diffusivity obtained after data fitting with a simple diffusion-limited model is 10 times lower than in Mo, in the range 1 × 10−11-5 × 10−10m2s−1. Surface effects are present and are analyzed on the basis of a simple surface-li mited kinetic model. The hydrogen and deuterium data obtained have been used for tritium extrapolation of solubility and diffusivity.} +} + +@article{buchenauer_permeation_2016, + title = {Gas-driven permeation of deuterium through tungsten and tungsten alloys}, + journal = {Fusion Engineering and Design}, + volume = {109-111}, + pages = {104-108}, + year = {2016}, + note = {Proceedings of the 12th International Symposium on Fusion Nuclear Technology-12 (ISFNT-12)}, + issn = {0920-3796}, + doi = {https://doi.org/10.1016/j.fusengdes.2016.03.045}, + url = {https://www.sciencedirect.com/science/article/pii/S0920379616302411}, + author = {Dean A. Buchenauer and Richard A. Karnesky and Zhigang Zak Fang and Chai Ren and Yasuhisa Oya and Teppei Otsuka and Yuji Yamauchi and Josh A. Whaley}, + keywords = {Tungsten, Tungsten alloy, Permeation, Plasma facing component, ITER}, + abstract = {To address the transport and trapping of hydrogen isotopes, several permeation experiments are being pursued at both Sandia National Laboratories (deuterium gas-driven permeation) and Idaho National Laboratories (tritium gas- and plasma-driven tritium permeation). These experiments are in part a collaboration between the US and Japan to study the performance of tungsten at divertor relevant temperatures (PHENIX). Here we report on the development of a high temperature (≤1150°C) gas-driven permeation cell and initial measurements of deuterium permeation in several types of tungsten: high purity tungsten foil, ITER-grade tungsten (grains oriented through the membrane), and dispersoid-strengthened ultra-fine grain (UFG) tungsten being developed in the US. Experiments were performed at 500–1000°C and 0.1–1.0atm D2 pressure. Permeation through ITER-grade tungsten was similar to earlier W experiments by Frauenfelder (1968–69) and Zaharakov (1973). Data from the UFG alloy indicates marginally higher permeability (<10×) at lower temperatures, but the permeability converges to that of the ITER tungsten at 1000°C. The permeation cell uses only ceramic and graphite materials in the hot zone to reduce the possibility for oxidation of the sample membrane. Sealing pressure is applied externally, thereby allowing for elevation of the temperature for brittle membranes above the ductile-to-brittle transition temperature.} +} + +@article{otsuka_visualization_2009, + doi = {10.1088/0031-8949/2009/T138/014052}, + url = {https://dx.doi.org/10.1088/0031-8949/2009/T138/014052}, + year = {2009}, + month = {dec}, + publisher = {}, + volume = {2009}, + number = {T138}, + pages = {014052}, + author = {T Otsuka and T Hoshihira and T Tanabe}, + title = {Visualization of hydrogen depth profile by means of tritium imaging plate technique: determination of hydrogen diffusion coefficient in pure tungsten}, + journal = {Physica Scripta}, + } + +@article{begun_equilibrium_2008, + author = {Begun, G. M. and Land, J. F. and Bell, J. T.}, + title = "{High temperature equilibrium measurements of the yttrium–hydrogen isotope (H2, D2, T2) systems.}", + journal = {The Journal of Chemical Physics}, + volume = {72}, + number = {5}, + pages = {2959-2966}, + year = {2008}, + month = {07}, + abstract = "{Equilibrium pressures as a function of concentration and temperature were measured for the systems, yttrium–hydrogen, yttrium–deuterium, and yttrium–tritium. Temperatures were varied from 700–1000 °C and concentrations in the solid yttrium phase ranged from H/Y or D/Y atom ratios of 0.01 to 2.0 and T/Y ratios of 0.03 to 1.1. Equilibrium isotherms have been plotted and Van’t Hoff isopleths calculated for these systems. Relative partial molal enthalpies and entropies have been tabulated for the reactions of the hydrogen isotopes with yttrium as a function of atom ratio in the solid. In the low concentration range (H/Y=D/Y=T/Y\\<0.3), the data obey Sieverts law where the concentration of hydrogen isotope in yttrium is proportional to the square root of the hydrogen isotope pressure. Sieverts constants have been derived. At constant atom fraction the tritium compound has the highest equilibrium pressure and the protium compound the lowest. Expressions for the isotopic hydrogen pressure ratios have been derived and agree well with a simple theoretical treatment in which the dissolved hydrogen atoms are regarded as independent oscillators held in tetrahedral potential wells in the yttrium lattice.}", + issn = {0021-9606}, + doi = {10.1063/1.439496}, + url = {https://doi.org/10.1063/1.439496}, +} + +@article{okuno_thermal_1986, + title = {Thermal release of tritium from neutron-irradiated Li7Pb2}, + journal = {Journal of the Less Common Metals}, + volume = {119}, + number = {2}, + pages = {211-217}, + year = {1986}, + issn = {0022-5088}, + doi = {https://doi.org/10.1016/0022-5088(86)90682-X}, + url = {https://www.sciencedirect.com/science/article/pii/002250888690682X}, + author = {Kenji Okuno and Yuichiro Nagame and Hiroshi Kudo}, + abstract = {Chemical behaviour of tritium produced by the 6Li(n, α)T reaction in Li7Pb2 has been investigated with emphasis on the thermal release processes. When the neutron-irradiated Li7Pb2 was heated under vacuum, the tritium was released mainly in the form of HT. The HT release rate was found to obey diffusion-controlled kinetics. The diffusion coefficient of tritium in solid Li7Pb2 at temperatures ranging from 560 to 700 K was determined to be D = 2.1 × 10−3exp(−45.1RT) cm2 s−1 The tritium release behaviour of Li7Pb2 was compared with that of Li45Pb55 in which a distinct phase effect was observed in the HT release processes.} +} + +@article{ikeda_application_2011, + author = {T. Ikeda and T. Otsuka and T. Tanabe}, + title = {Application of Tritium Tracer Technique to Determination of Hydrogen Diffusion Coefficients and Permeation Rate near Room Temperature for Tungsten}, + journal = {Fusion Science and Technology}, + volume = {60}, + number = {4}, + pages = {1463-1466}, + year = {2011}, + publisher = {Taylor & Francis}, + doi = {10.13182/FST11-A12707}, + url = {https://doi.org/10.13182/FST11-A12707}, +} + +@article{takagi_asymmetric_2003, +title = {Asymmetric surface recombination of hydrogen on palladium exposed to plasma}, +journal = {Journal of Nuclear Materials}, +volume = {313-316}, +pages = {102-106}, +year = {2003}, +note = {Plasma-Surface Interactions in Controlled Fusion Devices 15}, +issn = {0022-3115}, +doi = {https://doi.org/10.1016/S0022-3115(02)01370-3}, +url = {https://www.sciencedirect.com/science/article/pii/S0022311502013703}, +author = {Ikuji Takagi and Kimikazu Moritani and Hirotake Moriyama}, +keywords = {Plasma–wall interactions, Palladium, Hydrogen, Recombination, Nuclear reaction analysis, Coverage}, +abstract = {Recombination coefficient of deuterium on either side of a palladium membrane was experimentally studied. Under conditions that one side of the membrane was continuously exposed to a deuterium plasma and the permeation flux was monitored on the other side, two experiments were conducted. One was to observe the transient behavior of the permeation when the incident flux from the plasma was quickly changed and the other was to observe the deuterium concentration by the nuclear reaction analysis. The permeation was limited by the second-order kinetics with respect to deuterium concentration, and the recombination coefficient ku on the plasma-facing side was expressed by ku=1.5×10−27exp(−0.48eV/kT) m4s−1, which is explained by the Pick’s model. The recombination coefficient kd on the downstream side was the same as ku at lower temperatures but showed different temperature dependence above 400 K. This can also be explained by the model but another process of the second-order kinetics may be present.} +} + +@article{li_low_2023, +title = {Low temperature hydrogen plasma permeation in palladium and its alloys for fuel recycling in fusion systems}, +journal = {Journal of Nuclear Materials}, +volume = {582}, +pages = {154484}, +year = {2023}, +issn = {0022-3115}, +doi = {https://doi.org/10.1016/j.jnucmat.2023.154484}, +url = {https://www.sciencedirect.com/science/article/pii/S0022311523002519}, +author = {Chao Li and Adam J. Job and Thomas F. Fuerst and Masashi Shimada and J. Douglas Way and Colin A. Wolden}, +keywords = {Palladium, Superpermeation, Hydrogen, Metal foil pump, Fusion fuel cycle}, +abstract = {Superpermeation of hydrogen isotopes through metal foils is a critical component for efficient fuel recycling in fusion power systems. In that context hydrogen permeation through foils of palladium and its alloys with silver and copper was studied at low temperature (60 - 200°C) under plasma exposure. These alloys differ significantly in both bulk and surface properties, and comparisons can provide mechanistic insights. Permeation was observed only during plasma operation, confirming the negligible contribution of molecular hydrogen to the observed flux. As-received foils required surface treatment to achieve top performance. For Pd and Pd75Ag25 an oxidation treatment increased permeation an order of magnitude, but proved unstable as this desirable surface was reduced under hydrogen plasma exposure. In contrast, an Ar plasma cleaning step provided both high and stable flux. As-received FCC phase Pd60Cu40 foils required annealing to transform it into the high permeability BCC phase that delivered top performance. All foils displayed similar temperature dependence with flux declining with temperature, suggesting that the primary rate-limiting step is absorption of superthermal hydrogen. Among these foils the hydrogen flux through PdCu was 3 - 5X greater than that of Pd or PdAg, which were similar. The superiority of BCC PdCu is attributed to its superior hydrogen desorption kinetics. Using PdCu 100% permeation of supplied hydrogen was achieved, and the flux saturated with increasing plasma power at values >10−2 mol H·m−2·s−1, and under these conditions permeation rates are equivalent with or without the membrane present. The fluxes achieved are the highest reported to date at these conditions, and the results highlight the important roles of both surface and bulk properties.} +} + +@article{piper_diffusion_2004, + author = {Piper, John}, + title = "{Diffusion of Hydrogen in Copper‐Palladium Alloys}", + journal = {Journal of Applied Physics}, + volume = {37}, + number = {2}, + pages = {715-721}, + year = {2004}, + month = {06}, + abstract = "{The diffusion of hydrogen in copper‐palladium alloys has been studied by utilizing the dependence of electrical resistivity upon hydrogen concentration—a technique both rapid and simple. At 25°C the diffusion coefficient in the range 0–58 at.\\% Cu is relatively insensitive to alloy composition but is extremely sensitive to the α‐β phase change: it increases two orders of magnitude to become 5×10−5 cm2/sec when the crystal structure of the alloy system changes from face‐centered cubic to ordered body‐centered cubic. Measurements at 130°C indicate that this large increase is due to a decrease by a factor of three in the activation energy for diffusion. The ratio of the diffusion coefficient for hydrogen to that for deuterium in the body‐centered cubic alloy was found to be approximately 1.5.}", + issn = {0021-8979}, + doi = {10.1063/1.1708243}, + url = {https://doi.org/10.1063/1.1708243}, + eprint = {https://pubs.aip.org/aip/jap/article-pdf/37/2/715/7937414/715\_1\_online.pdf}, +} + +@article{guthrie_permeation_1974, +abstract = {Interference microscopy and scanning electron microscopy have been used to measure mechanical effects of tritium decay and 3He accumulation in thin film tritides of Sc, Ti, Y, Ho, and Er, all of which exhibit thickness increase of 2-4% y-1, followed by the development of bubbles and craters and the occurrence of significant mechanical film failure. Scandium and erbium deuterotritide films have been subjected to 20 keV N2+ ion bombardment in an ion microprobe mass analyzer to produce sputter ion species characteristic not only of the original film (e.g., M+, MO+, MD+, MT+) but also of compounds formed during the sputtering operation (e.g., ScN+). Hydrogen isotope permeation has been measured for the homogeneous metals Cu, Ceramvar and Mo, for a Ceramvar-copper-Ceramvar laminate, and for tin-coated Rodar. Measured permeation rates through the laminate are significantly less than those predicted from the permeabilities of its individual constituents. Permeation rates of deuterium through Mo exhibit a somewhat lower activation energy than has been reported in the literature. {\textcopyright} 1974.}, +author = {Guthrie, J.W. and Beavis, L.C. and Begeal, D.R. and Perkins, W.G.}, +doi = {10.1016/0022-3115(74)90263-3}, +issn = {00223115}, +journal = {Journal of Nuclear Materials}, +month = {sep}, +number = {C}, +pages = {313--322}, +title = {{Properties of hydride-forming metals and of multilayer hydrogen permeation barriers}}, +url = {https://linkinghub.elsevier.com/retrieve/pii/0022311574902633}, +volume = {53}, +year = {1974} +} + + +@article{sherman_hydrogen_1983, + title = {Hydrogen permeation and diffusion in niobium}, + volume = {14}, + issn = {2379-0180}, + url = {https://doi.org/10.1007/BF02651617}, + doi = {10.1007/BF02651617}, + abstract = {High temperature hydrogen permeation experiments were performed on niobium using ultra high vacuum techniques in an attempt to maintain clean specimen surfaces. Diffusivities and permeabilities were measured from 700 K to about 1400 K at hydrogen pressures ranging from 4.26 Pa to about 0.013 Pa. The measured diffusivities are in agreement with values extrapolated from the low temperature surface independent measurements. In contrast to low temperature measurements, a trend indicating a classical isotope effect is observed for hydrogen and deuterium diffusivities in niobium at the higher temperatures. The measured hydrogen permeation constants agree with independent solubility and diffusivity measurements and are characterized by a negative enthalpy, as expected from low temperature solubility and diffusivity measurements. These results are contrasted with previous measurements which appear to have been controlled by surface reactions.}, + language = {en}, + number = {1}, + urldate = {2024-03-21}, + journal = {Metallurgical Transactions A}, + author = {Sherman, Robert and Birnbaum, H. K.}, + month = feb, + year = {1983}, + keywords = {Hydrogen Permeation, Isotope Effect, Metallurgical Transaction, Surface Barrier, Surface Impedance}, + pages = {203--210}, + } + +@article{byeon_deuterium_2021, + title = {Deuterium transport in {ITER}-grade tungsten}, + volume = {544}, + issn = {0022-3115}, + url = {https://www.sciencedirect.com/science/article/pii/S0022311520312836}, + doi = {10.1016/j.jnucmat.2020.152675}, + abstract = {The transport behavior of hydrogen isotopes in ITER grade tungsten (IG-W) and commercial rolled polycrystalline tungsten (CR-W) was investigated using deuterium gas. Analyses using field-emission scanning electron microscopy revealed that both IG-W and CR-W had a polycrystalline structure, but their surface grain structures were apparently different. The permeability and diffusivity of deuterium in IG-W and CR-W were obtained using a time-dependent gas-phase technique in the temperature range of 650–850 °C, being observed to be affected by surface morphology and grain boundaries. Our results in this study were also compared with previous results for polycrystalline W reported by other authors.}, + urldate = {2024-05-31}, + journal = {Journal of Nuclear Materials}, + author = {Byeon, W. J. and Noh, S. J.}, + month = feb, + year = {2021}, + keywords = {Commercial polycrystalline tungsten, Deuterium, Hydrogen isotopes, ITER-grade tungsten, Transport}, + pages = {152675}, +} + +@article{shimada_tritium_2019, + series = {{SI}:{SOFT}-30}, + title = {Tritium permeability in polycrystalline tungsten}, + volume = {146}, + issn = {0920-3796}, + url = {https://www.sciencedirect.com/science/article/pii/S0920379619304041}, + doi = {10.1016/j.fusengdes.2019.03.083}, + abstract = {A flowing hydrogen-tritium permeation system was used to investigate tritium permeation behavior in polycrystalline tungsten. Tritium permeability was measured with T2 partial pressure ranging from 5.8 × 10−2 Pa to 6.8 × 10−2 Pa over the temperature range from 573 to 873 K. The obtained tritium permeability in polycrystalline tungsten was PT [mol m−1s−1 Pa−0.5] = (2.13 × 10−9)exp(−93.32 [kJ mol−1]/RT). This is one of the first tritium permeability data from any polycrystalline tungsten via a gas-driven permeation technique. The tritium permeability in polycrystalline tungsten was compared with the reported hydrogen isotope permeability in other polycrystalline tungsten.}, + urldate = {2024-03-21}, + journal = {Fusion Engineering and Design}, + author = {Shimada, M. and Pawelko, R. J.}, + month = sep, + year = {2019}, + keywords = {Permeation, Tritium permeability, Tungsten}, + pages = {1988--1992}, + } + +@article{petucci_diffusion_2013, + title = {Diffusion, adsorption, and desorption of molecular hydrogen on graphene and in graphite}, + volume = {139}, + issn = {0021-9606}, + url = {https://doi.org/10.1063/1.4813919}, + doi = {10.1063/1.4813919}, + abstract = {The diffusion of molecular hydrogen (H2) on a layer of graphene and in the interlayer space between the layers of graphite is studied using molecular dynamics computer simulations. The interatomic interactions were modeled by an Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potential. Molecular statics calculations of H2 on graphene indicate binding energies ranging from 41 meV to 54 meV and migration barriers ranging from 3 meV to 12 meV. The potential energy surface of an H2 molecule on graphene, with the full relaxations of molecular hydrogen and carbon atoms is calculated. Barriers for the formation of H2 through the Langmuir-Hinshelwood mechanism are calculated. Molecular dynamics calculations of mean square displacements and average surface lifetimes of H2 on graphene at various temperatures indicate a diffusion barrier of 9.8 meV and a desorption barrier of 28.7 meV. Similar calculations for the diffusion of H2 in the interlayer space between the graphite sheets indicate high and low temperature regimes for the diffusion with barriers of 51.2 meV and 11.5 meV. Our results are compared with those of first principles.}, + number = {4}, + urldate = {2024-05-31}, + journal = {The Journal of Chemical Physics}, + author = {Petucci, Justin and LeBlond, Carl and Karimi, Majid and Vidali, Gianfranco}, + month = jul, + year = {2013}, + pages = {044706}, +} + +@article{shirasu_thermodynamic_1993, + title = {Thermodynamic analysis of hydrogen solubility in graphite}, + volume = {200}, + issn = {0022-3115}, + url = {https://www.sciencedirect.com/science/article/pii/002231159390332S}, + doi = {10.1016/0022-3115(93)90332-S}, + abstract = {The hydrogen solubility in isotropic graphites ISO 880U and EK 98 has been measured in the temperature range of 700–1000°C at pressures below 2 × 104Pa. The solubility data obtained closely obeyed Sieverts' law. The hydrogen solubility and the enthalpy of solution for ISO 880U and EK 98 graphites were compared with those for isotropic graphites IG 110U and POCO AXF-5Q. The hydrogen solubility in a highly oriented pyrolytic graphite PGCCL has also been measured at 1000°C. It was an order of magnitude lower than that in isotropic graphites. Partial thermodynamic functions of hydrogen in isotropic graphites were obtained by a dilute solution model and discussed.}, + number = {2}, + urldate = {2024-05-31}, + journal = {Journal of Nuclear Materials}, + author = {Shirasu, Yoshirou and Yamanaka, Shinsuke and Miyake, Masanobu}, + month = apr, + year = {1993}, + pages = {218--222}, +} + +@article{onaka_characteristic_2016, + title = {Characteristic of a {pdCu} membrane as atomic hydrogen probe for {QUEST}}, + volume = {9}, + issn = {2352-1791}, + url = {https://www.sciencedirect.com/science/article/pii/S235217911530048X}, + doi = {10.1016/j.nme.2016.09.001}, + abstract = {A permeation probe is a useful device for detecting the atomic hydrogen flux to plasma-facing walls. Recently, we developed a new type of probe using 60Pd-40Cu alloy (PdCu) as the permeation material. The deuterium behaviors in PdCu samples were investigated using nuclear reaction analysis (NRA) and permeation observations, and the diffusion coefficient and recombination coefficients were determined from these observations. It was found that the sensitivity of a 0.02-mm-thick probe was as high as 0.5 below 473K and was independent of the incident flux. The response time at 473K was 0.41s and 1.3s under an incident flux of 1020m−2s−1 and 1019m−2s−1, respectively. Thus, we concluded that the new PdCu probe can effectively detect the incident atomic hydrogen with high sensitivity and a suitable response time.}, + urldate = {2024-09-17}, + journal = {Nuclear Materials and Energy}, + author = {Onaka, Masayuki and Takagi, Ikuji and Kobayashi, Taishi and Sasaki, Takayuki and Kuzmin, Arseniy and Zushi, Hideki}, + month = dec, + year = {2016}, + keywords = {Diffusion, Hydrogen, Nuclear reaction analysis, Palladium alloy, Permeation, Plasma-wall interaction}, + pages = {104--108}, +} + +@article{fuerst_hastelloyn_2024, + title = {Hydrogen and deuterium permeation in Hastelloy N}, + journal = {Journal of Nuclear Materials}, + volume = {589}, + pages = {154851}, + year = {2024}, + issn = {0022-3115}, + doi = {https://doi.org/10.1016/j.jnucmat.2023.154851}, + url = {https://www.sciencedirect.com/science/article/pii/S0022311523006189}, + author = {Thomas F. Fuerst and Masashi Shimada and Hanns Gietl and Paul W. Humrickhouse}, + keywords = {Hydrogen, Tritium, Permeation, Hastelloy N, FLiBe}, + abstract = {Hastelloy N was chosen as the fluoride salt-contacting structural material for the Molten Salt Reactor Experiment due to its excellent compatibility with the fuel salt FLiBe. FLiBe is currently investigated for several advanced fusion and fission reactor concepts where tritium generation in the FLiBe is anticipated. Knowledge of hydrogen transport properties through Hastelloy N is important to understand how tritium would permeate through this material and result in an unintentional release. In this study, the hydrogen and deuterium permeability, diffusivity, and solubility were measured from 500 to 700 °C at a primary-side pressure of 10 kPa in a well-characterized sample of Hastelloy N. The prepared polycrystalline Hastelloy N had C and O impurities present on the surface. These impurities were investigated using Auger Emission Spectroscopy and Ar depth profiling. The adventitious C was removed upon the first Ar sputter cycle whereas O persisted deeper into the sample. For permeation experiments, applied deuterium pressures ranged from 13 Pa to 100 kPa and deuterium transport remained in the diffusion-limited regime (J ∝ P0.5) throughout the pressure range examined. Two methods are employed to measure the effective hydrogen and deuterium diffusivity: rise and decline. The decline method produced improved statistical model fits for calculating the effective diffusion coefficient compared to the rise method. The resultant transport properties compared well to published values for other nickel alloys.} +} + +@article{xu_bi-directional_2017, + title = {Bi-directional hydrogen isotopes permeation through a reduced activation ferritic steel {F82H}}, + volume = {125}, + issn = {0920-3796}, + url = {https://www.sciencedirect.com/science/article/pii/S0920379617304258}, + doi = {10.1016/j.fusengdes.2017.04.022}, + abstract = {The first wall of a magnetic fusion reactor serves to separate the edge plasma from breeding blankets, which will be subjected to bi-directional hydrogen isotopes permeation: in one direction by plasma-driven permeation, and in the other direction by gas-driven permeation. In this work, hydrogen isotopes transport through a reduced activation ferritic steel F82H has been investigated in the temperature range of 150–500°C. The transport parameters including permeability, diffusivity, solubility and surface recombination coefficient have been measured and the isotopic mass effect has been discussed. Bi-directional hydrogen isotopes gas- and plasma-driven permeation has been demonstrated for the first time under controlled experimental conditions.}, + urldate = {2024-06-05}, + journal = {Fusion Engineering and Design}, + author = {Xu, Yue and Hirooka, Yoshi and Nagasaka, Takuya}, + month = dec, + year = {2017}, + keywords = {F82H, First wall, Gas- and plasma-driven permeation, Isotopic effect, Transport parameters}, + pages = {343--348}, +} + +@article{causey_hydrogen_1978, + title = {Hydrogen {Diffusion} and {Solubility} in {Silicon} {Carbide}}, + volume = {61}, + issn = {1551-2916}, + url = {https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1151-2916.1978.tb09284.x}, + doi = {10.1111/j.1151-2916.1978.tb09284.x}, + abstract = {Tritium diffusion coefficients and deuterium solubilities were measured for silicon carbide. At 500° to 1300° C, measured tritium diffusion coefficients were much lower than the recorded values for metals, whereas the activation energies for diffusion were much higher (30 to 75 kcal/mol). The solubility of deuterium in silicon carbide decreased as temperature increased and exhibited a pressure dependence of ∼P1l2.}, + language = {en}, + number = {5-6}, + urldate = {2024-09-17}, + journal = {Journal of the American Ceramic Society}, + author = {Causey, R. A. and Fowler, J. D. and Ravanbakht, Camran and Elleman, T. S. and Verghese, Kuruvilla}, + year = {1978}, + note = {\_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1151-2916.1978.tb09284.x}, + pages = {221--225}, +} + +@techreport{wille_hydrogen_1981, + title = {Hydrogen in titanium alloys}, + url = {https://www.osti.gov/biblio/6420120}, + abstract = {The titanium alloys that offer properties worthy of consideration for fusion reactors are Ti-6Al-4V, Ti-6Al-2Sn-4Zr-2Mo-Si (Ti-6242S) and Ti-5Al-6Sn-2Zr-1Mo-Si (Ti-5621S). The Ti-6242S and Ti-5621S are being considered because of their high creep resistance at elevated temperatures of 500/sup 0/C. Also, irradiation tests on these alloys have shown irradiation creep properties comparable to 20\% cold worked 316 stainless steel. These alloys would be susceptible to slow strain rate embrittlement if sufficient hydrogen concentrations are obtained. Concentrations greater than 250 to 500 wppm hydrogen and temperatures lower than 100 to 150/sup 0/C are approximate threshold conditions for detrimental effects on tensile properties. Indications are that at the elevated temperature - low hydrogen pressure conditions of the reactors, there would be negligible hydrogen embrittlement.}, + language = {English}, + number = {DOE/ET/52039-2}, + institution = {McDonnell Douglas Astronautics Co., St. Louis, MO (USA)}, + author = {Wille, G. W. and Davis, J. W.}, + month = apr, + year = {1981}, + doi = {10.2172/6420120}, +} + +@article{zhou_thermal_2024, + title = {Thermal expansion, lattice vibration, and isotope effect on hydrogen diffusion in {BCC} {Fe}, {Cr}, and {W} from first-principles calculations}, + volume = {160}, + issn = {0021-9606}, + url = {https://doi.org/10.1063/5.0204192}, + doi = {10.1063/5.0204192}, + number = {18}, + urldate = {2024-10-09}, + journal = {The Journal of Chemical Physics}, + author = {Zhou, Ziling and Nie, Rui and Wang, Yu and Guo, Jingni and Xie, Feng and Cao, Jianzhu and Wen, Yanwei and Shan, Bin}, + month = may, + year = {2024}, + pages = {184703}, +} \ No newline at end of file diff --git a/tests/test_arhenius_property.py b/tests/test_arhenius_property.py index 7c219107..02d246ee 100644 --- a/tests/test_arhenius_property.py +++ b/tests/test_arhenius_property.py @@ -159,9 +159,7 @@ def test_no_units_preexp_raises_warning(): with pytest.warns( UserWarning, match="no units were given with pre-exponential factor" ): - htm.ArrheniusProperty( - 0.1, act_energy=0.1 * htm.ureg.eV * htm.ureg.particle**-1 - ) + htm.ArrheniusProperty(0.1, act_energy=0.1 * htm.ureg.eV * htm.ureg.particle**-1) def test_no_units_act_energy_raises_warning(): diff --git a/tests/test_system.py b/tests/test_system.py index 2921526f..38d4ab30 100644 --- a/tests/test_system.py +++ b/tests/test_system.py @@ -54,3 +54,9 @@ def test_all_diffusivities_have_reasonable_pre_exp(): for prop in htm.diffusivities: print(prop) assert abs(prop.pre_exp) < 100 * htm.ureg.m**2 * htm.ureg.s**-1 + + +def test_all_props_have_range(): + for prop in htm.database: + print(prop) + assert prop.range is not None