forked from JimmyHHua/opencv_tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
opencv_025.py
53 lines (36 loc) · 1.07 KB
/
opencv_025.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import cv2 as cv
import cv2 as cv
import numpy as np
def add_salt_pepper_noise(image):
h, w = image.shape[:2]
nums = 10000
rows = np.random.randint(0, h, nums, dtype=np.int)
cols = np.random.randint(0, w, nums, dtype=np.int)
for i in range(nums):
if i % 2 == 1:
image[rows[i], cols[i]] = (255, 255, 255)
else:
image[rows[i], cols[i]] = (0, 0, 0)
return image
def gaussian_noise(image):
noise = np.zeros(image.shape, image.dtype)
m = (15, 15, 15)
s = (30, 30, 30)
cv.randn(noise, m, s)
dst = cv.add(image, noise)
cv.imshow("gaussian noise", dst)
return dst
src = cv.imread("./test.png")
cv.imshow("input", src)
h, w = src.shape[:2]
src = gaussian_noise(src)
result1 = cv.blur(src, (5, 5))
cv.imshow("result-1", result1)
result2 = cv.GaussianBlur(src, (5, 5), 0)
cv.imshow("result-2", result2)
result3 = cv.medianBlur(src, 5)
cv.imshow("result-3", result3)
result4 = cv.fastNlMeansDenoisingColored(src, None, 15, 15, 10, 30)
cv.imshow("result-4", result4)
cv.waitKey(0)
cv.destroyAllWindows()