forked from SatisfiedPeanut/so-vits-svc-32k
-
Notifications
You must be signed in to change notification settings - Fork 0
/
flask_api.py
56 lines (46 loc) · 2.1 KB
/
flask_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import io
import logging
import soundfile
import torch
import torchaudio
from flask import Flask, request, send_file
from flask_cors import CORS
from inference.infer_tool import Svc, RealTimeVC
app = Flask(__name__)
CORS(app)
logging.getLogger('numba').setLevel(logging.WARNING)
@app.route("/voiceChangeModel", methods=["POST"])
def voice_change_model():
request_form = request.form
wave_file = request.files.get("sample", None)
# 变调信息
f_pitch_change = float(request_form.get("fPitchChange", 0))
# DAW所需的采样率
daw_sample = int(float(request_form.get("sampleRate", 0)))
speaker_id = int(float(request_form.get("sSpeakId", 0)))
# http获得wav文件并转换
input_wav_path = io.BytesIO(wave_file.read())
# 模型推理
if raw_infer:
out_audio, out_sr = svc_model.infer(speaker_id, f_pitch_change, input_wav_path)
tar_audio = torchaudio.functional.resample(out_audio, svc_model.target_sample, daw_sample)
else:
out_audio = svc.process(svc_model, speaker_id, f_pitch_change, input_wav_path)
tar_audio = torchaudio.functional.resample(torch.from_numpy(out_audio), svc_model.target_sample, daw_sample)
# 返回音频
out_wav_path = io.BytesIO()
soundfile.write(out_wav_path, tar_audio.cpu().numpy(), daw_sample, format="wav")
out_wav_path.seek(0)
return send_file(out_wav_path, download_name="temp.wav", as_attachment=True)
if __name__ == '__main__':
# 启用则为直接切片合成,False为交叉淡化方式
# vst插件调整0.3-0.5s切片时间可以降低延迟,直接切片方法会有连接处爆音、交叉淡化会有轻微重叠声音
# 自行选择能接受的方法,或将vst最大切片时间调整为1s,此处设为Ture,延迟大音质稳定一些
raw_infer = True
# 每个模型和config是唯一对应的
model_name = "logs/32k/G_174000-Copy1.pth"
config_name = "configs/config.json"
svc_model = Svc(model_name, config_name)
svc = RealTimeVC()
# 此处与vst插件对应,不建议更改
app.run(port=6842, host="0.0.0.0", debug=False, threaded=False)