-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
203 lines (171 loc) · 9.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# !/home/aredwann/anaconda3/envs/MSHViT3/bin/python
from argparse import ArgumentParser
from argparse import Namespace
import os
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
from core import backbones
from core import heads
from core import blocks
from core import dataloader
from core import transforms
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def load_model(model_path, args):
outputPath = args["results_output"]
use_ema = args["use_ema"]
filter_novit = args["filter_novit"]
if not os.path.isfile(model_path):
raise ValueError("The provided path is not a file: {}".format(model_path))
try:
print(model_path)
best_model = torch.load(model_path, map_location=device)
except Exception as e:
print(str(e))
return None
bargs = Namespace(**best_model["hyper_parameters_backbone"])
hargs = Namespace(**best_model["hyper_parameters_head"])
if bargs.backbone_model in backbones.VALID_BACKBONES:
backbone = backbones.get_backbone(backbone_model=bargs.backbone_model,
img_size=bargs.img_size,
return_stages=bargs.backbone_feature_maps,
pretrained_backbone=bargs.pretrained_backbone,
custom_pretrained_path="")
if hargs.head_model in heads.HEADS:
if hargs.head_model == "BaseHead":
head = heads.BaseHead(num_classes=hargs.num_classes,
backbone_feature_map_sizes=backbone.feature_map_sizes,
last_stage=backbone.last_stage,
global_pool=hargs.global_pool,
sigmoid_loss=hargs.sigmoid_loss,
tresnet_init=hargs.tresnet_init)
elif hargs.head_model == "MultiScaleViTHead":
tokenizer_kwargs = {"patch_size": hargs.patch_size,
"num_clusters": hargs.num_clusters,
"l2_normalize": hargs.l2_normalize,
"eps": hargs.sinkhorn_eps,
"iters": hargs.sinkhorn_iters}
transformer_block_kwargs = {"num_heads": hargs.num_heads,
"qkv_bias": hargs.qkv_bias,
"mlp_ratio": hargs.mlp_ratio,
"proj_drop": hargs.proj_drop,
"attn_drop": hargs.attn_drop}
cross_attention_kwargs = {"num_heads": hargs.cross_num_heads,
"qkv_bias": hargs.cross_qkv_bias,
"mlp_ratio": hargs.cross_mlp_ratio,
"proj_drop": hargs.cross_proj_drop,
"attn_drop": hargs.cross_attn_drop,
"block_drop": hargs.cross_block_drop}
if filter_novit and hargs.multiscale_method in ["CrossScale-Token", "CrossScale-CNN"]:
no_vit_layers = [m for m in hargs.backbone_feature_maps if m != "layer4"]
else:
no_vit_layers = hargs.no_vit_layers
head = heads.MultiScaleViTHead(num_classes=hargs.num_classes,
token_dim=hargs.token_dim,
representation_size=hargs.representation_size,
tokenizer_layer_name=hargs.tokenizer_layer,
block_type=blocks.__dict__[hargs.block_type],
block_drop=hargs.block_drop,
use_pos_embed=hargs.use_pos_embed,
pos_embed_drop=hargs.pos_embed_drop,
backbone_feature_map_sizes=backbone.feature_map_sizes,
backbone_feature_maps=hargs.backbone_feature_maps,
transformer_depths=hargs.transformer_depth,
sigmoid_loss=hargs.sigmoid_loss,
norm_layer=hargs.norm_layer,
act_layer=hargs.act_layer,
tokenizer_kwargs_base=tokenizer_kwargs,
transformer_block_kwargs_base=transformer_block_kwargs,
cross_attention_kwargs=cross_attention_kwargs,
cross_block_type=blocks.__dict__[hargs.cross_block_type],
shared_tower=hargs.shared_tower,
multiscale_method=hargs.multiscale_method,
late_fusion=hargs.late_fusion,
cross_scale_all=hargs.cross_scale_all,
no_vit_layers=no_vit_layers,
shared_tokenizer=hargs.shared_tokenizer,
tresnet_init=hargs.tresnet_init,
use_mean_token=hargs.use_mean_token)
else:
raise ValueError("Got head {}, but no such head is in this codebase".format(hargs.head_model))
else:
raise ValueError("Got head {}, but no such head is in this codebase".format(hargs.head_model))
model_version = args["model_version"]
if model_version == "":
model_version = os.path.splitext(os.path.basename(model_path))[0]
if use_ema:
model_version += "_EMA"
if filter_novit:
model_version += "_NOViT"
# Load best checkpoint
if use_ema:
print("EMA")
updated_backbone_state_dict = best_model["state_dict_backbone_ema"]
updated_head_state_dict = best_model["state_dict_head_ema"]
else:
print("NO EMA")
updated_backbone_state_dict = best_model["state_dict_backbone"]
updated_head_state_dict = best_model["state_dict_head"]
backbone.load_state_dict(updated_backbone_state_dict)
head.load_state_dict(updated_head_state_dict)
return backbone, head, bargs, hargs
def getTrainableModel(args):
opti_backbone, opti_head, _, _ = load_model(args["optical_model_path"], args)
rgb_backbone, rgb_head, bargs, hargs = load_model( args["baseline_model_path"], args)
train_transform = transforms.create_sewerml_eval_transformations(
{"img_size": bargs.img_size, "model_name": bargs.backbone_model})
train_dataloader, label_names = dataloader.get_joint_dataloader(args["dataset"], args["batch_size"],
args["workers"],args['ann_root'],
args["rgb_data_root"], args["opti_data_root"],
"Train", train_transform)
return {
'rgb_backbone': rgb_backbone,
'rgb_head': rgb_head,
'opti_backbone': opti_backbone,
'opti_head': opti_head,
'dataloader': train_dataloader,
'labels': label_names
}
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument('--conda_env', type=str, default='Pytorch-Lightning')
parser.add_argument('--notification_email', type=str, default='')
parser.add_argument('--ann_root', type=str, default='./annotations_sewerml')
parser.add_argument('--dataset', type=str, choices=["SewerML"], default="SewerML")
parser.add_argument('--rgb_data_root', type=str, default='')
parser.add_argument('--opti_data_root', type=str, default='')
parser.add_argument('--batch_size', type=int, default=512, help="Size of the batch per GPU")
parser.add_argument('--workers', type=int, default=4)
parser.add_argument("--baseline_model_path", type=str)
parser.add_argument("--optical_model_path", type=str)
parser.add_argument("--model_version", type=str, default="")
parser.add_argument("--results_output", type=str, default="")
parser.add_argument("--eval_val", action='store_true')
parser.add_argument("--eval_test", action='store_true')
parser.add_argument("--use_ema", action='store_true')
parser.add_argument("--filter_novit", action='store_true')
args = vars(parser.parse_args())
model = getTrainableModel(args)
rbg_backbone = model["rgb_backbone"].to(device)
rgb_head = model["rgb_head"].to(device)
opti_backbone = model["opti_backbone"].to(device)
opti_head = model["opti_head"].to(device)
criterion = torch.nn.BCEWithLogitsLoss()
act_func = nn.Sigmoid()
for i, (rbg_imgs, opti_imgs, targets, path) in enumerate(model["dataloader"]):
rbg_imgs = rbg_imgs.to(device)
opti_imgs = opti_imgs.to(device)
targets = targets.to(device)
rgb_feat_maps = rbg_backbone(rbg_imgs)
rgb_outputs = act_func(rgb_head(rgb_feat_maps, True, True))
opti_feat_maps = rbg_backbone(opti_imgs)
opti_outputs = act_func(rgb_head(opti_feat_maps, True, True))
rgbLoss = criterion(rgb_outputs, targets)
optLoss = criterion(opti_outputs, targets)
layer3_loss = criterion(rgb_feat_maps['layer3'], opti_feat_maps['layer3'])
layer4_loss = criterion(rgb_feat_maps['layer4'], opti_feat_maps['layer4'])
total_loss = rgbLoss + optLoss + layer3_loss + layer4_loss
print(total_loss)
if i > 4:
break