-
Notifications
You must be signed in to change notification settings - Fork 0
/
sav_frame_extraction_submitit.py
163 lines (142 loc) · 4.71 KB
/
sav_frame_extraction_submitit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
import argparse
import os
from pathlib import Path
import cv2
import numpy as np
import submitit
import tqdm
def get_args_parser():
parser = argparse.ArgumentParser(
description="[SA-V Preprocessing] Extracting JPEG frames",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
# ------------
# DATA
# ------------
data_parser = parser.add_argument_group(
title="SA-V dataset data root",
description="What data to load and how to process it.",
)
data_parser.add_argument(
"--sav-vid-dir",
type=str,
required=True,
help=("Where to find the SAV videos"),
)
data_parser.add_argument(
"--sav-frame-sample-rate",
type=int,
default=4,
help="Rate at which to sub-sample frames",
)
# ------------
# LAUNCH
# ------------
launch_parser = parser.add_argument_group(
title="Cluster launch settings",
description="Number of jobs and retry settings.",
)
launch_parser.add_argument(
"--n-jobs",
type=int,
required=True,
help="Shard the run over this many jobs.",
)
launch_parser.add_argument(
"--timeout", type=int, required=True, help="SLURM timeout parameter in minutes."
)
launch_parser.add_argument(
"--partition", type=str, required=True, help="Partition to launch on."
)
launch_parser.add_argument(
"--account", type=str, required=True, help="Partition to launch on."
)
launch_parser.add_argument("--qos", type=str, required=True, help="QOS.")
# ------------
# OUTPUT
# ------------
output_parser = parser.add_argument_group(
title="Setting for results output", description="Where and how to save results."
)
output_parser.add_argument(
"--output-dir",
type=str,
required=True,
help=("Where to dump the extracted jpeg frames"),
)
output_parser.add_argument(
"--slurm-output-root-dir",
type=str,
required=True,
help=("Where to save slurm outputs"),
)
return parser
def decode_video(video_path: str):
assert os.path.exists(video_path)
video = cv2.VideoCapture(video_path)
video_frames = []
while video.isOpened():
ret, frame = video.read()
if ret:
video_frames.append(frame)
else:
break
return video_frames
def extract_frames(video_path, sample_rate):
frames = decode_video(video_path)
return frames[::sample_rate]
def submitit_launch(video_paths, sample_rate, save_root):
for path in tqdm.tqdm(video_paths):
frames = extract_frames(path, sample_rate)
output_folder = os.path.join(save_root, Path(path).stem)
if not os.path.exists(output_folder):
os.makedirs(output_folder)
for fid, frame in enumerate(frames):
frame_path = os.path.join(output_folder, f"{fid*sample_rate:05d}.jpg")
cv2.imwrite(frame_path, frame)
print(f"Saved output to {save_root}")
if __name__ == "__main__":
parser = get_args_parser()
args = parser.parse_args()
sav_vid_dir = args.sav_vid_dir
save_root = args.output_dir
sample_rate = args.sav_frame_sample_rate
# List all SA-V videos
mp4_files = sorted([str(p) for p in Path(sav_vid_dir).glob("*/*.mp4")])
mp4_files = np.array(mp4_files)
chunked_mp4_files = [x.tolist() for x in np.array_split(mp4_files, args.n_jobs)]
print(f"Processing videos in: {sav_vid_dir}")
print(f"Processing {len(mp4_files)} files")
print(f"Beginning processing in {args.n_jobs} processes")
# Submitit params
jobs_dir = os.path.join(args.slurm_output_root_dir, "%j")
cpus_per_task = 4
executor = submitit.AutoExecutor(folder=jobs_dir)
executor.update_parameters(
timeout_min=args.timeout,
gpus_per_node=0,
tasks_per_node=1,
slurm_array_parallelism=args.n_jobs,
cpus_per_task=cpus_per_task,
slurm_partition=args.partition,
slurm_account=args.account,
slurm_qos=args.qos,
)
executor.update_parameters(slurm_srun_args=["-vv", "--cpu-bind", "none"])
# Launch
jobs = []
with executor.batch():
for _, mp4_chunk in tqdm.tqdm(enumerate(chunked_mp4_files)):
job = executor.submit(
submitit_launch,
video_paths=mp4_chunk,
sample_rate=sample_rate,
save_root=save_root,
)
jobs.append(job)
for j in jobs:
print(f"Slurm JobID: {j.job_id}")
print(f"Saving outputs to {save_root}")
print(f"Slurm outputs at {args.slurm_output_root_dir}")