-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdemo_t2i.py
68 lines (55 loc) · 2.36 KB
/
demo_t2i.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import torch
import argparse
import os
import datetime
from diffusers import FluxPipeline
from lib_layerdiffuse.vae import TransparentVAE
from PIL import Image
import numpy as np
def generate_img(pipe, trans_vae, args):
latents = pipe(
prompt=args.prompt,
height=args.height,
width=args.width,
num_inference_steps=args.steps,
output_type="latent",
generator=torch.Generator("cuda").manual_seed(args.seed),
guidance_scale=args.guidance,
).images
latents = pipe._unpack_latents(latents, args.height, args.width, pipe.vae_scale_factor)
latents = (latents / pipe.vae.config.scaling_factor) + pipe.vae.config.shift_factor
with torch.no_grad():
original_x, x = trans_vae.decode(latents)
x = x.clamp(0, 1)
x = x.permute(0, 2, 3, 1)
img = Image.fromarray((x*255).float().cpu().numpy().astype(np.uint8)[0])
return img
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--ckpt_path", type=str, required=True)
parser.add_argument("--trans_vae", type=str, default="./models/TransparentVAE.pth")
parser.add_argument("--output_dir", type=str, default="./flux-layer-outputs")
parser.add_argument("--dtype", type=str, default="bfloat16", help="base dtype")
parser.add_argument("--seed", type=int, default=11111)
parser.add_argument("--steps", type=int, default=50)
parser.add_argument("--guidance", type=float, default=3.5)
parser.add_argument("--prompt", type=str, default="glass bottle, high quality")
parser.add_argument(
"--lora_weights",
type=str,
default="./models/layerlora.safetensors",
)
parser.add_argument("--width", type=int, default=1024)
parser.add_argument("--height", type=int, default=1024)
args = parser.parse_args()
pipe = FluxPipeline.from_pretrained(args.ckpt_path, torch_dtype=torch.bfloat16).to('cuda')
pipe.load_lora_weights(args.lora_weights)
trans_vae = TransparentVAE(pipe.vae, pipe.vae.dtype)
trans_vae.load_state_dict(torch.load(args.trans_vae), strict=False)
trans_vae.to('cuda')
print("all loaded")
img = generate_img(pipe, trans_vae, args)
# save image
os.makedirs(args.output_dir, exist_ok=True)
output_path = os.path.join(args.output_dir, f"{datetime.datetime.now().strftime('%Y%m%d_%H%M%S')}.png")
img.save(output_path)