-
Notifications
You must be signed in to change notification settings - Fork 36
/
eval_fps.py
53 lines (40 loc) · 1.69 KB
/
eval_fps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import time
import torch
import torch.backends.cudnn as cudnn
from argparse import ArgumentParser
from builders.model_builder import build_model
def compute_speed(model, input_size, device, iteration=100):
torch.cuda.set_device(device)
cudnn.benchmark = True
model.eval()
model = model.cuda()
input = torch.randn(*input_size, device=device)
for _ in range(50):
model(input)
print('=========Speed Testing=========')
torch.cuda.synchronize()
torch.cuda.synchronize()
t_start = time.time()
for _ in range(iteration):
model(input)
torch.cuda.synchronize()
torch.cuda.synchronize()
elapsed_time = time.time() - t_start
speed_time = elapsed_time / iteration * 1000
fps = iteration / elapsed_time
print('Elapsed Time: [%.2f s / %d iter]' % (elapsed_time, iteration))
print('Speed Time: %.2f ms / iter FPS: %.2f' % (speed_time, fps))
return speed_time, fps
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument("size", type=str, default="512,1024", help="input size of model")
parser.add_argument('--num-channels', type=int, default=3)
parser.add_argument('--batch-size', type=int, default=1)
parser.add_argument('--classes', type=int, default=19)
parser.add_argument('--iter', type=int, default=100)
parser.add_argument('--model', type=str, default='DABNet')
parser.add_argument("--gpus", type=str, default="0", help="gpu ids (default: 0)")
args = parser.parse_args()
h, w = map(int, args.size.split(','))
model = build_model(args.model, num_classes=args.classes)
compute_speed(model, (args.batch_size, args.num_channels, h, w), int(args.gpus), iteration=args.iter)