diff --git a/kb07.qmd b/kb07.qmd index be31a95..8fa9e14 100644 --- a/kb07.qmd +++ b/kb07.qmd @@ -10,7 +10,6 @@ Begin by loading the packages to be used. #| output: false using AlgebraOfGraphics using CairoMakie -using DataFrameMacros using DataFrames using MixedModels using ProgressMeter @@ -19,7 +18,6 @@ using SMLP2023: dataset CairoMakie.activate!(; type="svg") -import ProgressMeter ProgressMeter.ijulia_behavior(:clear) ``` @@ -108,8 +106,7 @@ The pseudo-random number generator is initialized to a fixed value for reproduci ```{julia} Random.seed!(1234321) -hide_progress = true -kbm02samp = parametricbootstrap(2000, kbm02; hide_progress) +kbm02samp = parametricbootstrap(2000, kbm02) kbm02tbl = kbm02samp.tbl ``` diff --git a/kkl15.qmd b/kkl15.qmd index 2aeb0d9..1ae9e3a 100644 --- a/kkl15.qmd +++ b/kkl15.qmd @@ -38,6 +38,7 @@ Here we provide some of the corresponding analyses with _MixedModels.jl_ and a m #| output: false using Arrow using AlgebraOfGraphics +using AlgebraOfGraphics: density using CairoMakie using CategoricalArrays using Chain @@ -45,14 +46,11 @@ using DataFrameMacros using DataFrames using MixedModels using MixedModelsMakie -using MixedModelsMakie: qqnorm +using ProgressMeter using Random using SMLP2023: dataset using StatsBase -using AlgebraOfGraphics: density - -import ProgressMeter ProgressMeter.ijulia_behavior(:clear) CairoMakie.activate!(; type="svg") ``` @@ -432,7 +430,7 @@ Interesting. Here we - generate a bootstrap sample - - compute shortest covergage intervals for the LMM parameters + - compute shortest coverage intervals for the LMM parameters - plot densities of bootstrapped parameter estimates for residual, fixed effects, variance components, and correlation parameters ## Generate a bootstrap sample @@ -487,6 +485,7 @@ The shortest coverage interval for the `GM` ranges from 376 to 404 ms and the as #| code-fold: true #| label: fig-betadensitym1 #| fig-cap: ' Kernel density estimate from bootstrap samples of the fixed effects for model m1L' +#= rn = renamer([ "(Intercept)" => "GM", "CTR: sod" => "spatial effect", @@ -499,6 +498,7 @@ rn = renamer([ "CTR: sod, CTR: dod" => "spatial, attraction", "CTR: dos, CTR: dod" => "object, attraction", ]) +=# draw( data(tbl) * mapping( diff --git a/kwdyz11.qmd b/kwdyz11.qmd index 2fa66cb..9739993 100644 --- a/kwdyz11.qmd +++ b/kwdyz11.qmd @@ -1,5 +1,5 @@ --- -title: "RePsychLing Kliegl et al. (2010)" +title: "RePsychLing Kliegl et al. (2011)" jupyter: julia-1.9 author: "Reinhold Kliegl" --- @@ -284,7 +284,7 @@ We generate 2500 samples for the 15 model parameters (4 fixed effect, 4 VCs, 6 C ```{julia} #| code-fold: true Random.seed!(1234321) -samp = parametricbootstrap(2500, m1; hide_progress=true) +samp = parametricbootstrap(2500, m1) tbl = samp.tbl ``` diff --git a/sleepstudy.qmd b/sleepstudy.qmd index d2e652f..07e8ef7 100644 --- a/sleepstudy.qmd +++ b/sleepstudy.qmd @@ -216,7 +216,7 @@ Simulating and fitting a substantial number of model fits, 5000 in this case, ta ```{julia} rng = Random.seed!(42) # initialize a random number generator -m1bstp = parametricbootstrap(rng, 5000, m1; hide_progress=true) +m1bstp = parametricbootstrap(rng, 5000, m1) tbl = m1bstp.tbl ```