diff --git a/.nojekyll b/.nojekyll index fe5bcfc..5c9d692 100644 --- a/.nojekyll +++ b/.nojekyll @@ -1 +1 @@ -7a9553af \ No newline at end of file +0affd5d1 \ No newline at end of file diff --git a/AoGPlots.html b/AoGPlots.html index d256958..1f684f0 100644 --- a/AoGPlots.html +++ b/AoGPlots.html @@ -7,7 +7,7 @@ - + SMLP2023: Advanced Frequentist Track - Creating multi-panel plots + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + +
+ +
+ + +
+ + + +
+ +
+
+

RePsychLing Kliegl et al. (2010)

+
+ + + +
+ +
+
Author
+
+

Reinhold Kliegl

+
+
+ +
+
Published
+
+

2023-09-11

+
+
+ + +
+ + +
+ +
+

1 Background

+

We take the kwdyz11 dataset (Kliegl et al., 2011) from an experiment looking at three effects of visual cueing under four different cue-target relations (CTRs). Two horizontal rectangles are displayed above and below a central fixation point or they displayed in vertical orientation to the left and right of the fixation point. Subjects react to the onset of a small visual target occuring at one of the four ends of the two rectangles. The target is cued validly on 70% of trials by a brief flash of the corner of the rectangle at which it appears; it is cued invalidly at the three other locations 10% of the trials each.

+

We specify three contrasts for the four-level factor CTR that are derived from spatial, object-based, and attractor-like features of attention. They map onto sequential differences between appropriately ordered factor levels. At the level of fixed effects, there is the noteworthy result, that the attraction effect was estimated at 2 ms, that is clearly not significant. Nevertheless, there was a highly reliable variance component (VC) estimated for this effect. Moreover, the reliable individual differences in the attraction effect were negatively correlated with those in the spatial effect.

+

Unfortunately, a few years after the publication, we determined that the reported LMM is actually singular and that the singularity is linked to a theoretically critical correlation parameter (CP) between the spatial effect and the attraction effect. Fortunately, there is also a larger dataset kkl15 from a replication and extension of this study (Kliegl et al., 2015), analyzed with kkl15.jl notebook. The critical CP (along with other fixed effects and CPs) was replicated in this study.

+

A more comprehensive analysis was reported in the parsimonious mixed-model paper (Bates et al., 2015). Data and R scripts are also available in R-package RePsychLing. In this and the complementary kkl15.jl scripts, we provide some corresponding analyses with MixedModels.jl.

+
+
+

2 Packages

+
+
+Code +
using AlgebraOfGraphics
+using AlgebraOfGraphics: density
+using CairoMakie
+using CategoricalArrays
+using Chain
+using DataFrames
+using DataFrameMacros
+using Distributions
+using MixedModels
+using MixedModelsMakie
+using Random
+using SMLP2023: dataset
+using StatsBase
+
+CairoMakie.activate!(; type="svg")
+
+import ProgressMeter
+ProgressMeter.ijulia_behavior(:clear)
+
+
+
+
+

3 Read data, compute and plot densities and means

+
+
dat = DataFrame(dataset(:kwdyz11))
+describe(dat)
+
+
5×7 DataFrame
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Rowvariablemeanminmedianmaxnmissingeltype
SymbolUnion…AnyUnion…AnyInt64DataType
1ItemI002I6030String
2SubjS01S610String
3CTRdodval0String
4dirhorver0String
5rt370.426150.1358.6705.70Float32
+
+
+
+

We recommend to code the levels/units of random factor / grouping variable not as a number, but as a string starting with a letter and of the same length for all levels/units.

+

We also recommend to sort levels of factors into a meaningful order, that is overwrite the default alphabetic ordering. This is also a good place to choose alternative names for variables in the context of the present analysis.

+

The LMM analysis is based on log-transformed reaction times lrt, indicated by a boxcox() check of model residuals. With the exception of diagnostic plots of model residuals, the analysis of untransformed reaction times did not lead to different results and exhibited the same problems of model identification (see Kliegl et al., 2011).

+

Comparative density plots of all response times by cue-target relation, Figure 1, show the times for valid cues to be faster than for the other conditions.

+
+
+Code +
draw(
+  data(dat) *
+  mapping(
+    :rt => log => "log(Reaction time [ms])";
+    color=:CTR =>
+      renamer("val" => "valid cue", "sod" => "some obj/diff pos", "dos" => "diff obj/same pos", "dod" => "diff obj/diff pos") => "Cue-target relation",
+  ) *
+  density(),
+)
+
+
+
+
+

+
Figure 1: Comparative density plots of log reaction time for different cue-target relations.
+
+
+
+
+

An alternative visualization without overlap of the conditions can be accomplished with ridge plots.

+

To be done

+

For the next set of plots we average subjects’ data within the four experimental conditions. This table could be used as input for a repeated-measures ANOVA.

+
+
dat_subj = combine(
+  groupby(dat, [:Subj, :CTR]),
+  :rt => length => :n,
+  :rt => mean => :rt_m,
+  :rt => (r -> mean(log, r)) => :lrt_m,
+)
+dat_subj.CTR = categorical(dat_subj.CTR, levels=levels(dat.CTR))
+dat_subj
+
+
244×5 DataFrame
219 rows omitted
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
RowSubjCTRnrt_mlrt_m
StringCat…Int64Float32Float32
1S01val330413.3326.01272
2S01sod48437.7216.0682
3S01dos47443.3666.08269
4S01dod45434.3166.06079
5S02val333365.8995.87511
6S02sod47396.1495.95916
7S02dos46439.4876.06949
8S02dod48441.0426.06883
9S03val336371.4465.90489
10S03sod46446.8546.09464
11S03dos48471.3026.14287
12S03dod47476.5326.15706
13S04val336403.1815.99124
233S59val330313.0325.72433
234S59sod46304.8525.70367
235S59dos48342.6125.80927
236S59dod47308.1915.71206
237S60val330372.8355.90832
238S60sod48382.0875.93183
239S60dos44395.1095.96918
240S60dod47387.6895.95208
241S61val320312.3745.72542
242S61sod45383.0025.92798
243S61dos45357.9985.85563
244S61dod46391.0875.95344
+
+
+
+
+
+Code +
boxplot(
+  dat_subj.CTR.refs,
+  dat_subj.lrt_m;
+  orientation=:horizontal,
+  show_notch=true,
+  axis=(;
+    yticks=(
+      1:4,
+      [
+        "valid cue",
+        "same obj/diff pos",
+        "diff obj/same pos",
+        "diff obj/diff pos",
+      ],
+    ),
+  ),
+  figure=(; resolution=(800, 300)),
+)
+
+
+
+
+

+
Figure 2: Comparative boxplots of log response time by cue-target relation.
+
+
+
+
+

Mean of log reaction times for four cue-target relations. Targets appeared at (a) the cued position (valid) in a rectangle, (b) in the same rectangle cue, but at its other end, (c) on the second rectangle, but at a corresponding horizontal/vertical physical distance, or (d) at the other end of the second rectangle, that is \(\sqrt{2}\) of horizontal/vertical distance diagonally across from the cue, that is also at larger physical distance compared to (c).

+

A better alternative to the boxplot is a dotplot. It also displays subjects’ condition means.

+

To be done

+
+
+

4 Linear mixed model

+
+
contrasts = Dict(
+  :CTR => SeqDiffCoding(; levels=["val", "sod", "dos", "dod"]),
+  :Subj => Grouping(),
+)
+m1 = let
+  form = @formula(log(rt) ~ 1 + CTR + (1 + CTR | Subj))
+  fit(MixedModel, form, dat; contrasts)
+end
+
+
Minimizing 242   Time: 0:00:00 ( 1.17 ms/it)
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Est.SEzpσ_Subj
(Intercept)5.93580.0185320.53<1e-990.1441
CTR: sod0.08780.008410.48<1e-240.0582
CTR: dos0.03660.00625.92<1e-080.0274
CTR: dod-0.00860.0060-1.430.15150.0249
Residual0.1920
+
+
+
+
VarCorr(m1)
+
+ +++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
ColumnVarianceStd.DevCorr.
Subj(Intercept)0.02076540.1441021
CTR: sod0.00338490.0581795+0.48
CTR: dos0.00075290.0274399-0.24-0.15
CTR: dod0.00062200.0249409+0.30+0.93-0.43
Residual0.03685430.1919748
+
+
+
+
issingular(m1)
+
+
true
+
+
+

LMM m1 is not fully supported by the data; it is overparameterized. This is also visible in the PCA: only three, not four PCS are needed to account for all the variance and covariance in the random-effect structure. The problem is the +.93 CP for spatial sod and attraction dod effects.

+
+
first(MixedModels.PCA(m1))
+
+

+Principal components based on correlation matrix
+ (Intercept)   1.0     .      .      .
+ CTR: sod      0.48   1.0     .      .
+ CTR: dos     -0.24  -0.15   1.0     .
+ CTR: dod      0.3    0.93  -0.43   1.0
+
+Normalized cumulative variances:
+[0.5886, 0.8095, 1.0, 1.0]
+
+Component loadings
+                PC1   PC2    PC3    PC4
+ (Intercept)  -0.4   0.04   0.9    0.17
+ CTR: sod     -0.6   0.4   -0.16  -0.68
+ CTR: dos      0.33  0.91   0.06   0.23
+ CTR: dod     -0.61  0.08  -0.41   0.68
+
+
+
+
+

5 Diagnostic plots of LMM residuals

+

Do model residuals meet LMM assumptions? Classic plots are

+
    +
  • Residual over fitted
  • +
  • Quantiles of model residuals over theoretical quantiles of normal distribution
  • +
+
+

5.1 Residual-over-fitted plot

+

The slant in residuals show a lower and upper boundary of reaction times, that is we have have too few short and too few long residuals. Not ideal, but at least width of the residual band looks similar across the fitted values, that is there is no evidence for heteroskedasticity.

+
+
+Code +
CairoMakie.activate!(; type="png")
+set_aog_theme!()
+draw(
+  data((; f=fitted(m1), r=residuals(m1))) *
+  mapping(:f => "Fitted values", :r => "Residual from model m1") *
+  visual(Scatter);
+)
+
+
+
+
+

+
Figure 3: Residuals versus the fitted values for model m1 of the log response time.
+
+
+
+
+

With many observations the scatterplot is not that informative. Contour plots or heatmaps may be an alternative.

+
+
+Code +
CairoMakie.activate!(; type="png")
+draw(
+  data((; f=fitted(m1), r=residuals(m1))) *
+  mapping(
+    :f => "Fitted log response time", :r => "Residual from model m1"
+  ) *
+  density();
+)
+
+
+
+
+

+
Figure 4: Heatmap of residuals versus fitted values for model m1
+
+
+
+
+
+
+

5.2 Q-Q plot

+

The plot of quantiles of model residuals over corresponding quantiles of the normal distribution should yield a straight line along the main diagonal.

+
+
qqnorm(residuals(m1); qqline=:none)
+
+

+
+
+
+
+

5.3 Observed and theoretical normal distribution

+

The violation of expectation is again due to the fact that the distribution of residuals is much narrower than expected from a normal distribution, as shown in Figure 5. Overall, it does not look too bad.

+
+
+Code +
let
+  n = nrow(dat)
+  dat_rz = DataFrame(;
+    value=vcat(residuals(m1) ./ std(residuals(m1)), randn(n)),
+    curve=vcat(fill.("residual", n), fill.("normal", n)),
+  )
+  draw(
+    data(dat_rz) *
+    mapping(:value => "Standardized residuals"; color=:curve) *
+    density(; bandwidth=0.1);
+  )
+end
+
+
+
+
+

+
Figure 5: Kernel density plot of the standardized residuals from model m1 compared to a Gaussian
+
+
+
+
+
+
+
+

6 Conditional modes

+

Now we move on to visualizations that are based on model parameters and subjects’ data, that is “predictions” of the LMM for subject’s GM and experimental effects. Three important plots are

+
    +
  • Overlay
  • +
  • Caterpillar
  • +
  • Shrinkage
  • +
+
+

6.1 Overlay

+

The first plot overlays shrinkage-corrected conditional modes of the random effects with within-subject-based and pooled GMs and experimental effects.

+

To be done

+
+
+

6.2 Caterpillar plot

+

The caterpillar plot, Figure 6, also reveals the high correlation between spatial sod and attraction dod effects.

+
+
+Code +
caterpillar!(
+  Figure(; resolution=(800, 1000)), ranefinfo(m1, :Subj); orderby=2
+)
+
+
+
+
+

+
Figure 6: Prediction intervals on the random effects for Subj in model m1
+
+
+
+
+
+
+

6.3 Shrinkage plot

+

Figure 7 provides more evidence for a problem with the visualization of the spatial sod and attraction dod CP. The corresponding panel illustrates an implosion of conditional modes.

+
+
+Code +
shrinkageplot!(Figure(; resolution=(1000, 1000)), m1)
+
+
+
+
+

+
Figure 7: Shrinkage plot of the conditional means of the random effects for model m1
+
+
+
+
+
+
+
+

7 Parametric bootstrap

+

Here we

+
    +
  • generate a bootstrap sample
  • +
  • compute shortest covergage intervals for the LMM parameters
  • +
  • plot densities of bootstrapped parameter estimates for residual, fixed effects, variance components, and correlation parameters
  • +
+
+

7.1 Generate a bootstrap sample

+

We generate 2500 samples for the 15 model parameters (4 fixed effect, 4 VCs, 6 CPs, and 1 residual).

+
+
+Code +
Random.seed!(1234321)
+samp = parametricbootstrap(2500, m1; hide_progress=true)
+tbl = samp.tbl
+
+
+
Table with 26 columns and 2500 rows:
+      obj       β1       β2         β3         β4            σ         ⋯
+    ┌───────────────────────────────────────────────────────────────────
+ 1  │ -12802.3  5.93392  0.0864217  0.0488883  -0.0121833    0.192002  ⋯
+ 2  │ -12794.3  5.95776  0.0989839  0.0318746  -0.00666147   0.191977  ⋯
+ 3  │ -12930.6  5.93669  0.0885609  0.0209792  -0.000657475  0.191496  ⋯
+ 4  │ -12946.5  5.93165  0.0767127  0.0343559  -0.00499478   0.191438  ⋯
+ 5  │ -12677.5  5.91938  0.0984593  0.0272951  -0.00555746   0.19247   ⋯
+ 6  │ -12869.7  5.96313  0.104457   0.0321632  -0.00719273   0.191751  ⋯
+ 7  │ -12478.1  5.9328   0.0947866  0.0409707  -0.00461589   0.193076  ⋯
+ 8  │ -12463.7  5.94439  0.0977165  0.0321098  -0.00625459   0.193115  ⋯
+ 9  │ -12836.2  5.9728   0.097135   0.0416619  6.11913e-5    0.191843  ⋯
+ 10 │ -12932.3  5.94709  0.0742452  0.0505274  -0.013146     0.191583  ⋯
+ 11 │ -12736.2  5.93625  0.0728171  0.0479427  -0.0183158    0.192193  ⋯
+ 12 │ -13048.0  5.89421  0.0680602  0.0481655  -0.0214151    0.191101  ⋯
+ 13 │ -13313.8  5.92608  0.0892319  0.0473893  -0.014168     0.190142  ⋯
+ 14 │ -12575.0  5.89235  0.0846171  0.0341531  -0.00613035   0.192728  ⋯
+ 15 │ -12833.1  5.94217  0.0774874  0.0422344  -0.00278949   0.191772  ⋯
+ 16 │ -12504.5  5.94385  0.0898019  0.0429787  -0.00705642   0.192833  ⋯
+ 17 │ -12875.5  5.96624  0.0976097  0.0370807  -0.00071883   0.191576  ⋯
+ 18 │ -13287.4  5.97493  0.101651   0.0407504  -0.0163219    0.190317  ⋯
+ 19 │ -13088.2  5.95426  0.101522   0.0342395  0.00229663    0.190991  ⋯
+ 20 │ -12820.6  5.92995  0.0775967  0.0394345  -0.0112548    0.191861  ⋯
+ 21 │ -12634.4  5.92989  0.0836736  0.0357487  -0.00206017   0.192456  ⋯
+ 22 │ -13097.6  5.92438  0.0888691  0.0332515  -0.00701295   0.191018  ⋯
+ 23 │ -12837.4  5.90782  0.0861053  0.0385012  -0.00752605   0.191891  ⋯
+ ⋮  │    ⋮         ⋮         ⋮          ⋮           ⋮           ⋮      ⋱
+
+
+
+
+

7.2 Shortest coverage interval

+

The upper limit of the interval for the critical CP CTR: sod, CTR: dod is hitting the upper wall of a perfect correlation. This is evidence of singularity. The other intervals do not exhibit such pathologies; they appear to be ok.

+
+
+Code +
confint(samp)
+
+
+
DictTable with 2 columns and 15 rows:
+ par   lower       upper
+ ────┬───────────────────────
+ β1  │ 5.89917     5.97256
+ β2  │ 0.0719307   0.104588
+ β3  │ 0.025118    0.0491669
+ β4  │ -0.020718   0.00268306
+ ρ1  │ 0.243767    0.713091
+ ρ2  │ -0.919031   0.246975
+ ρ3  │ -0.643615   0.569417
+ ρ4  │ -0.138124   0.739276
+ ρ5  │ 0.576496    0.999995
+ ρ6  │ -0.894652   0.436061
+ σ   │ 0.19051     0.19359
+ σ1  │ 0.116564    0.16857
+ σ2  │ 0.045519    0.0708047
+ σ3  │ 0.00940216  0.0410695
+ σ4  │ 0.0133062   0.037595
+
+
+
+
+

7.3 Comparative density plots of bootstrapped parameter estimates

+
+
+

7.4 Residual

+
+
+Code +
draw(
+  data(tbl) *
+  mapping(:σ => "Residual standard deviation") *
+  density();
+)
+
+
+
+
+

+
Figure 8: ?(caption)
+
+
+
+
+
+
+

7.5 Fixed effects (w/o GM)

+

The shortest coverage interval for the GM ranges from 376 to 404 ms. To keep the plot range small we do not inlcude its density here.

+
+
+Code +
labels = [
+  "CTR: sod" => "spatial effect",
+  "CTR: dos" => "object effect",
+  "CTR: dod" => "attraction effect",
+  "(Intercept)" => "grand mean",
+]
+draw(
+  data(tbl) *
+  mapping(
+    [:β2, :β3, :β4] .=> "Experimental effect size [ms]";
+    color=dims(1) => renamer(["spatial", "object", "attraction"] .* " effect") =>
+    "Experimental effects",
+  ) *
+  density();
+)
+
+
+
+
+

+
Figure 9: Comparative density plots of the fixed-effects parameters for model m1
+
+
+
+
+

The densitiies correspond nicely with the shortest coverage intervals.

+
+
+

7.6 Variance components (VCs)

+
+
+Code +
draw(
+  data(tbl) *
+  mapping(
+    [:σ1, :σ2, :σ3, :σ4] .=> "Standard deviations [ms]";
+    color=dims(1) => 
+    renamer(append!(["Grand mean"],["spatial", "object", "attraction"] .* " effect")) =>
+    "Variance components",
+  ) *
+  density();
+)
+
+
+
+
+

+
Figure 10: Comparative density plots of the variance components for model m1
+
+
+
+
+

The VC are all very nicely defined.

+
+
+

7.7 Correlation parameters (CPs)

+
+
+Code +
let
+  labels = [
+    "(Intercept), CTR: sod" => "GM, spatial",
+    "(Intercept), CTR: dos" => "GM, object",
+    "CTR: sod, CTR: dos" => "spatial, object",
+    "(Intercept), CTR: dod" => "GM, attraction",
+    "CTR: sod, CTR: dod" => "spatial, attraction",
+    "CTR: dos, CTR: dod" => "object, attraction",
+  ]
+  draw(
+    data(tbl) *
+    mapping(
+      [:ρ1, :ρ2, :ρ3, :ρ4, :ρ5, :ρ6] .=> "Correlation";
+      color=dims(1) => renamer(last.(labels)) => "Correlation parameters",
+    ) *
+    density();
+  )
+end
+
+
+
+
+

+
Figure 11: Comparative density plots of the correlation parameters for model m1
+
+
+
+
+

Two of the CPs stand out positively. First, the correlation between GM and the spatial effect is well defined. Second, as discussed throughout this script, the CP between spatial and attraction effect is close to the 1.0 border and clearly not well defined. Therefore, this CP will be replicated with a larger sample in script kkl15.jl (Kliegl et al., 2015).

+
+
+
+

8 References

+
+
+Bates, D., Kliegl, R., Vasishth, S., & Baayen, H. (2015). Parsimonious mixed models. arXiv. https://doi.org/10.48550/ARXIV.1506.04967 +
+
+Kliegl, R., Kushela, J., & Laubrock, J. (2015). Object orientation and target size modulate the speed of visual attention. Department of Psychology, University of Potsdam. +
+
+Kliegl, R., Wei, P., Dambacher, M., Yan, M., & Zhou, X. (2011). Experimental effects and individual differences in linear mixed models: Estimating the relationship between spatial, object, and attraction effects in visual attention. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2010.00238 +
+
+ + +
+ + Back to top
+ + +
+ + + + \ No newline at end of file diff --git a/kwdyz11_files/figure-html/cell-13-output-1.png b/kwdyz11_files/figure-html/cell-13-output-1.png new file mode 100644 index 0000000..2fc7370 Binary files /dev/null and b/kwdyz11_files/figure-html/cell-13-output-1.png differ diff --git a/kwdyz11_files/figure-html/fig-comparativedensity-output-1.svg b/kwdyz11_files/figure-html/fig-comparativedensity-output-1.svg new file mode 100644 index 0000000..0c3e9fa --- /dev/null +++ b/kwdyz11_files/figure-html/fig-comparativedensity-output-1.svg @@ -0,0 +1,788 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/kwdyz11_files/figure-html/fig-logrtboxplots-output-1.svg b/kwdyz11_files/figure-html/fig-logrtboxplots-output-1.svg new file mode 100644 index 0000000..cfa244d --- /dev/null +++ b/kwdyz11_files/figure-html/fig-logrtboxplots-output-1.svg @@ -0,0 +1,9 @@ + + + + + + + + + diff --git a/kwdyz11_files/figure-html/fig-m1caterpillar-output-1.png b/kwdyz11_files/figure-html/fig-m1caterpillar-output-1.png new file mode 100644 index 0000000..6517bd7 Binary files /dev/null and b/kwdyz11_files/figure-html/fig-m1caterpillar-output-1.png differ diff --git a/kwdyz11_files/figure-html/fig-m1corrdens-output-1.png b/kwdyz11_files/figure-html/fig-m1corrdens-output-1.png new file mode 100644 index 0000000..8c18774 Binary files /dev/null and b/kwdyz11_files/figure-html/fig-m1corrdens-output-1.png differ diff --git a/kwdyz11_files/figure-html/fig-m1fixedeffdens-output-1.png b/kwdyz11_files/figure-html/fig-m1fixedeffdens-output-1.png new file mode 100644 index 0000000..09c50e5 Binary files /dev/null and b/kwdyz11_files/figure-html/fig-m1fixedeffdens-output-1.png differ diff --git a/kwdyz11_files/figure-html/fig-m1shrinkage-output-1.png b/kwdyz11_files/figure-html/fig-m1shrinkage-output-1.png new file mode 100644 index 0000000..3f74737 Binary files /dev/null and b/kwdyz11_files/figure-html/fig-m1shrinkage-output-1.png differ diff --git a/kwdyz11_files/figure-html/fig-m1varcompdens-output-1.png b/kwdyz11_files/figure-html/fig-m1varcompdens-output-1.png new file mode 100644 index 0000000..071c7ae Binary files /dev/null and b/kwdyz11_files/figure-html/fig-m1varcompdens-output-1.png differ diff --git a/kwdyz11_files/figure-html/fig-residstddevdens-output-1.png b/kwdyz11_files/figure-html/fig-residstddevdens-output-1.png new file mode 100644 index 0000000..0582392 Binary files /dev/null and b/kwdyz11_files/figure-html/fig-residstddevdens-output-1.png differ diff --git a/kwdyz11_files/figure-html/fig-resvsfittedhm-output-1.png b/kwdyz11_files/figure-html/fig-resvsfittedhm-output-1.png new file mode 100644 index 0000000..9c90c08 Binary files /dev/null and b/kwdyz11_files/figure-html/fig-resvsfittedhm-output-1.png differ diff --git a/kwdyz11_files/figure-html/fig-resvsfittedm1-output-1.png b/kwdyz11_files/figure-html/fig-resvsfittedm1-output-1.png new file mode 100644 index 0000000..b085477 Binary files /dev/null and b/kwdyz11_files/figure-html/fig-resvsfittedm1-output-1.png differ diff --git a/kwdyz11_files/figure-html/fig-standresdens-output-1.png b/kwdyz11_files/figure-html/fig-standresdens-output-1.png new file mode 100644 index 0000000..c8637f5 Binary files /dev/null and b/kwdyz11_files/figure-html/fig-standresdens-output-1.png differ diff --git a/largescaledesigned.html b/largescaledesigned.html index 33dc644..27c4335 100644 --- a/largescaledesigned.html +++ b/largescaledesigned.html @@ -7,7 +7,7 @@ - + SMLP2023: Advanced Frequentist Track – largescaledesigned