-
Notifications
You must be signed in to change notification settings - Fork 0
/
PhysRevE.48.3003_harmonicSpectra.nb
6259 lines (6215 loc) · 344 KB
/
PhysRevE.48.3003_harmonicSpectra.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.3' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 351953, 6251]
NotebookOptionsPosition[ 349086, 6203]
NotebookOutlinePosition[ 349478, 6219]
CellTagsIndexPosition[ 349435, 6216]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[TextData[Cell[BoxData["lpw"], \
"Input",ExpressionUUID->"493d8429-4acc-495b-9096-35aa4274a0f9"]], "Program",
CellChangeTimes->{{3.7640780635818777`*^9, 3.764078089108975*^9}, {
3.76408156992472*^9, 3.764081707171649*^9}, 3.76415138745918*^9, {
3.764498596278722*^9, 3.76449861090027*^9}, {3.7644986410296707`*^9,
3.764498645324382*^9}, {3.7647452390464983`*^9, 3.764745239412262*^9}},
TextAlignment->Center,ExpressionUUID->"5a6eee03-3c75-45aa-a3cd-fe058b47428b"],
Cell[BoxData[
RowBox[{"(*", " ",
RowBox[{
RowBox[{"Mathematica", " ", "notebook", " ", "for", " ", "spectra", " ",
RowBox[{
RowBox[{"(",
RowBox[{"to", " ", "compare", " ", "with", " ", "simulation"}], ")"}],
".", " ",
RowBox[{
RowBox[{"Following", " ", "[", "Esarey", "]"}], "'"}]}], "s", " ",
"paper", " ", "in", " ", "sections", " ",
RowBox[{"A", ".", " ", "and"}], " ",
RowBox[{"B", ".", " ", "analysis"}], " ", "of", " ", "harmonics", " ",
"spectra", " ", "requires", " ", "spectra", " ", "\"\<boris.txt\>\"", " ",
"from", " ", "a", " ", "test"}], "-",
RowBox[{"particle", " ", "or", " ", "particle"}], "-", "in", "-",
RowBox[{"cell", " ",
RowBox[{"simulation", ".", "\[IndentingNewLine]", "\n", " ",
RowBox[{"date", " ", ":", " ",
RowBox[{
RowBox[{
RowBox[{"05", "/", "04"}], "/", "2019"}], "\n", " ", "author"}], ":",
" ",
RowBox[{"\[CapitalOAcute]scar", " ",
RowBox[{"L", ".", " ", "Amaro"}]}]}]}]}]}], "\n", "*)"}]], "Input",
CellChangeTimes->{{3.7647444957846947`*^9, 3.7647445549551992`*^9}, {
3.7647448231199512`*^9, 3.764744828224166*^9}, {3.764745247454199*^9,
3.764745330216889*^9}, 3.764822704792781*^9, {3.7648255204020863`*^9,
3.7648255521188107`*^9}, {3.764826078827771*^9, 3.7648261536326427`*^9}, {
3.7648262120456533`*^9, 3.764826241421043*^9}, {3.764826314766369*^9,
3.764826315723675*^9}, {3.764826354565612*^9, 3.764826365388934*^9}, {
3.764826397009675*^9, 3.764826424394577*^9}, 3.905051955108457*^9, {
3.9050522680165462`*^9,
3.9050523002128057`*^9}},ExpressionUUID->"1c951cda-4412-41c3-a69b-\
b9ba2d923b34"],
Cell[TextData[Cell[BoxData["Intro"], \
"Input",ExpressionUUID->"64cc5500-e7f2-4a37-94b8-382022459941"]], "Program",
CellChangeTimes->{{3.7640780635818777`*^9, 3.764078089108975*^9}, {
3.76408156992472*^9, 3.764081707171649*^9}, 3.76415138745918*^9, {
3.764498596278722*^9, 3.76449861090027*^9}, {3.7644986410296707`*^9,
3.764498645324382*^9}, {3.7647452390464983`*^9, 3.764745239412262*^9}, {
3.764826257249837*^9, 3.764826259674676*^9}, {3.764826319938456*^9,
3.76482632581855*^9}, {3.764826439192133*^9, 3.764826447786743*^9}},
TextAlignment->Center,ExpressionUUID->"b4b9d869-7bc4-4ed6-95fe-5bf096705f51"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", "Parameters", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Gamma]0", "=", "5"}], ";"}], " ",
RowBox[{"(*",
RowBox[{"p", ".", " ", "48"}], "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"a0", "=", "1"}], ";"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Beta]0", "=",
RowBox[{"\[Sqrt]",
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"1", "/",
RowBox[{"\[Gamma]0", "^", "2"}]}]}], ")"}]}]}], ";"}], " ",
RowBox[{"(*", "normalizations", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Omega]0", "=", "2"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"k0", "=", "\[Omega]0"}], ";"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"h0", "=",
RowBox[{"\[Gamma]0",
RowBox[{"(",
RowBox[{"1", "+", "\[Beta]0"}], ")"}]}]}], ";"}], " ",
RowBox[{"(*", " ",
RowBox[{
RowBox[{"p", ".3006", " ",
RowBox[{"(",
RowBox[{"8", "c"}], ")"}], " ", "se", " ", "se", " ", "excluir", " ",
"\[CapitalPhi]"}], "..."}], "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"M0", "=",
RowBox[{
RowBox[{"h0", "^", "2"}], "/",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{
RowBox[{"a0", "^", "2"}], "/", "2"}]}], ")"}]}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Eta]0", "=", "100"}], ";"}],
RowBox[{"(*",
RowBox[{"controls", " ", "fineness", " ", "of", " ", "spectrum"}], "*)"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Beta]1", "=",
RowBox[{
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"1", "/", "M0"}]}], ")"}], "/", "2"}]}], ";"}], " ",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"r1", "=",
RowBox[{"a0", " ", "/", " ",
RowBox[{"(",
RowBox[{"h0", " ", "k0"}], ")"}]}]}], ";"}], " ",
RowBox[{"(*",
RowBox[{
RowBox[{"p", ".", " ", "3006"}], " ",
RowBox[{"(",
RowBox[{"16", "a"}], ")"}]}], "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"z1", "=",
RowBox[{
RowBox[{"-",
RowBox[{"a0", "^", "2"}]}], " ", "/", " ",
RowBox[{"(",
RowBox[{"8", " ",
RowBox[{"h0", "^", "2"}], " ", "k0"}], ")"}]}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Beta]1", "=",
RowBox[{
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"1", "/", "M0"}]}], ")"}], "/", "2"}]}], ";"}], " ",
RowBox[{"(*",
RowBox[{"p", ".3006", " ", "16", "c"}], "*)"}], "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{"Functions", " ",
RowBox[{"p", ".", " ", "3008"}]}], "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"kbar", "=",
RowBox[{"Function", "[",
RowBox[{
RowBox[{"{",
RowBox[{"\[Omega]", ",", "\[Theta]", ",", "n"}], "}"}], ",",
RowBox[{
RowBox[{"\[Omega]",
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"\[Beta]1",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"Cos", "[", "\[Theta]", "]"}]}], ")"}]}]}], ")"}]}],
"-",
RowBox[{"n", " ", "k0"}]}]}], "]"}]}], ";"}],
RowBox[{"(*",
RowBox[{"(",
RowBox[{"30", "a"}], ")"}], "*)"}]}]}]], "Input",
CellChangeTimes->{{3.7536905855839653`*^9, 3.753690787270957*^9}, {
3.753690817430944*^9, 3.75369096228474*^9}, 3.753694906818179*^9, {
3.753694966256955*^9, 3.753694989618894*^9}, {3.753695232695981*^9,
3.753695303494424*^9}, {3.753695455638207*^9, 3.753695471843848*^9}, {
3.7536955795762463`*^9, 3.753695582681411*^9}, {3.753695805593775*^9,
3.7536958118119297`*^9}, {3.753695878995522*^9, 3.753695925233326*^9}, {
3.753696082501068*^9, 3.7536960838217688`*^9}, {3.7536963631152887`*^9,
3.753696363940866*^9}, {3.753696395075132*^9, 3.753696407067807*^9}, {
3.753696517867182*^9, 3.753696533197448*^9}, {3.75369656338376*^9,
3.7536967043754377`*^9}, {3.7536968584659843`*^9,
3.7536968684586477`*^9}, {3.753696900938775*^9, 3.753696938700098*^9}, {
3.7536984152105417`*^9, 3.75369842207489*^9}, {3.753698456445661*^9,
3.7536985243591127`*^9}, {3.753699945158051*^9, 3.7536999496787786`*^9}, {
3.753701028456545*^9, 3.753701029873457*^9}, {3.753701244800157*^9,
3.7537012452056837`*^9}, {3.7537013818732147`*^9, 3.753701408916193*^9}, {
3.753701531090201*^9, 3.75370153517883*^9}, {3.753705565001195*^9,
3.753705608366562*^9}, {3.753705652664287*^9, 3.753705653730752*^9}, {
3.753705728619876*^9, 3.753705754405567*^9}, {3.7537058309106617`*^9,
3.753705831600072*^9}, {3.753710801694512*^9, 3.7537108023989983`*^9}, {
3.753711534496048*^9, 3.7537115359977913`*^9}, {3.754366576263587*^9,
3.7543665938387403`*^9}, {3.7543666608428173`*^9, 3.754366663003798*^9}, {
3.7543672129849977`*^9, 3.754367213590941*^9}, {3.754367248879443*^9,
3.75436724942197*^9}, {3.75436756990453*^9, 3.754367570878841*^9}, {
3.754367681959778*^9, 3.754367690772616*^9}, {3.7543697523360033`*^9,
3.754369773042781*^9}, {3.760683850164773*^9, 3.760683850320958*^9}, {
3.760683928010008*^9, 3.760683928762051*^9}, {3.7606839653832903`*^9,
3.760683965614834*^9}, {3.760684902817384*^9, 3.760684951090733*^9}, {
3.760685022453944*^9, 3.760685031552848*^9}, {3.760685416525407*^9,
3.760685440934691*^9}, {3.760692521982603*^9, 3.760692547143729*^9}, {
3.760692662521639*^9, 3.760692690770762*^9}, {3.760692784738044*^9,
3.76069282240182*^9}, {3.760692886823936*^9, 3.760692896980763*^9}, {
3.760693687581532*^9, 3.760693696376046*^9}, {3.760694388757288*^9,
3.7606943985009317`*^9}, {3.760694464870634*^9, 3.760694465348387*^9},
3.760695597407361*^9, 3.760695631757278*^9, {3.760722352705626*^9,
3.760722368023844*^9}, 3.760722411980528*^9, 3.7607224872306337`*^9, {
3.760722592709141*^9, 3.7607226113345013`*^9}, {3.760722658046433*^9,
3.760722659056528*^9}, {3.760722754604981*^9, 3.760722756617943*^9}, {
3.760722834717507*^9, 3.760722860577835*^9}, {3.760723212506509*^9,
3.7607232126220903`*^9}, {3.760987156006109*^9, 3.760987197585478*^9},
3.760987229095717*^9, {3.760987609870041*^9, 3.7609876100778217`*^9}, {
3.760987863857911*^9, 3.7609878809432087`*^9}, {3.761040265018772*^9,
3.761040265055683*^9}, {3.7610418644554453`*^9, 3.761041865324314*^9}, {
3.76310008920677*^9, 3.763100116606319*^9}, 3.763112429064394*^9, {
3.763112471435095*^9, 3.763112476201044*^9}, {3.7631125216311903`*^9,
3.763112525342539*^9}, {3.7631125603669558`*^9, 3.76311256873834*^9}, {
3.763112614050837*^9, 3.763112615152329*^9}, 3.7631131671797047`*^9, {
3.763370541801485*^9, 3.7633705419303093`*^9}, {3.7633711732988234`*^9,
3.763371174194728*^9}, {3.763372573737506*^9, 3.763372574385729*^9},
3.76337307220277*^9, {3.763373500515881*^9, 3.763373503359136*^9},
3.763373708658736*^9, {3.763379740009241*^9, 3.76337977097073*^9}, {
3.7634050172260942`*^9, 3.763405017451829*^9}, {3.76340531939412*^9,
3.763405334146462*^9}, 3.763405518515663*^9, 3.763406038998969*^9, {
3.763406465538396*^9, 3.76340646576996*^9}},
CellLabel->
"In[207]:=",ExpressionUUID->"bbafb5ad-4447-4822-9607-2dc23d8204a7"],
Cell[TextData[Cell[BoxData[
RowBox[{
RowBox[{"A", ".", " ", "Linear"}], " ", "polarization", " ",
RowBox[{
"p", ".", " ",
"3007"}]}]], \
"Input",ExpressionUUID->"955d6770-502f-4b68-aa17-f2c823c5ccaa"]], "Program",
CellChangeTimes->{{3.7640780635818777`*^9, 3.764078089108975*^9}, {
3.76408156992472*^9, 3.764081707171649*^9}, 3.76415138745918*^9, {
3.764498596278722*^9, 3.76449861090027*^9}, {3.7644986410296707`*^9,
3.764498645324382*^9}, {3.7647452390464983`*^9, 3.764745239412262*^9}, {
3.764826257249837*^9, 3.764826259674676*^9}, {3.764826319938456*^9,
3.76482632581855*^9}},
TextAlignment->Center,ExpressionUUID->"0311cc04-868e-4851-b91f-0d7a3d2452a5"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", "alpha", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Alpha]z", "=",
RowBox[{"Function", "[",
RowBox[{
RowBox[{"{",
RowBox[{"\[Theta]", ",", "\[Phi]", ",", "n"}], "}"}], ",",
FractionBox[
RowBox[{"n", " ",
RowBox[{"a0", "^", "2"}], " ",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"Cos", "[", "\[Theta]", "]"}]}], ")"}]}],
RowBox[{"8", " ",
RowBox[{"h0", "^", "2"}], " ",
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"\[Beta]1", " ",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"Cos", "[", "\[Theta]", "]"}]}], ")"}]}]}], ")"}]}]]}],
"]"}]}], ";"}],
RowBox[{"(*",
RowBox[{"(",
RowBox[{"38", "a"}], ")"}], "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Alpha]x", "=",
RowBox[{"Function", "[",
RowBox[{
RowBox[{"{",
RowBox[{"\[Theta]", ",", "\[Phi]", ",", "n"}], "}"}], ",",
FractionBox[
RowBox[{"n", " ", "a0", " ",
RowBox[{"Sin", "[", "\[Theta]", "]"}],
RowBox[{"Cos", "[", "0", "]"}]}],
RowBox[{"h0", " ",
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"\[Beta]1",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"Cos", "[", "\[Theta]", "]"}]}], ")"}]}]}], ")"}]}]]}],
"]"}]}], ";"}],
RowBox[{"(*",
RowBox[{"(",
RowBox[{"38", "b"}], ")"}], "*)"}], "\[IndentingNewLine]",
RowBox[{"(*", "C", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"sumlim", "=", "20"}], ";"}], " ",
RowBox[{"(*",
RowBox[{
"parameter", " ", "that", " ", "controls", " ", "the", " ", "sum"}],
"*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Cx", "=",
RowBox[{"Function", "[",
RowBox[{
RowBox[{"{",
RowBox[{"\[Theta]", ",", "\[Phi]", ",", "n"}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{"k0", " ", "r1", " ",
RowBox[{"Sum", "[",
RowBox[{
RowBox[{"N", "[", " ",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"-", "1"}], ")"}], "^", "m"}], " ",
RowBox[{"BesselJ", "[",
RowBox[{"m", ",",
RowBox[{"\[Alpha]z", "[",
RowBox[{"\[Theta]", ",", "0", ",", "n"}], "]"}]}], "]"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"BesselJ", "[",
RowBox[{
RowBox[{"n", "-",
RowBox[{"2", " ", "m"}], "-", "1"}], ",",
RowBox[{"\[Alpha]x", "[",
RowBox[{"\[Theta]", ",", "0", ",", "n"}], "]"}]}], "]"}],
"+",
RowBox[{"BesselJ", "[",
RowBox[{
RowBox[{"n", "-",
RowBox[{"2", " ", "m"}], " ", "+", "1"}], ",",
RowBox[{"\[Alpha]x", "[",
RowBox[{"\[Theta]", ",", "0", ",", "n"}], "]"}]}], "]"}]}],
")"}]}], " ", "]"}], ",", "\[IndentingNewLine]",
RowBox[{"{",
RowBox[{"m", ",",
RowBox[{"-", "sumlim"}], ",", "sumlim"}], "}"}]}], "]"}]}]}],
"]"}]}], ";"}],
RowBox[{"(*",
RowBox[{"(",
RowBox[{"37", "a"}], ")"}], "*)"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"Cz", "=",
RowBox[{"Function", "[",
RowBox[{
RowBox[{"{",
RowBox[{"\[Theta]", ",", "\[Phi]", ",", "n"}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{"2", " ",
RowBox[{"Sum", "[",
RowBox[{
RowBox[{"N", "[", " ",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"-", "1"}], ")"}], "^", "m"}], " ",
RowBox[{"BesselJ", "[",
RowBox[{"m", ",",
RowBox[{"\[Alpha]z", "[",
RowBox[{"\[Theta]", ",", "0", ",", "n"}], "]"}]}], "]"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"\[Beta]1", "*",
RowBox[{"BesselJ", "[",
RowBox[{
RowBox[{"n", "-",
RowBox[{"2", " ", "m"}]}], ",",
RowBox[{"\[Alpha]x", "[",
RowBox[{"\[Theta]", ",", "0", ",", "n"}], "]"}]}], "]"}]}],
" ", "+",
RowBox[{"k0", " ", "z1", " ",
RowBox[{"(", "\[IndentingNewLine]",
RowBox[{
RowBox[{"BesselJ", "[",
RowBox[{
RowBox[{"n", "-",
RowBox[{"2", " ", "m"}], " ", "-", "2"}], ",",
RowBox[{"\[Alpha]x", "[",
RowBox[{"\[Theta]", ",", "0", ",", "n"}], "]"}]}], "]"}],
"+",
RowBox[{"BesselJ", "[",
RowBox[{
RowBox[{"n", "-",
RowBox[{"2", " ", "m"}], " ", "+", "2"}], ",",
RowBox[{"\[Alpha]x", "[",
RowBox[{"\[Theta]", ",", "0", ",", "n"}], "]"}]}],
"]"}]}], " ", ")"}]}]}], ")"}]}], " ", "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{"m", ",",
RowBox[{"-", "sumlim"}], ",", "sumlim"}], "}"}]}], "]"}]}]}],
"]"}]}], " ", ";"}],
RowBox[{"(*",
RowBox[{"(",
RowBox[{"37", "b"}], ")"}], "*)"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{"(*", "main", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"dId\[Omega]d\[CapitalOmega]", "=",
RowBox[{"Function", "[",
RowBox[{
RowBox[{"{",
RowBox[{"\[Omega]", ",", "\[Theta]", ",", "\[Phi]"}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{
FractionBox[
RowBox[{"\[Omega]", "^", "2"}],
RowBox[{"4", " ",
RowBox[{"\[Pi]", "^", "2"}]}]], " ",
RowBox[{"Sum", "[", " ",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"(",
FractionBox[
RowBox[{"Sin", "[",
RowBox[{
RowBox[{"kbar", "[",
RowBox[{"\[Omega]", ",", "\[Theta]", ",", "n"}], "]"}], " ",
"\[Eta]0"}], " ", "]"}],
RowBox[{
RowBox[{"kbar", "[",
RowBox[{"\[Omega]", ",", "\[Theta]", ",", "n"}], "]"}], " ",
"\[Eta]0"}]], ")"}], "^", "2"}],
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"Cx", "[",
RowBox[{"\[Theta]", ",", "0", ",", "n"}], "]"}], "^", "2"}],
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{
RowBox[{
RowBox[{"Sin", "[", "\[Theta]", "]"}], "^", "2"}], " ",
RowBox[{
RowBox[{"Cos", "[", "\[Phi]", "]"}], "^", "2"}]}]}],
")"}]}], "+",
RowBox[{
RowBox[{
RowBox[{"Cz", "[",
RowBox[{"\[Theta]", ",", "0", ",", "n"}], "]"}], "^", "2"}],
" ",
RowBox[{
RowBox[{"Sin", "[", "\[Theta]", "]"}], "^", "2"}]}], " ", "-",
" ",
RowBox[{
RowBox[{"Cx", "[",
RowBox[{"\[Theta]", ",", "0", ",", "n"}], "]"}], " ",
RowBox[{"Cz", "[",
RowBox[{"\[Theta]", ",", "0", ",", "n"}], "]"}], " ",
RowBox[{"Sin", "[",
RowBox[{"2", "\[Theta]"}], "]"}],
RowBox[{"Cos", "[", "\[Phi]", "]"}]}]}], ")"}]}], " ",
"\[IndentingNewLine]", ",",
RowBox[{"{",
RowBox[{"n", ",", "1", ",", "40"}], "}"}]}], "]"}]}]}], "]"}]}],
";"}], " ",
RowBox[{"(*",
RowBox[{"(", "36"}], "*)"}]}]}]], "Input",
CellChangeTimes->{
3.7537020930294447`*^9, {3.75370276606323*^9, 3.753702766425446*^9}, {
3.753704781722062*^9, 3.753704826939706*^9}, {3.753711554072678*^9,
3.753711569783506*^9}, {3.754366441469441*^9, 3.754366448504468*^9}, {
3.754366914393955*^9, 3.754366915148451*^9}, {3.754367303998708*^9,
3.75436732550447*^9}, {3.754367383715711*^9, 3.7543674097393417`*^9}, {
3.754367485056857*^9, 3.754367485717461*^9}, {3.754367519235557*^9,
3.754367542542398*^9}, {3.75436759272651*^9, 3.754367593738241*^9}, {
3.754367737425948*^9, 3.754367764427085*^9}, {3.7606925636480913`*^9,
3.760692564086472*^9}, {3.760692937394315*^9, 3.7606929447196608`*^9}, {
3.7606937008656893`*^9, 3.760693731704239*^9}, {3.760694144588503*^9,
3.760694145374948*^9}, {3.760694196685248*^9, 3.760694199670746*^9}, {
3.760699349326782*^9, 3.760699386983325*^9}, {3.760699502263088*^9,
3.760699533047653*^9}, {3.760722388182993*^9, 3.760722442624526*^9}, {
3.760722510629517*^9, 3.760722535547924*^9}, {3.760722621239688*^9,
3.7607226223719063`*^9}, {3.7607226863328257`*^9, 3.760722730931189*^9}, {
3.760722762470251*^9, 3.7607227864634123`*^9}, {3.760722872623415*^9,
3.760722891484198*^9}, {3.7609838062536583`*^9, 3.760983814397358*^9}, {
3.7609839241934*^9, 3.760983924973171*^9}, {3.760984015814679*^9,
3.760984022898198*^9}, {3.7609841010057898`*^9, 3.760984101653664*^9}, {
3.760984135358283*^9, 3.7609841366663733`*^9}, {3.7609844348444242`*^9,
3.760984434995344*^9}, 3.760984679579715*^9, {3.760987205836084*^9,
3.760987216635573*^9}, {3.760987628393879*^9, 3.760987649325243*^9}, {
3.760987692609663*^9, 3.7609876930166407`*^9}, {3.7609878849838877`*^9,
3.760987943925087*^9}, {3.761040285438321*^9, 3.7610403009596863`*^9}, {
3.761040391574368*^9, 3.761040431452594*^9}, {3.761040606653331*^9,
3.7610406534825573`*^9}, {3.761040729301985*^9, 3.76104074376335*^9}, {
3.761040782967945*^9, 3.761040783968691*^9}, {3.761040964540897*^9,
3.7610409805701647`*^9}, {3.7625007972696457`*^9,
3.7625007983788013`*^9}, {3.763100131263543*^9, 3.7631001442615347`*^9}, {
3.7631124983906393`*^9, 3.763112501103137*^9}, {3.763112587176146*^9,
3.763112610799239*^9}, {3.763112783672179*^9, 3.76311279096047*^9}, {
3.76311307287796*^9, 3.763113089993455*^9}, {3.763113811095962*^9,
3.763113811623831*^9}, {3.7631142948139343`*^9, 3.76311429628751*^9}, {
3.7631143479769077`*^9, 3.76311435464684*^9}, {3.763225823354658*^9,
3.763225824025505*^9}, {3.7632259210270844`*^9, 3.763225921248489*^9},
3.763368359267521*^9, {3.763368418269858*^9, 3.763368493434705*^9}, {
3.763368539531188*^9, 3.763368572523231*^9}, {3.763372619682304*^9,
3.763372619847289*^9}, {3.763372766876732*^9, 3.7633727730032787`*^9}, {
3.7633728647280293`*^9, 3.763372865215047*^9}, {3.7633730581443987`*^9,
3.76337307954908*^9}, {3.76337402496898*^9, 3.763374028009055*^9}, {
3.76337793310223*^9, 3.76337793585003*^9}, {3.763378031388301*^9,
3.763378031514997*^9}, {3.7633783844554462`*^9, 3.763378387991757*^9}, {
3.763405014424008*^9,
3.763405015410303*^9}},ExpressionUUID->"47a58d10-4c87-4a2d-a02e-\
871ab99c5b33"],
Cell[BoxData[
RowBox[{
RowBox[{"(*",
RowBox[{"plot", " ", "against", " ", "simulation"}], "*)"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"wmax", "=", "5"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"lst", "=",
RowBox[{"ParallelTable", "[",
RowBox[{
RowBox[{"{",
RowBox[{"y", ",",
RowBox[{
RowBox[{"dId\[Omega]d\[CapitalOmega]", "[",
RowBox[{
RowBox[{"4", " ",
RowBox[{"\[Gamma]0", "^", "2"}], " ", "\[Omega]0", " ", "y"}],
",",
RowBox[{"N", "[",
RowBox[{"\[Pi]", "/", "10"}], "]"}], ",", "0"}], "]"}], "/.",
RowBox[{"\[Omega]", "\[Rule]",
RowBox[{"(", " ",
RowBox[{"4", " ",
RowBox[{"\[Gamma]0", "^", "2"}], " ", "\[Omega]0", " ", "y"}],
")"}]}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"y", ",", "0.01", ",", "wmax", ",",
FractionBox["wmax", "2000"]}], "}"}]}], "]"}]}], ";"}]}]}]], "Input",\
CellChangeTimes->{{3.7633683646275*^9, 3.763368383822706*^9}, {
3.763368513245038*^9, 3.763368518777773*^9}, {3.7633685758263073`*^9,
3.763368577064871*^9}, {3.7633686390278053`*^9, 3.763368640529746*^9}, {
3.763368723275291*^9, 3.763368725074335*^9}, {3.763368789161368*^9,
3.7633687896172447`*^9}, {3.7633711850042143`*^9, 3.76337119326416*^9}, {
3.7633712593455477`*^9, 3.7633712596895943`*^9}, 3.763373082123101*^9, {
3.7633734250737553`*^9, 3.763373445586947*^9}, {3.7633734930830803`*^9,
3.763373496162889*^9}, {3.763373561950862*^9, 3.763373571472316*^9}, {
3.763378026316064*^9, 3.763378026967019*^9}, {3.763378237714085*^9,
3.763378238133629*^9}, {3.763378377336957*^9, 3.763378377713636*^9}, {
3.7633789168947983`*^9, 3.7633789175804996`*^9}, {3.763379753322319*^9,
3.7633797587752857`*^9}, {3.763380655357333*^9, 3.7633806632352867`*^9}},
CellLabel->
"In[464]:=",ExpressionUUID->"b1612b15-92a1-4d63-a4b4-0b222481ac80"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"Max", "[",
RowBox[{"lst", "[",
RowBox[{"[",
RowBox[{"All", ",", "2"}], "]"}], "]"}], "]"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"lst", "[",
RowBox[{"[",
RowBox[{"All", ",", "2"}], "]"}], "]"}], "/=",
RowBox[{"Max", "[",
RowBox[{"lst", "[",
RowBox[{"[",
RowBox[{"All", ",", "2"}], "]"}], "]"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"grp1", "=",
RowBox[{"ListPlot", "[",
RowBox[{"lst", ",",
RowBox[{"AspectRatio", "\[Rule]", "1"}], ",",
RowBox[{"Joined", "->", "True"}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
"\"\<\!\(\*FractionBox[\(\[Omega]\), \(4\\\ \
\*SuperscriptBox[SubscriptBox[\(\[Gamma]\), \(0\)], \(2\)]\\\ \
\[InvisiblePrefixScriptBase]\(\*SubscriptBox[\(\[Omega]\), \(0\)]\)\)]\)\>\"",
",", "\"\<\!\(\*FractionBox[\(\*SuperscriptBox[\(d\), \(2\)] I\), \
\(d\[Omega]d\[CapitalOmega]\)]\)\>\""}], "}"}]}], ",",
RowBox[{"PlotLabel", "\[Rule]",
RowBox[{"Text", "[",
RowBox[{"Style", "[",
RowBox[{
RowBox[{"\"\<\[Delta]=1, \!\(\*SubscriptBox[\(a\), \(L\)]\)=\>\"", "<>",
RowBox[{"ToString", "[", "a0", "]"}], " ", "<>",
"\"\<, \!\(\*SubscriptBox[\(\[Omega]\), \(L\)]\)=1, \
\!\(\*SubscriptBox[\(\[Gamma]\), \(0\)]\)=5, \[Theta]=\[Pi]/10, \
\[Phi]=0\>\""}], ",", "30", ",", "Bold"}], "]"}], "]"}]}], ",",
RowBox[{"FrameStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Bold", ",",
RowBox[{"FontSize", "\[Rule]", "30"}]}], "]"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Black", ",",
RowBox[{"Opacity", "[", "1", "]"}]}], "]"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "600"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "5"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "1"}], "}"}]}], "}"}]}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"Show", "[",
RowBox[{"{",
RowBox[{"grp1", ",",
RowBox[{"Graphics", "[",
RowBox[{"{",
RowBox[{"Text", "[",
RowBox[{
RowBox[{"Style", "[",
RowBox[{
RowBox[{"Style", "[",
RowBox[{
"\"\<\!\(\*SubscriptBox[\(\[Eta]\), \(0\)]\) = 100\>\"", ",",
RowBox[{"Darker", "[", "Gray", "]"}]}], "]"}], " ", ",",
RowBox[{"FontSize", "\[Rule]", "30"}], ",", "Bold"}], "]"}], ",",
RowBox[{"{",
RowBox[{"3.5", ",", "0.6"}], "}"}]}], "]"}], "}"}], "]"}]}], "}"}],
"]"}], "\[IndentingNewLine]"}], "Input",
CellChangeTimes->{{3.7609846830090446`*^9, 3.760984691384404*^9}, {
3.760984829373097*^9, 3.760984854051365*^9}, {3.760984895571424*^9,
3.760984901989724*^9}, {3.760985063317781*^9, 3.760985075992734*^9}, {
3.7610403106428747`*^9, 3.761040322792493*^9}, {3.761040440419127*^9,
3.7610404486197367`*^9}, {3.761041139128702*^9, 3.7610411401840773`*^9}, {
3.762500801433021*^9, 3.762500801716831*^9}, {3.762500927579371*^9,
3.762500953928001*^9}, {3.762501009510819*^9, 3.762501128905739*^9}, {
3.763100238149921*^9, 3.763100253186685*^9}, {3.7631004082471533`*^9,
3.763100413838017*^9}, {3.763100503300262*^9, 3.76310051071159*^9}, {
3.7631005689813957`*^9, 3.76310062336971*^9}, {3.763112962221931*^9,
3.763112962428752*^9}, {3.763113429330504*^9, 3.763113478454677*^9}, {
3.76311421213656*^9, 3.763114212489654*^9}, {3.763114341473317*^9,
3.7631143423865833`*^9}, 3.763114404380814*^9, {3.7632259407584667`*^9,
3.7632259409907084`*^9}, {3.763368613131133*^9, 3.763368619585164*^9}, {
3.763368728752742*^9, 3.76336873059198*^9}, {3.763368771923593*^9,
3.7633687720664988`*^9}, {3.763371248958714*^9, 3.763371257197402*^9}, {
3.7633730889954042`*^9, 3.7633730906407347`*^9}, {3.763373528289978*^9,
3.7633735553737783`*^9}, {3.763373596526619*^9, 3.763373598440144*^9}, {
3.7633738617134237`*^9, 3.7633739461150017`*^9}, {3.763379353930655*^9,
3.7633793551474657`*^9}, {3.763381447120216*^9, 3.763381449296706*^9}},
CellLabel->
"In[476]:=",ExpressionUUID->"f762dcc5-5b8e-40ba-b402-807c074f8c93"],
Cell[BoxData[
GraphicsBox[{{{}, {{}, {},
{GrayLevel[0], PointSize[0.004583333333333334], AbsoluteThickness[1.6],
Opacity[1], LineBox[CompressedData["
1:eJw8nWVcVF3XhwdmhqFnEJBSujukRFiLRkUaREERFQO7FQM7MMHuQEW9BVvC
FgtbVERAupHufudx1rx8eX7e6MzZ+9rX/q+9zz7n0Zq5JChGlMFgfOIwGP/7
3/UKad5lcdvhC9jd3qq4y+XUyf/97IGl6dmeVV3bXTLUdzQEZhyAgof9zwa/
TXT5G/i//5II+xafvLv+4AUXwb8/AsMmlVai7GQXyV/JS50lj8PHUR/CklJs
6PNOwu1fr6f5m6e6GEcefNlpeAbCSrMnnDBJp88/B0eONV5fsGyty2X+v/6V
fAG2hIbuGOt0j77vItSZBng2Rb5xsfn3kwzXvBkzwhOE338ZPn5/td3h8T2X
7E5D/jdcgZ/Fl8OWBOW6SP27nhSIzL5bb5+S6RL07wuvQXJrkmmcbBpd33WY
seFZpc3UApfyuP994A2oktGIsSr55GL073pvQuSWot+PvU67LPvf5S1NhRt9
xbsGK0tdMv9dfxqEdjJMCjqKXBj/fm5D4rDaUPD3edSe2xArmeJxO6rCxafs
f19wB7b38yJEE2tdGv617w4ol920M9xxxuV/3xZ58C74nJTbEXGngtp7Dzp2
mJ8xeNbm8q85v+7BpiCLx5MtXlH778MTiZ5dhz3LXP5djvoDKOAsOB+t3efy
7+NePoCi8F9OJcv+uMz59/MQbM6+fvloWz7xSgfvZRMnzHrNgP99mkJaOiQs
WzGuTqqF+isDTGScHdSuvXXp+t/HdWZArm1KyfhCJgjwZkKBSendZUsGXf51
j3MWuA10m3TNOufyr7llWTDPVL9qzik2/Lu8HY/Ay0Tj77VmDgj69zH4vn2s
/6rvhsunj//7eQwpM5r3OYWz4V/3LX0C/aa28o2ZcvCvuQpPYXD3rQfqjCIa
P0/hllHmw/OpovDv4yKfQe+KtY4Md2UQ8HgOt/IkG8XXd1F7nsN1ZqxV7vJ+
4vMcZm3MZqbXqYOgfc8h8de6puDdEiDg9QKSEpcpdNxqpPHyAiq755yQjdIG
wfh8AWbtX2PX85RB0KEv4dGB5clPZ3xyOSQAAI9qLadf89MFwfh6CaOWTnxx
TF4Xxvzjmw1l0jULPDVSXXb+659siPutvqD3pi4IeGeDKteHNe+cOfXXK0h7
tu2DV30L8X8FcwrFq/2GtUHQf6+gTntb0vIMW9D41+GvYZt2xCKZOB4Ixu9r
eFH/c3m+lToIfHkNd30aE662jwPFf/37Bu4obY87+FkX5v4bL28gJWLXFPmc
ESAY72/g6Hn32K92biDw6y3YJek0X51pS/3/FmzN2zcbn+1zEYynt/B38XjD
u5c9icc70OVo9cmudQcBj3fgGbMq8JHFZeLxDsZcnbCy0cyHeLyDfW+7NpfM
CCAeOdCYzplwN5YDAh450GqnGWStNJ545MDnx74LC3WmEo/3IGWaO36vhyUI
eLyHdPb4lpW7vYnHezAfNemPh+Vs4vEBpI9XzqztHQ8CHh/g0h62aE+aG+T/
4/EB1DVuG2HOYuLxEVhvYbOoRDQIeHyEBKZCwu89Y4jHRxBdWnpp7Ps1xOMT
SN69M/OY2iri8QkW2owzNFQWIR6fwOLYaEeVbduIx2dwPqXhqpa+l3h8hp6V
y2dUejuCYPzzf3/OPDG8PQkEPn+BcukjqomJKcTjCzBPHnRgHNpMfn+Bkwbp
D9/MvE08vsKZ+4VnXX79ofZ8BfOqffZpRs3E5yv9vRZq31fIHqX1+LFtKQh4
fYVTK992i4fdo/Z+BRNW/nuDhs3E7yv0f297clL+JrX/G4zQ3HPl9f4TxPMb
TJ/+btWGQ/bUH98gbO8tm2uRScT3G3REzAkfNWIf9c83cAvOW5P+fiTx/gYv
2Xp7nPXiqb9yIe6J9/tpituIfy701V9+uzfTHQTzXy6sWabMrmhfQOMhF+RW
7D46++x66s9cML3Q/6v2dxCNj1xYxvl07cHxydS/30HX45p09YSVNF6+w4EZ
uQdXMadSf38Htm57xDQ9pPHzHSZky4l8jF9E/f8dLl9INluSO53G03co/vCj
86u1cL76AQrXOTec388mHj9g0t8DHq8uzCAeP2BC7cuP86t+kv8/IPFbcUXO
7wji8QO2/pnXNvf5DOLxA0bcVm2LvaBCPH5A6+U9UjpegcTjJ4yvc16QVxJF
PH7C4IVNH8cfsSYeP2HL6G8X5nLcicdPmLXodOrD7Eji8RPe7R+VEbMKicdP
mP8lYKOtvhXxyIP0b3md/efCiUceVDx+13LXz5vGcx48vnOwafVZBeKRB7Ex
94+OrQsmHnnQrXX1nFeJL/HIA7sD0hffnKmi/PoFkls8xjww9QNBXv6CT8s3
rGL7BBCPX1DjtrT6kroI5c8veHXswYv4UZ7E4xfse7j49WhuIM23v0Di4Cf3
qmUaxCMf9K1l1LYfG0s88uHkCeV26XcBxCMfnmenJtzXtSQ/8oEdsFtx1htT
4pEPeRP0Jx4y8Cce+RB0bdetyhhH4pEPNd/Pc48cUCYev8Fhkd7D6UETicdv
0PIcOfqPpivx+A2zWluO+DKGKY9+w74fA4z1J7yIx28IL35ytv+HB/H4DY5T
j54T6+x2EfAogLWXN0xo2eNKPAqgdbRLHm+tkEcBVI+Vj/Vs5xGPAlA208IH
EcL5pgBUorwKrlX5EI8CCH++Y1LiB23yoxBCVj5Jiai1JD8KIV/TveuF0Xji
UQgL3o6Q45pZEo9CWDHHQXL5LV3iUQgT+9JG7F3nQzwKodshKvB2uT3xKAKH
+bPiN3UpEY8i8Gm59F7F0Jt4FEHWJNeRh7hIPIpgffQiTnQwl3gUwe2yLanz
T3gSjyJY4/nxfXmcB/EoAoNOycc2ijzi8QeWwmi2nbkH8fgDCqHpsbHnxhOP
P5AROC/5jaoK+fEHtmvsu4DgTjz+wM0BpTo1zwDi8QfMjYxfi67Qp3qmGMa/
vOkIYu7EoxjeFs0Zr/QxlOarYnh5T+qsvq8t8SiGgfzDkmeOuxOPYrBYbrvt
rPIMENRbxVBzVPpBxFkv4lECucoTXn7hjweBHyVgesn6+f3SBcSjBGxqgzRc
70wjHiVQtSYy4uMEL+JRAl+u7ddyGLOZeJSAm72j09PUjcSjFALc4pb9Dvai
9pQCe/Smg5PUrhKfUsiLPr467+5LENSHpTDtZvgfrQfviVcpTPf4Yf7ocDa1
txRmlvx56NV0jfiVQlDxThVFvxAQ1MelcPq7/YnKMxuIZyl4sZOT/97dSv1R
CpW949O37gsmvqWQ2jhj30mTcOqfUjDuvzpS02gp8S6F4N0qAf5rg6m/yqDw
eskJbqED8S+DVS/63f/ujab+KwPjjSOLZXjBNB7K4PsK3b8P5UZRf5bBVs7P
izdnh1D9WgYfPFTk7EYHUf+WwfYXux5sslai8VIGNvfGRint9Kb+LoN5PquC
np8IAEH5WAb+Ew3OrNqiR/1fBslZTa8M9jmCYP1QBk/CwisMjCcRj3IIjho5
9ky6FfEohymYFdM+aEg8ykF32Q7ewAIf4lEOQ46VPXDIgXiUw8RKVbe5E0cS
j3J4vHxBQ2uIO/Eoh9qQFd5npV2IRznonylcZGwnSTzKYVlSp+muk+OIRzn4
nu2Qm/YIiUc5pN15pf1prxzxKAfOsrKvR5baEI9yGC0W3gvoSjwqoOyeUdw8
HQ3iUQHTez+IuaYbEI8KcLI/m/3mJBKPCkiLGopk5xoSjwoocl/MDIxUIR4V
MKLLWfK/cmfiUQHGEzUTxSZYEY8KcJuVnDwkL0E8+N/X4OQ8SdmReFTAgO2M
l/7HbIlHBczfM2LypiIR8rsCpMOLRC5usSEelRCztUQm9oYD8agEtpOoVqS4
FPGoBHeRsc/700yIRyVc56xXb9QYSzwqYVtGQ5rIKmXiUQnF4x2Sew9oEY9K
YI0+sv9griPxqITw+Mk/M27qEI9K+HROn3drkzzxqASxo68TsNieeFTCD/2j
/8m9NiEeldCY8yDxew+TeFTC9Dbd7MBjY4hHFaRndHpanLUiHlWw98D8qgOf
B2i9WgXK6ncLn622JB5V0Jer3/00bgzxqIJHsluk9j5g0/xZBXbG7ypqtA2J
RxXoep1P2qdsRzyqYEvn8icd+fLEg//vOetsF9Zo0PxaBdsTU2s7veyIRxW4
Kj8W13fSJB5V8NzWqmbt6xHEoxpMj/uYPpa2pfqkGjymZ8+d7m9APKphRFvA
1/oMFs3H1ZBglHF/abI18aiGoRazBZuUzIlHNay3l+va8WmQ6rFqiDrbFBJf
aE7zdTUwLEUGzn+1Ih7VMLxO2VlmBIt4VEO6frpWQq4B8aiGpAe+IZ/P2RCP
avjztbP3XKQc8aiGTWeP1BSO0yIeNZC41uzqjIAxxKMGmMFHYt7xRpEfNbDa
fUYJy0eZeNTA4ip3g8eiQh41IBnyoz3HRpd41MBom6sjtvWPIB41EKdWF8Fy
tiEeNXDKNX+9YpAx8aiByX+Orpl8R4F41MB6s6nJaYdsiEcNbMx01q5jWRKP
GhjcFtljYKlFPGrhp+HV0ZZywvVnLaTKXn32qHEM8agF1epda4+yHIlHLWhd
HW6qtY8hHrXwrTwjyGPmauJRC8MH9i92sFhNftSCk218R/iHOcSjFsbUfgxd
eNCLeNTC3o+/Rx6Zok88amH3nVkvP34Trt9qITxk8qPqlQ5U79RC07th28UH
DIhHLYBq5lfZzNHEow5OX+mPmBdhTTzqYFNBxNPAVFPiUQfulpnh2/p5xKMO
bj/Rmu9bYEI86uDI6wqbmmhL4sH/++qhpT9TecSjDn6ZcSy3GerS/ksdiE6T
y3mzwop41MHWiu0FK1NG0nxVBzNPbMhWmaNGPOogcZq2tlKsFeVHHbyajB2u
IprEox5OzD/+VfuncL+lHm5W7d3bGmhJPOpBZcA44JWPHs1X9bBli2HPyZfi
xKMeOLcvsKc+MSUe9SA5Z8UnDSdj4lEP8qJ+Ka1PxGi+qofKwoK7I14YEI96
GNGQdPO8gjnxqIemJ+OdpprJEI96iH4qcaxkqTb5UQ9qk5x2jdG3JB71MKZ1
ypU+b0Xi0QCcukn7RxuoEY8GyDkzdtOXAEvi0QCOh7+EHvBQJx4NoC2z5PnP
2/LEowECNL7+uaRpQfnRAJKv72Uul9UlHg3glLVzt36fLPnRAP6T234Gq5sS
jwY405i4/eR/hsSjAe50XMk6JSNLPBpgQei9/+YaGRKPBjjVU3FZLcSUePwF
3dg1507ZjSAef2H70YnSN9p1iMdf+Njsrl6RZE48/sIt0fKGLfOVicdfiH0u
Kmdjp0k8/oLHRu9dBbYWxOMvrP40PHjKS5N4/IUtuKO3wFCNePyFau+Tl6vD
hDz+QvnuXXuNU3SJx18orYhAJkuFePyFx5vMkTHVlHj8BdHLHt83XjckHo2w
PHML+8d0VeLRCMzM30d2lRoRj0ZYY7b7hs8TE+LRCEEfThVNZmgQj0ZYDSPv
zbxnQDwaYUnW7sJn+82IRyOEyLD27pPWIR6NMFte+W/mVX3i0QhmjM8rw0eZ
E49G+HQ34UKkhQHxaAQXgyt/WOsNaL5qBO7eWq83P82IRxNoTPIfs1DDhHg0
wc+JchvXPjMmHk3g+kpKQ+mSGfFoggTRlt4qeXPi0QQ3vv2uz4+0JB7834cE
71fqNCceTSBuEPHQaqUF8WiC5EtNP37dGAP/Li+5CaZWbywz77IiHk1Q9fFa
yTwVCxBsNzWB2KCqTx13LPFoAvkVTsvCP9nDv+Z2NsH9644Kf9LNiEczFB56
1GowAkGwf9wMskcLGAvuuxKPZlhyqvZca5YZ/Os+72bIyvhz5ZGJO/FoBq0Q
g9utR32JRzN8SXydE/nRmng0w7ir5mvv9nrSfNUMvUHFMPpxOPFohpxJZd8m
9rkSj2Yo/+E0+h1HuP5rhhlzCsOOZswlP5rBM33chbMOU/5/X+qA+o7v00/6
UHtaQDfRfmfP0w3EpwWONJm/rymOo/HWAvbXLwfFRHkSrxY4lRDzbWhqMrW3
BZasSWdFpT4nfi2QkBNRkKH+jsZjCzwKebagN+8F8WyBqhH9Gts7rlJ/tEDi
pMQv+8TDiG8L3D3ptEKXvY76pwVU064c+KOzmXi3gNoYd4kPPwKpv1og0zqm
2eFJGPHntyd4i3ZCeCz1XwssivhxNcPWn/xsAZkg19eqykj92QLaI4w7rA5G
0PhoAdemnUuNfCZS/7bAYZH+z3+mWJG/LcA7Uue4XSeA+rsFWhKvnh0Z503j
pwVSMjZ6LEg3pf7nt1d/zuKp0cL1cgvIndym2FfgTjxawXZDS0viHuH4agXx
u2dWt39yIh6t/PmuoFz1CBKPVkheOb7jzyYL4tEKVu9/jAnOH0M8WqH6VrVi
4Ckn4tEKN2IufJroJ6wvW+HC3o9fv0yyIh78z5+8YsRLtCcerbDuyS/l+fZC
31qhJV50T62TcD5vhbILoSsSjMcQj1Z4Glbz2NfRgni0QqvTsmWvDpoRD/7n
6z6qcwNr4sH/+6Xekt5JZsSjFdaOD5piHS6c/1uB+dVXdYSH0NdW4IWxRNp1
TIlHK5jFLX2v0mRMPFrBdYeBskK1JfFohcTCmA27Nwvr81Y4/udO8G19I5qf
WsEz6r5K3Dth/rXC2MSEjKdMYX60QZ+SUbG9owHxaIM/9zYERR2xpHqrDXau
zHsp9cKMeLTBR+n7t00u6hGPNlDI+7LEQlyYl22waSVXczNYUj3WBmvmB51b
NaBLPNpgFUPd31JCON+1QdLRMN2PJVbEow1+7Sscm16jR/tNbXB3xb3HGcYm
VO+0wa2dkanGsTbEow28ziccaiwUrg/aIPmtTkRdnQHVc23wMC/EvGPjGJrv
22DMLJlFXDlz4tEG9WOWFvgp6hGPNvAwCsh0zB5D9zPaIO/gtNLV962pfm0D
HUlJK4u3OsSjDa74Htp3YUhYz7bBgrSzB6dZ21M92AYYeXrjxAA94tEGoet8
3r3QsyYebRBtdfq7pfw44tEOOv7W7ff5+SHg0Q6i+7vHPawxJx7tsLyIXRwR
JfSjHRri0tcwJtsQj3bI8n6wZaOIMC/bwfiwjvI+cCMe7WChpuY2PWsc8WgH
04Rtd2481yUe7bDIonSBu49w/uZ/3ru6L/3gSTzaIfB8c/GlB3rEox36G796
LVUVrv/bQX/hlZiCj37Eox1SdsWFRlQL76+0AyPDO8tvrivxaId1TydczCsJ
JR7t0Cz3UkKrTjhftcOJdVnzMhWE+wXtUJg1nhv4ajrxaAef+jffY7WCiEc7
XHRfK/b7pjXxaActn/i9j8tjiEc7lCz/07GeNZt4tIN/b/ZgUIQe8WiHWecD
d0gvWUo8OmDnq9N7vZTWEo8O2PxgxqVN48cSjw449tPDIbF1A/HogAzOqttO
tUnEowM2GY82f7Z4KfHogFHyrZuTrY4Rjw4YGLIen3XsNfHogK+DG4y2deYR
jw7QLr1wVanwF/HoAOOFJ9JsTr+j+aoDZjx2TJ4Re554dICJ9BUo+TGLeHRA
WnZl9qklh4lHB5S2Lrvq67iV5qsOuFf5OvThA1Pi0QGRVr9lTnmuJR4doBuu
fvPKphXEowOcQ6NvBn4yJh4doCA24sns0NnEowMunn/0ZK3efOLRAW9Hr7i6
TdeeeHTAvKLho08Mg2m+6gANmaELI3dHE48OUJ/iFPjKG4hHBySdin8a6ybM
j06wby5pnBoxhXh0wvQJFSV5Tm7EoxOOLj7wN6JYuN7tBKWUsJ2Ot4KIB//P
IfrMjj3uxKMTvPIX/9ghZ0w8OiGn+h3XOF+4v94JcZeG613LhfcjOyHS4Jj0
3gBd4tEJIivHLHdv9CAenVCY/XJ47FF34tEJ4SLx63ae0SEenaC+JfujUwYQ
j07Yqn3r1v5KN+LRCbvm/cydvVyPeHRCmdaTThY4EI9OsDp1e/O8YVfi0Qnd
+i9qLyUaEo9OOKIR791wSzhfdUJF8pXtoqKuxKMTJrm7LfJfZEo8OuHDgdoX
ipJmxKMTTFptjhc0AfHohHOZPj4HFgjzoxPalgc6tObqE48u0P25X+xSljPx
6IKzSpWN6yqsiUcXuAUszXo/V5t4dMGzJZ/t/IOciEcXPO4Ov1h90pZ4dEFu
lkTcyK0axKMLVpf8PPnpjAPx6AKFHyM+/d4g3I/sgrDpb1g7dNSJRxfk7fwv
sWyPLfHoAquX8F92jBPx6ILP30anFd3VJB5dkPjbv9pbXViPdkGO2STzUiUX
mq+6YMHD76HjpIQ8uqAlv9Str194/6YLVkhlN33TEs5XXXDaZQGndrUp8eiC
i+UOX2Rr9YhHF1SvFh3t9Va439kFFg+d39UeF+ZHF+wuCbBWKdEgHl0QavvW
z/0LUn3VBeNnKc71PzuWeHTB5YCseYUvhfcHu2H8o6pfagpIPLqhZcz4LWHH
XKm+6ob3CZJ+qQ0qxKMb7pr7PegbHkc8+P/+lXi69xYv4tENzcyt703LdKi+
6gbNq4udKs2FPLphqJ17+27hROLRDTE2B85IiVgTj274xFA6uo1nTTy6Yfim
ZkXq7QDi0c2vp3s2WgQL78d089f/T3xUZQyIRzdMOt+s2B4VTH50w5ddX+TD
l/oSj24w224RseKkCvHohsevdNQcP4YSj264Vdhr2Nc1mXh0Q/zT6i8phqrE
oxuKJ+pP+/x0MvHohu+FY+D24Czi0Q39sW1RDQ1jiEc3aHFV7N3aw8mPbhBt
+xmUqbqMeHTDi9I3tV+vBBGPHtCpy9JcOxxOPHpAc9TOCaz2eOLRA090d6co
ey4lHj0QPMepa3NnGPHogZfv7t26nptEPHrAzaJ2/X5uEvHogReTxv60+s+P
ePTA0PGb6rmHMohHDww6/k3/dfkn8egBv/3LZzxOKyEePZCw1WDUr2e/iEcP
VKvufRBs/4x49EB4Y4GJ+I9FxKMHdldkrdzvf5B49EA9N+rAhbijxKMHHFqX
zU75GEM8ekDVavLVqx/mE48eaPGb5/V80Rbi0QOnvII8LqXNpHq3B6Q+ZTw4
XzOBePTAkq+LRSQNlxOPHlD7sHPi0Bbh/aweUD5oEjVlqwnx6AHLFTLqWDWb
ePRA5p+6a13O04hHL6QyEk5s9RHu//TCs8yHkSf5PAU8esHv0Kcc7ftTiEcv
zH3e9EvaV5149MLn0Ib+7MJJxKMXXop3zZAODCMe/M97Gx524a0x8eiFT5Gh
G1dsciUevVCVtXDNsEIw8eiFnpzCEJMGG+LRC2sv7yot/GhD649eOLsrfs8+
TgDx6AU1iZCsmw2OxKMXRl5Pamgu0SMevfCtpqvgv1kTaP3RCyqlTS4TC1yI
Ry94T9qWbfRahXj0wqPEc7WLHTyJRy8YmfmVJ6Nwvd0LFl/kVDk6CsSjF05s
NaxoOIXEoxdmRMYaj1jgRjx6Id1G57bzJCWar3ohv1Ppxm9j4f3sXuA+2Xc7
uM2NePTBmKtu8VOnahKPPhDNtFBbEWVNPPpgncKBn/llbsSjD/It2vXnOgj3
4/vAKu9j/5fnwnq3DzTqe31TvN2IRx9ETuCFLdxuQTz6YJ6j0sMxK7WIRx9o
6pmt67V2JR598P2knFFK8Bji0QeX344IdmpQIh59sH7+lzF/5wLx6APtY75J
d3hCHn3ggaI9G3JHEA/+9Y8F9uYMJ+LRBzc+X6qpfeZMPPpAZeWCZ74DwvsX
fbAHZIO3b7YnHn3w/MSLFbKKQh59kO72g1dZpkY8+kD6dsTMdW3CercP8s4e
ytor5U48+uDjQfPu+AN6xKMP9sesz2ZfFO6/9cH0zYd0Dl/xIB79MJExmpFz
2pJ49IP4EQ23gHod4tEPX9dVNN956Uk8+mFWxhuf9fcciEc/WDITHmpvUyEe
/SDrPLtoNngRj34waWha5HPLlXj0w5dJS3ebgBzx6IfkkQ+qdTo9iUc/jA/b
UXxvhw/x4H9efMuJR7vliUc/HFly9nzIIw/i0Q81V6/j+OMBxKMfPm4o/Pzf
Vx3i0Q/Xhkc+mRLrRvNVP+Skv1h8a2QY8eiHcfsYBuo77YhHPzzyiZWZkONM
PPpBXiJ01EvbacSjH8rLIK96ig/x6IfZ4WKvbswZQzz47f1jM/XzolnEox9M
VZcYpwZNIR79cMCgz+jhLR3af+uHtU0pryEhlngMQPx86fBjl2KJxwCU95Wf
rhglSzwG4FFHmOq+6BW0PzcAw1+7Jq9+vol4DEC+fwFjYw4QjwHwqbjnl/Vk
M/EYgH37P2wxnHWc9u8G4OnlGYObGauJxwAs9v8xP270SeIxAL3hzIPzcnKI
xwDk5veVRRUVEo8BsB9Xd2a87x/iwf+8NIfzqQ8+E48B2N2X9KVq7mXiwb+e
nHyLzp2zyI8BMO59fGfUzuPEYwB0hyTld3rtIh4DIFMdmXJsmiLxGICR+3e0
L07dQDwG4B6rv0zs11riMQAlqwuMTtnrE48BYLqzdx5qmkM8BqD/YUnqA85S
4jEAsTr5sUcXOJEfA/CBnbhM8nAw8RiEHB2DlxEec4jHILCHl2yLO+BBPAZB
4c7y+a1iwv3SQdgf0fDp/b0o4jEIp/feUFOZNJ54DMKxAfX1mTMNiMcg7PQf
8YK1I4x4DMKBdWfuFrJ9iccgpGnUmt/aLkc8BmFAfdKJ1jB/4jEIliNf/ZjR
Ldxv5f9eUad8bSSPeAxC9K+eucs5nsRjEOTODitXxPoSj0E4k9XeGmqnTjwG
4eKuopcBX8YSj0FQGvP2g3zaBOIxCGEm31d2JBoRj0HYI+p+20DCkngMQuHI
Uu4Png/tPw/CDMvCtsZ44Xw1CFosQ5u1o4T3awZh8QB2XCv3IB6DEJ+ytsQt
3554DEKu1qrMbcqKxGMIGgydxm1cIjwPMASVFd4H73iNIx5D4NESHt8WzyMe
Q3DYSH+HS49w/TEE527k+vdvEPoxBPO8fPW2j1MgHkMw/2voV+OdtsRjCA5t
8f+Sk4bEYwgqrGf8sbITrj+GwExpvPXiHAviMQSX9fZ3L+5B4jEErz4+XXjQ
TR/+NTduCAquZsb2X9cnHkMwua1y0CkViccQFJVOC6x5ZU48huD+8fWpBv0a
tN8/BEoj6mdN+QzEYwhWbmC4zGCMIR5DoDbXSasvT4l4DEHW93ij0J3OxGMI
HuWtcVz9yoF4DIHbVpVAJXFF4jEE4/66jBvIGEs8huC/oOBB0yRnmq+G4M8m
8QDDO0rEYxi6Su4EaR22Jx7DMClZRPaPlXD9MQxOv2aWbFfRJB7DYK/65/MC
W+H93GHwEstK/3RRuD4fhp3fqjVdHwn9GAY7bdujd9MticcwNCuwdj/X8iIe
wxBYp+i7K1e4nzgMDn1HfIPmGxOPYXj7t2Py7Qwf4jEMl78diP+ZOZZ4DMOz
RW8l417rEI9hWGPor5kdM5F4DMOMmf9V1PW6E49heBeYoNSvOJp4DINyto2D
jKof8RiGc6teGnQ1TSIew9DXdb7uaJgq8RiGG1ErnIvCA4jHMKw+uv7e+dth
xGMYFq72/KS3TI94DMODYZX40FWBxGMY0ny4xRLXoonHMLwJa9A/3jmWeDAw
yczjxygjOl/EZuDADf3Rj9sWEh8Gpn7ctvKjPK2vuAyUeNnEuSwRRLwY2NBz
Rj9mepygvSoM3DwlsLry8iLKfwbmpZx1a9IKEMwPOgxsUZyronT0APFkYGjl
daPR8gcF/WHOwIPprtkKu9yILwPV+p4uzd57T9A/Dgy89HdWfcTNb8SbgcdG
TZjKcCgQ9JcbAxVMn5T4136n+oGBn2tXyDdlZwnme18GnrOol3GuW0TjgYFB
s7W8W5/sFvTnZAb2aRyoDBRLovHBQMbGC/5LX88W9G80A3/f3fpr34RZNF4Y
6PUyOPfEhw2C/l7AwKl1sY9O7I+m8cPA6qdT31+OcBP0/yoGspo07OdOWETj
iYGtZuPy459Nh+H//cQzcFCyX9NvnjZs//eBDDSselm7224GSPzvAhMYyLT7
7OhRPpXGGwOLl/UfjX6lKuBxhIEWejhl4dggGn8M9Lacs2xIfbLAp3MM3Gv+
+PKoYEMajwws9GIx1w+4w7/hcY3PMy8+8PmcYEj9Nz4Z2D87PyDqvA1Y/3uc
hIHhU9qXPG4Qzh/87//NiVE66i/g8YSBSiGSGxISxtL4ZeCrL+Mvc3boCXx8
y8DyoQ3bWj4L53sGSkVPNmG/ARAcx2ag1f7a11P0VCHv3wUycMV55SdjM90g
4t9xTT7fC7N1RvDnc8F4Z6CW8pN9yFAR8Khm4PvPknVL5Z1o/DMww4lVn1Lp
KuDRwsAZyhaX/+Rqkg8MHLvxmuaFD9YCHn388dv+5mRetKuAxzADta/fXxSX
ZSDgwRbBvsdw5NlaIwEPSf6fV47vclGj+Zgrgj1K4itEF1uQHyI49sbAt9qH
WuSHCI6rXuC6LnkczW8i2DL6Trx2gI2Ah44Izv7uu/haoZqAh6EI3nDfZq+R
5CDgYS6CL+Z9D7N2thPwsBHBFUvc4+b2qJIfIrhsuXWET/wY8oP//WMSRilM
cCA/RPDixDW2YmM1aH4UwRpzszapr5YCHr4ieM33lJLkCkcBj0ARbO3oW71p
h46Ax2QRlIzeLbciyUTAI1IEHed062kXOJIfItjvVPr74jZD8kMEfVv7lXOU
DcgPfnuW7b64I9OR/BBB7uqZ+xJUzMkPEVTcmHlQx06X/BDB7No2q5pgR/JD
BP1NQjBMwpr8EEF5o/DLrs/p/HCCCJ68I9adXulAfojg300FQyt8bMkPEVxV
1ea7YZM2+SGC3p9087oSHcgPEVRda1GQKO5Ifoig6e4fvw6F6JAfIrhuun3A
lGjikSaCN0WusU7edxbMV/dE8Hlp8Vq99XrkhwjmnuFkhFg7kB8i+Hjp8dbm
FuF6TQQlWnafOf/JiPwQwbOrvWUWPhWer+P3n5fIlA5Dyq9vIuhqXn7lvZYV
zf8iOHW8a1vmRTvBfFUkgnPDvn/MYviSHyKoMvzz0Lz5juSHCB66xoxrWjqG
/BBB+/z1086ODCI/RDCCO3Sj5rfw/qwIOk9TS3dupvPpffzx4dOy9WDLZMoP
UbydHQXvk4X5IYrzZE5XKE03ovwQxR3njRvE580gP0TRd0dHqYXVTPJDFPW2
y0mxuQbkhyieTZo0f6PUPMoPUZQa8rJLnbCS8kMUN1nOeTJa05XyQxRnrWtw
Hby5kvJDFDmxDt4Xgg5Qfoji/preTrRaSn6IYoiszK0O9wPkhyhavDDpDfF9
Tn6IouS884lbG7+RH6Iov+nDIwnl75QforhBhp0VFPiK8kMUj2cce/NB5wzl
hyjuSlmf4Cg7mfJDFOeui5LOlz9Afojij96UdzeXxZMfonhvauAl0S+0/l7A
v/7oTpHR9cvID1E8tWn42fL1dN54lSgul/g9M1/amup1UfRqaYgbqRop4LFZ
FBWamiX1+XklqE9E0fhol1+4PO2/J4hi3MdzPg3GPuQHv70X7W6c6IggP0TR
qU/sfelSN/JDFCfribZPMrUT8DgnisGfrlpnGwRTvS+KD4ZWvX232kPA45oo
jvJQDbySbEj1Db+/ZXjxUzUmkB+i2J517qLbLw/yQxSnjdCOOhOrS37w2x/h
05hzSOiHKLp2HF03psFdkOdvRTG0ziBMZKHwvKMovjA5Udq0yJ78EMVu+zkZ
XfJu5IcoqniUP1PVNiM/RHHYNqnKocaC/BDFx8cZljkxQH6IYqvIlocT1wjP
t/H/feqQscIeOi/UIorb3qgu6fcYS/khirtvjGp4lWpD+cEf/ybbBrTVdCk/
+P1xpujGUJQt5QcTHfTXiFaUCM/DMvFpUtH4s0q65AcTWzpzVtqZCs9fM1Er
fJ3PJaYt+cFEJ9Pcq6Hq+pQfTDzeImK/oNqE8oOJjx+dfZ3tPobyg4knn3Zd
3scyovxgYuKXB9P6LwrPPzPRNPyDw/MGa/KDiS8aH14zqxaeJ2ZisUfYUY8l
euQHE5sqpUZfDLEiP5g4+xvjwxZrc8oPJkY31n3obtal/GBiqcrIq2VXLSg/
mKg+t37m49sW5AcTV2QO1uefofo1molV+uOy1UPNyA8m7uRFrZ3mbEl+MFFP
Yk30qkp98oOJy/BldtKQCeUHE0V2TK4SX2NJ+cHEXKNLaUkTDSk/mHhd/2nR
gesmlB9MlG+ukd/8nvazEpi451BDdM9eI/KDiZVynZvrVUzJDybmvMq5ztlh
RX4wcZWc5IfhNGPKDyaOC1G3Z5SYUn4wMTVtYmzDX2vKDyYqjpjJq9E2pfxg
Yv7FHM6CRWbkBxN3TLtV42VjS34w8Y7ha8ODH+l83hMm3j4xyy3Ew4z8YOLV
gbNdYfMcKD+YmGS4sbxRxprqKybO/C1/boOmKdVXTJybvurHmhXjqL5iIifG
dKhAmc67FDGx3Ovd/itexuQHE0/NEx17aBeSH0xsy5cf9Z+s8H4TE42O3QvY
zx9fAj+YWOcbdPpvBdW7nfzx5fD03pOf3uQHE3+tCbYJe29CfjBRTlNx5fRB
D/KDhSnvb7ATLgWRHyxc1bPXN+aYLfnBwt11EnEqMcLnRVj4avXEd1YV08kP
FpY8rti//Ks3+cFCxym1A76rvcgPFj77u09T3n8h+cHC42pq26cPzaD8YOH8
wnX5qzqE60sWpg7t+8ucupn8YGHzqagGjcAt5AcLL2w50yUnaU9+sLB/938l
L9dcpvUHCyOiVq2d1vmS8oOFHLGqiVf3faT8YGHQ2QmeYT2vKT9Y+KLylets
7TTyg4UTKtDW9AHtD0azUFFbyTAxNI78YGHyo4kdfs+2kR8sND+/9GzO1il0
v4aFP/xad9TfDKX8YOHpTaHJOawllB8svCfiHjJyYwjlBwtNix0MjXrHUn6w
8NiG+uIPgVHkBwvDOo+trVAPJD9YyG29lXio2Zj8YGGZSd7g5WOBtH/Kwkix
1XdWJftSfvD5WkXtHSgTntdloc3qofj7g8L8YOEM53aL8beEz7Ow8O+3Ke49
nibkBwufqk3Ywjs4lvxg4dq+8XHFAe7kB7+9cyKqtk2xID9YeFIs9l67pzXl
BwttnxUf8jUCyg8WKpm9KzksQ+e/vrFw5W2793UuwvvfLLwt05AiK+dIfrDQ
+Njp/XP4/gv8YGFM84nH869TvVvNQmVntIyKFtZX/PFlUHjb1cxKwKOFhY9V
tYbn7RSe/2bhy2ehmydwrKi+YqGBtV7YLG9Lqq/YOOo9T3lcFN3vZLNxo+a2
5IgbwvNxbDSTkEh762VOfrBx9BWT6PQgA/KDjY3e/kN/5EwEPFTYqCJ3czVD
yZTqKzZmjrk6d0yHPtVXbDQeLnec+Z8R1VdsXL21nvlgCZ3XN2ejbO950yQr
ffKDjeVlt1Y4FtP5Agc2jtOKqc3fb0R+8K9v3jaRdEdhfrDxODfLv9jQkPxg
o5UD6w9ztRH5wcaS3TEXRWYKzxuxsb+v98UKGzpfO5mNA5mzX9X3GJEf/D8/
eRN0QEqX/GCj82nzuyZFeuQHG21bc8ZpPTcmP9i4ND05aFqCLuUHG6sdLhYp
jNOl/OBfz695L42jTSg/2Lg/fs+LTJ4+5Qcb2aM+tbUka5MfbDzcOoiRK+k8
VgIbS7V8s/ouGJIfbFy8aXxBSaIW+cHGlyqfbP7eNKb8YKN9cFe8BMeU8oPP
Q0dP9tVFLcoPNqb9vnKprdmQ8oONomXsKaYFFuQHG5t7xpVbrtchP9joq68d
YzJf+DwCGxVzs5v9sq3IDzZO9625sfK5AfnBRveLTgER53QoP9g47bL/pTxz
G8oPNj6sNyyTZVpQfrBxw4NvXPmdWuQHGys1CjwX/rQhP9jIGSO37lCZ8H44
G0MPbgjflKZFfrDR9c+M86fm2JAfbLw3cWa1r+s4yg9+f923fMk8ok/5wcYb
/usfTrhpRfnBxhMcWHt02I3yg89r6997aS50PoMthpM37oq6HSD0QwxfzMgo
27lkPPkhhk2hzNEVvUh+iOHzIZu5Ch/1KD/E0IxlOuGDTSDlhxiKesewX5gH
Un6IYc6x9bwXK7UoP8TQPu9DQUw0nUc2F8PU3Z/UX66ZRX6IoeJ/W94dGWtD
foihxUHxK87Ns8gPMTwbyLzk2U/3J9zEsJTr96Pl3Ayqr8Rw68Qv7Jte66m+
4v9Z+cGB1vA0qq/EcM6Viq/SPc/JDzHcdi8/VT/0JfkhhrMzj6YF5t4jP8Rw
0d7J70XD95EfYuhlcGOa+DpP8kMMP796p11duoH8EMOEz+Wub9IWkx/8/vo7
bWSGuxb5IYZft/2KHp0RTfkhhgxrptz4q1HkhxjW5adITErVIz/EMHGiuNZC
Rz/yQwzfKd7//qMvmPwQQ6PyVXknVpmSH2JY/ZupW7TLhfwQw6lLZRwcUiaS
H2IYumI1PgizJD/EsPd3v5XLDSuqr8TQU1HuVqi5B+1f8fnVfeM99rSC9H8f
KIbu2ZYRRlsMYNw/P8Rw8Y3Li6zPuJAf/M9/VjfdfgHVu2/FUHzKEv2VzVrk
hxgWZ68ucB6wJz/47VuU1cXTtqL6Sgw5Cu/bKo6p0/6VGKafm3uqYLINlP7r
QH77B4cMDNMsIeafH2Lo+z5/caPmKPJDDLW2L59t00TnjVvEcMLebR+yHS3J
DzF8X9yZtNpMjfwQw4HtNxf7PzMmP/jjffDz/GupFlRfcfD91SL9yglqtH/F
Qfm1887DNn048M8PDjozPVJ82ML9Kw7OWhFVvmzJKPKDgwvrJr1w/qNNfnDQ
+In0zsEwc/KDg9Wp385MvKNOfnDwuNfPxhx/DVp/cFBn4XvVsCVmtH/FwVUH
OZbLpLUEPBw4aLZ8wY+f31UEPJw5OPVm+IwSFTrv7MZBbr/cKBl3mq+8OTjJ
4/RQTJIi+cHBW1F2V0MsjMkPDt5Uf3DmRK4erT84ePDmi65VPSNo/4qDeTbH
6u3466F/PKI5aLlotsPZtYYCHnM4uNZtkk7dqhHkBwcn/LB+PGeLMD84qLLh
YmxRqTH5wUGlcHPFcdEK5AcH5znp6HWztCg/OFgn9cJH/bYprT846PE0RGJt
qTLt73Jwq9/Ak+ksNQGPgxy81pTpa5FoRn5wcE3J6SCNAg3yg4MJWSKBAz8U
yA8OXlWYtsjczYz84GDFpKyC4jW65AcHmyf+J5m3jUd+cPD5/gms/RdMyA8O
NroX9ti/MCI/OFgAea4BU2TJDw4GbZrOyL4rfB6Jg5C96pX2DAvyg4OfNe6u
cmqXIz/4169+N6X4Fq0Hv3HQz7UlVGSxNfnBwe3+n84liKmSHxw0VHGN0eZo
kh/8z0/Nnd9YSOctqjnYGxz98egMXfKDgy3q4yI5RSPJDw7K3diyPOipHfnB
wdHs8p2SIrQe7OOPh22rmTkSPKqvxPFNbt6F2hJ7yg9xPI+n/BVeO1B+iKNE
TshRCxEu5Yc46luPWZbHEz6PK47ld1Q5RSp0v0dFHLWKQvTYU0aTH+I4eUAt
8shoe/JDHLs6H92d7OVH9ZU4TvIJqb/70IbyQxx/beOeTb4jfH5BHL97h31b
azOV8kMcA24/+8Xl+VF+iOPWYov2sh6qd93EUURW9frGowvJD3F8snUgwyth
Mfkhjsrq16ZpBqpRfSWOm8+MV07pPkT5IY4bnkfa7mbdpvwQR93l1xTmLMug
/BDHUAnxBXNV71F+iGNMzimWwedT5Ic4Mmd+rpj4lPYTl4rjWfSuSp4+h/wQ
x97CnnH3Dy4jP8Rx5jqlMQ+3eVF+iGPbjDui6grulB/imPHJrTLjQiTlhzg6
x0T9OVHvSvkhjvHKjs1+5VTvHhFHo9qhkXY1fuSHOM7af1XkTZMwP8RxnP2P
vv5cefKDf7222QqBPW60/hDH1atDKi/ccKL6it9fuSIvxCZKUn0ljpLiCm/K
ChyovhLHyj+5xh/MHam+EsdFanMjAiylyQ9xZH9ej/ey6X7kW3FUtGrzPqJg
T36I48+pogWLJo+g9Yc4nrzVkF6QKTyPII7SmzPc1dXp/UhF4hhya/XSHw7K
VF+Jo7HG2tet69TJD3H0ivp47L62sL4Sx4vjFjb4V6mTH+L4PnKvj4uVAvnB
H4/Tsza3SwjrK3HMP4XciaXa5IcEzrLzHK8TIUV+SOCR4iepGseE9ZUEOkqu
mvFITZ/8kED1odj/ElpY5IcEXnryXk/ptyH5IYFlqZXPggoNyQ8JrFfcenHd
Dhb5IYH773z69opN85WhBN53XWd76bcx5YcEPgqKvqS9UoLyQwKXjtLyz32o
TvkhgW9WuS0M/iPcv5LAqwN6HM8lcuSHBF7+HrhS0W8k+SGBIZ6W0btfmJAf
Euhc+Npx32clyg9++zyKHjEqZSk/JDB478f7JzcYU35IYPw1qzvrtDUoP/jt
FetZvH4um/zgX2/ljcE3OvR85gIJfPa7/aJ6gA75wf8zvLUMFREhPySQsddP
UqlBeP9DAgOOn1jf8li4/pDAtCHTWxf0RCk/JLDJ5FRNiJYW5YcEfk3akn1w
nXD/SgJzCw4P9HwVJz8kcHVGAmwPVCU/JPDX+EmNN8eakB8SaJrmyJ7jMYL8
kED2W99TswpHUH5IYKmOaMSTLyaUHxLoc6f8yUM7VcoPfv+3+kmxV0hQfkjg
3+rNAZcNiMcT/vdfsHZS/6VFfkjg0OZwc7sFIuSHBNaKvjs/JdCI/JDAwLAp
bFVxA8oPCVQqb6h9JjHkIsgPCbz9yiB0y1p9yg8JLOFgyJJYU8oPCbw1kGdx
ZBeT/JDAyYp9A1nF2uSHBD7Nu36xq86S/JBA1/i5bmOteOSHBHYYhPMMUkaT
HxIo9ulb385kG6qvJHD25h8LahvUqL6SxCWv38ptmK5I9ZUkgq+nWeFOO/JD
Eu+sOy3RkSxcn0tirZeC0aVYKfJDEgOO9Rzy7HIkPyTx+GcFN9NO4f1BSawK
ELt5W4tBfkji4i9Fp178cCE/JDFsevz4gGOu5Ick7jlzgdXQxaD8kMR0UN1a
kk77Jc6S6JF7KC1rbyD5IYlKjxR9HVI0yQ9JbO/ddFJfyo/8kMTvSScfXcie
S35I4nW9uOqKAV/yQxLN68Du7aVZ5Ickbltq9HvlpOOUH5I4S/tR0ezYG+SH
JF4eOWFWaclN8kMSj2hslHXKO09+SOLn5fPMdxeuIT/47bvmud8tzJD2ryTx
q6rnoevScyk/JNF/RfzdsutTKT8kMed2zaa1HX2CxwUSJDEp6/sTv3PC80yS
eOCYAnNZ7CTyQxLz9FeuXDeJR35IIqNdPuV0qT35IYmluUlrXBU8aP+K3/+f
ZY+UrhpF+SGJXnNCq8LPCZ8Xk8ROuZWfGJ+F9wclMWtsYWPaLR3KD0ncnCZd
OyJWnvyQxGT8M186w4784P97/TWrt5obkh+S6K379lVFjQjtX0kiNzpYtM9O
uH8liRlaiWf+22FC+SGJU2PuzOq60eMiyA9JrJzz+0vYZCPKD0lc+ZUl+3UP
7bdXS2K9ecbJC1cY5IckdufumqTxWov8kESVgr1FUep0v7ZTEt04E43PL5Si
/StJlNy02PpAuPC8jxT2bPSXNUV6vpothRdF+w4tG1Cg/JDCLIM1nxcflCY/
pHB33ebySinh89FSWJ/0Lt+tTbj+kMK05PbaJDkR8kMKI1JmSts+o/1EHSnM
b7c4cge1qb6SwvjUnoeyl3oE7xM0l8Ltm3NCd96n/RIbKcy9sK5KaRrdr3WQ
QnXxFvsb1f30PkopvN4rE7vovjr5IYX35B9Ot1tuQH5IYezoxr4ramzav5JC
d60dLw0mjaT6SgoH55WfW+JtSPWVFCoHXv6bPpZH9ZUUhicGr4oxkiU/pPBH
U2/13o8G5IcUngodeaXeiM5LL5DClHIx35UHmOSHFK6vKrkXqqpP+7tSqD+n
8EDnEnXyQwrjbLYaeZzoF7xfdLMUWnAU0pYuFp5fksLk/g3fUw8L759Lobdt
6p6dKX30PlEp/BkdFfVMW5P8kML3mgV/nnvSfslJfv9OTXuzeZB4nOO3X3nf
7bduKpQfUsg9lT0il2NA+SGFmycOrpIeKUX5IYV6U3ONGlNHUH5IYUnuGwmv