-
Notifications
You must be signed in to change notification settings - Fork 0
/
New_J._Phys._20_113022.nb
622 lines (601 loc) · 25.6 KB
/
New_J._Phys._20_113022.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.3' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 26037, 614]
NotebookOptionsPosition[ 24740, 585]
NotebookOutlinePosition[ 25130, 601]
CellTagsIndexPosition[ 25087, 598]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[TextData[StyleBox["Learning the quantum algorithm for state overlap", \
"Title",
FontWeight->"Regular",
FontColor->RGBColor[
0.2964217593652247, 0.6292210269321736, 0.2727702754253452]]], "Text",
CellChangeTimes->{{3.822636147120782*^9, 3.822636149053595*^9}, {
3.822636240732341*^9, 3.82263625191656*^9}, {3.822637212068983*^9,
3.822637212721833*^9}, {3.822893489756895*^9, 3.822893491949749*^9}, {
3.832321238753117*^9, 3.832321249383651*^9}, {3.8323245292762823`*^9,
3.8323245340020647`*^9},
3.832906798222391*^9},ExpressionUUID->"e891f68f-aff1-4190-aff7-\
893279bf4859"],
Cell[TextData[{
StyleBox[ButtonBox["Lukasz Cincio et al 2018 New J. Phys. 20 113022",
BaseStyle->"Hyperlink",
ButtonData->{
URL["https://iopscience.iop.org/article/10.1088/1367-2630/aae94a"], None},
ButtonNote->"https://iopscience.iop.org/article/10.1088/1367-2630/aae94a"],
"Section",
FontSize->24,
FontSlant->"Italic",
FontColor->GrayLevel[0]],
StyleBox["\nNotebook: \[CapitalOAcute]scar Amaro, June 2021 @", "Section",
FontSize->24,
FontColor->GrayLevel[0]],
StyleBox[ButtonBox[" ",
BaseStyle->"Hyperlink",
ButtonData->{
URL["http://epp.ist.utl.pt/"], None},
ButtonNote->"http://epp.ist.utl.pt/"], "Section",
FontSize->24,
FontColor->GrayLevel[0]],
StyleBox[ButtonBox["GoLP-EPP",
BaseStyle->"Hyperlink",
ButtonData->{
URL["http://epp.ist.utl.pt/"], None},
ButtonNote->"http://epp.ist.utl.pt/"], "Section",
FontSize->24,
FontVariations->{"Underline"->True},
FontColor->GrayLevel[0]],
StyleBox["\nContact: [email protected]", "Section",
FontSize->24,
FontColor->GrayLevel[0]]
}], "Text",
CellChangeTimes->{{3.8226362283387003`*^9, 3.822636334723393*^9},
3.822636391632341*^9, {3.8226372468331547`*^9, 3.822637246833611*^9}, {
3.832321233277671*^9, 3.8323212337519627`*^9}, {3.832906767931561*^9,
3.832906784631399*^9}},
FontSize->14,ExpressionUUID->"ddf9a9c7-8855-4773-9712-f85d3d5c6749"],
Cell[TextData[{
StyleBox["Introduction", "Section",
FontSize->24,
FontWeight->"Bold",
FontColor->GrayLevel[0]],
StyleBox["\nDemonstration of overlap for single qubit states via Bell-basis \
algorithm.", "Section",
FontSize->24,
FontColor->GrayLevel[0]]
}], "Text",
CellChangeTimes->{{3.8226362283387003`*^9, 3.822636334723393*^9}, {
3.822636391632341*^9, 3.8226364148286*^9}, {3.822636632459257*^9,
3.82263666754714*^9}, {3.8226367225529222`*^9, 3.822636739164402*^9}, {
3.822893500475507*^9, 3.822893523209238*^9}, {3.8323245369078817`*^9,
3.832324665848118*^9}, {3.83290680301472*^9, 3.832906868114419*^9}},
FontSize->14,ExpressionUUID->"8fdd40a4-1dea-4209-8d34-b2a2111e6ee8"],
Cell[CellGroupData[{
Cell["Style", "Chapter",
CellChangeTimes->{{3.8326563117117662`*^9, 3.832656326417254*^9}, {
3.832656759272208*^9, 3.8326567620349483`*^9}, {3.8326569412336063`*^9,
3.832656945761533*^9}, {3.8326612651442423`*^9,
3.832661265897476*^9}},ExpressionUUID->"6d08e2c9-0303-4b7a-898e-\
6059c019c726"],
Cell[BoxData[{
RowBox[{
RowBox[{"fntsz", "=", "20"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"imgsz", "=", "400"}], ";"}]}], "Input",
CellChangeTimes->{{3.832661252652834*^9, 3.832661268416368*^9}, {
3.832661333709917*^9, 3.8326613339248037`*^9}},
CellLabel->"In[1]:=",ExpressionUUID->"935941a9-a64b-4d10-bb4e-4454ce594e8a"]
}, Open ]],
Cell[CellGroupData[{
Cell[TextData[StyleBox["Figure 9", "Chapter"]], "Chapter",
CellChangeTimes->{
3.8328444196657953`*^9, {3.8329068114717484`*^9,
3.832906813176508*^9}},ExpressionUUID->"c8c4aefd-0702-41a6-9ed8-\
a5815cfaaeef"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"Clear", "[",
RowBox[{
"\[Psi]", ",", "\[Phi]", ",", "ov1", ",", "ov2", ",", "\[Alpha]", ",", "H",
",", "P", ",", "CNOT", ",", "\[Rho]", ",", "\[Sigma]", ",", "circ", ",",
"measure", ",", "c"}], "]"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"by", " ", "definition"}], " ", "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Psi]", "=",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"{",
RowBox[{"1", ",", "0"}], "}"}], "+",
RowBox[{"{",
RowBox[{"0", ",", "1"}], "}"}]}], ")"}], "/",
RowBox[{"\[Sqrt]", "2"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Phi]", "=",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"{",
RowBox[{"1", ",", "0"}], "}"}], "+",
RowBox[{
RowBox[{"Exp", "[",
RowBox[{"I", " ", "\[Alpha]"}], "]"}],
RowBox[{"{",
RowBox[{"0", ",", "1"}], "}"}]}]}], ")"}], "/",
RowBox[{"\[Sqrt]", "2"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"(*", " ", "overlap", " ", "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"ov1", "=",
RowBox[{"Refine", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"\[Psi]", ".", "\[Phi]"}], "]"}], "^", "2"}], "//",
"ComplexExpand"}], "//", "Simplify"}], ",",
RowBox[{"{",
RowBox[{"\[Alpha]", "\[Element]", "Reals"}], "}"}]}], "]"}]}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"by", " ", "gate"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{"(*", " ", "gates", " ", "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"CNOT", "=",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"1", ",", "0", ",", "0", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "1", ",", "0", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "1", ",", "0"}], "}"}]}], "}"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"P", "=",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"1", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"Exp", "[",
RowBox[{"I", " ", "\[Alpha]"}], "]"}]}], "}"}]}], "}"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"H", "=",
RowBox[{"HadamardMatrix", "[", "2", "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"(*", " ", "states", " ", "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Psi]", "=",
RowBox[{"H", ".",
RowBox[{"{",
RowBox[{"1", ",", "0"}], "}"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Phi]", "=",
RowBox[{"P", ".", "H", ".",
RowBox[{"{",
RowBox[{"1", ",", "0"}], "}"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"initial", " ", "wave", " ", "function"}], " ",
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"psi0", "=",
RowBox[{"ArrayFlatten", "[",
RowBox[{
RowBox[{"KroneckerProduct", "[",
RowBox[{"\[Psi]", ",", "\[Phi]"}], "]"}], ",", "1"}], "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"full", " ", "circuit"}], " ", "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"circ", "=",
RowBox[{
RowBox[{
RowBox[{"KroneckerProduct", "[",
RowBox[{"H", ",",
RowBox[{"IdentityMatrix", "[", "2", "]"}]}], "]"}], ".", "CNOT", ".",
"psi0"}], "//", "FullSimplify"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
RowBox[{
RowBox[{"measure", " ", "in", " ", "computational", " ", "basis"}], " ",
"|",
RowBox[{"<", "\[Psi]"}], "|",
RowBox[{"00", ">"}], "|",
RowBox[{"^", "2"}]}], ",",
RowBox[{"|",
RowBox[{"<", "\[Psi]"}], "|",
RowBox[{"01", ">"}], "|",
RowBox[{"^", "2"}]}], ",", "..."}], " ", "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"measure", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Refine", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"circ", ".",
RowBox[{
RowBox[{"IdentityMatrix", "[", "4", "]"}], "[",
RowBox[{"[", "1", "]"}], "]"}]}], "]"}], "^", "2"}], "//",
"ComplexExpand"}], "//", "Simplify"}], ",",
RowBox[{"\[Alpha]", "\[Element]", "Reals"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "4"}], "}"}]}], "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"post", "-",
RowBox[{"processing", " ", "weighting"}]}], " ",
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"c", "=",
RowBox[{"{",
RowBox[{"1", ",", "1", ",", "1", ",",
RowBox[{"-", "1"}]}], "}"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"overlap", ":", " ",
RowBox[{"final", " ", "result"}]}], " ", "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"ov2", "=",
RowBox[{
RowBox[{"measure", ".", "c"}], "//", "Simplify"}]}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*", " ", "plot", " ", "*)"}]}], "\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{"ov2", ",",
RowBox[{"{",
RowBox[{"\[Alpha]", ",", "0", ",",
RowBox[{"2", "\[Pi]"}]}], "}"}], ",",
RowBox[{"Frame", "->", "True"}], ",",
RowBox[{"Axes", "->", "False"}], ",",
RowBox[{"FrameStyle", "\[Rule]",
RowBox[{"Directive", "[", "Black", "]"}]}], ",",
RowBox[{"AspectRatio", "\[Rule]", "1"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"Style", "[",
RowBox[{"\"\<\[Alpha]\>\"", ",", "Black", ",", "fntsz"}], "]"}], ",",
RowBox[{"Style", "[",
RowBox[{
"\"\<|\[LeftAngleBracket]\[Phi]|\[Psi]\[RightAngleBracket]\!\(\*\
SuperscriptBox[\(|\), \(2\)]\)\>\"", ",", "Black", ",", "fntsz"}], "]"}]}],
"}"}]}], ",",
RowBox[{"FrameTicksStyle", "\[Rule]", "fntsz"}], ",",
RowBox[{"ImageSize", "\[Rule]", "imgsz"}], ",",
RowBox[{"FrameTicks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"0", ",", "0.2", ",", "0.4", ",", "0.6", ",", "0.8", ",", "1"}],
"}"}], ",", "None"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"Pi", "/", "2"}], ",", "Pi", ",",
RowBox[{"3",
RowBox[{"\[Pi]", "/", "2"}]}], ",",
RowBox[{"2", "Pi"}]}], "}"}], ",", "None"}], "}"}]}], "}"}]}]}],
"]"}]}], "Input",
CellChangeTimes->{{3.832569150306384*^9, 3.832569263165627*^9}, {
3.8329048368523817`*^9, 3.832904893041106*^9}, {3.8329053683008833`*^9,
3.8329054105769587`*^9}, {3.832905935835202*^9, 3.832905939145977*^9}, {
3.832906080812253*^9, 3.832906085656436*^9}, {3.832906293327409*^9,
3.832906324437949*^9}, {3.8329063713042583`*^9, 3.832906439822562*^9}, {
3.832906517662813*^9, 3.832906734372582*^9}, {3.8329068951285067`*^9,
3.832906930045899*^9}},
CellLabel->"In[3]:=",ExpressionUUID->"bea2b51a-7ad0-4c5f-9ff9-9f2210622479"],
Cell[BoxData[
SuperscriptBox[
RowBox[{"Cos", "[",
FractionBox["\[Alpha]", "2"], "]"}], "2"]], "Output",
CellChangeTimes->{{3.832569181355859*^9, 3.832569263574923*^9}, {
3.8329048713018417`*^9, 3.832904893455504*^9}, 3.832905411034993*^9,
3.832905939573628*^9, 3.8329060860765743`*^9, {3.832906299123213*^9,
3.832906324950776*^9}, {3.832906431796363*^9, 3.8329064402277603`*^9}, {
3.832906532392518*^9, 3.8329065398614883`*^9}, {3.832906576424082*^9,
3.832906595015193*^9}, {3.8329066283755302`*^9, 3.8329066707187033`*^9}, {
3.8329067037262907`*^9, 3.83290673481155*^9}, 3.8329069316134253`*^9,
3.832907031304904*^9, 3.832907097969262*^9},
CellLabel->"Out[6]=",ExpressionUUID->"0df9cf71-a701-406b-ad0e-088884d931b7"],
Cell[BoxData[
SuperscriptBox[
RowBox[{"Cos", "[",
FractionBox["\[Alpha]", "2"], "]"}], "2"]], "Output",
CellChangeTimes->{{3.832569181355859*^9, 3.832569263574923*^9}, {
3.8329048713018417`*^9, 3.832904893455504*^9}, 3.832905411034993*^9,
3.832905939573628*^9, 3.8329060860765743`*^9, {3.832906299123213*^9,
3.832906324950776*^9}, {3.832906431796363*^9, 3.8329064402277603`*^9}, {
3.832906532392518*^9, 3.8329065398614883`*^9}, {3.832906576424082*^9,
3.832906595015193*^9}, {3.8329066283755302`*^9, 3.8329066707187033`*^9}, {
3.8329067037262907`*^9, 3.83290673481155*^9}, 3.8329069316134253`*^9,
3.832907031304904*^9, 3.832907098066634*^9},
CellLabel->"Out[16]=",ExpressionUUID->"04b480b4-a9b4-4f62-a0f4-b85ca25ee4d8"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJw12Xk4Ff/3AHDrda8tynJvkhCJ0mKJLOekQpQtUVlCoYhsKbIkCS2SrfjI
UtkjsqeEKFJSJEsKIYk7tqIr+c33j9/8M8/reWbe57zfc+Z53mdG2umMhTMH
GxtbJDsb2//OnM95276phen2Lv/vIEDuR63W2vhjwC4RIfCPNKt4y4meuDPw
uU9dfYF0yW/4KFx0DkyLxAKZpEdETi5UxIVC/5R8zwDp64xmgaKacPhvzu3g
O9LZCrbpbEWRoL40OlZNum7H1NaDGddgCjOSM0j36l9uyIq7CRljqc7h/4un
yK8Y1HALilcM73ciHbm9yyerJh5EG4NNdUiL7MyoaStLhCMUXw8R0pm73LgW
Cm9DQsvb7O//CFDep3pAOicZ7GfvLFaQrjH7l2iU8R98tRlwv0T647G4DXfj
0mEHhZ4uQLpERVnjW1MGDJatd3q7RMC5HfGfzzVkwviFUYwmzQV2cpk192H2
9hvzX38JeK3X0KJW9QCCJ0UuZ5G+pb/B83VZFpyxPfrBnPRak+mK2cIckJ5R
fpG2SMCwuZVNVH4uJDz84QykCw7VLK/JyYPXOQvrP7MI0LCLMNTPKICwab8F
GmmL04zeO3GP4POrl/PqCwTwa8DzJINieN//N7RqnoCpam/hwaZiyJ1yklMn
XfGsq/xsQwmsHtZtlvtNwO6mjH9pNaVwp+uHd9csAfIGHWY/NMuAl3bguwZp
3hbu+ypVZdAauBB4e4aA9jduBs1l5dC07eWS4TQBdp2qsdOFlbDJtfFsMJMA
tHId0tpUBb5e44N1kwSs705WvZJfBbVehR5spMf7/nWvzqmG8oyXw74/yfX7
1iy9J6MG9JMyrDaNkeszY1uaFPcc1u0e9P82QMAN0RTtOoE6KHwWVN7xlYAP
JRFSahZ1IFdQder5FwJsxm1H1vbVQaqhqWr0ZwI8bfi8ZybqIU+GeXT0EwEJ
OiejkoUa4YzVmOartwT09Bx0FzzUCA5fT7M835Dr7w8m4cmNIDYuqb6ylYCc
IjERD5kmMPyUuM64mYAnUk3pqPoSZrPF315pIOAru0zld+tmuBnjOyRXQc4v
TSDFNrUZTLoPRUaUEXBy55+g9wPNkH1Dq2jgMQEzPu16Nada4C3nXHj0I7I+
hkPaYi68BqXQBNusXAIUX/aNqKW/AYOi+9spKQRoNRnx6vm2QwwzWc0rgACh
zux3O+Lbwa5ocL/LObI+hjgSN5e2w3r75qjDZwmIYauRYsy2Q9t8qNc2bwKG
tJTUpnzew5MWJcHykwREPeZzSPP5ALvMNFmc1gR0pb8pZ3l3gvJh/4jGrWR9
FSlcmLrVCWnPtu1CZQIuPruMoyWdcH60RaVKiYCNfdqt76c7QfWbeF2qPAFB
YoUDud4fYZG1MlJjDQGyN27wWXt3QWnwV4caCgFegSaOpV7dcGP3O57ZbiYY
eWrnUmO7wWi+fIq7iwmyToqE3aNuKBLdayzawYSufZRgKrMbsilbDm98ywQd
Ru0dO/ceYL8pMyJfzwTeqs3tPC69sDTzyeN8LhOyfvGDrc1nSDUwDwj0Y4JH
lXMMh+wArPCW2ryBg0m+z+br2FUH4KWRnSLvv0mY6tF+vLxnAIzHLdR+/JkE
v8VVXX9dBkCZc0XAf9OTEKjbIDmfPwDrIgu62wcm4Urj2sKf2wdBLWgt58Xa
Scho/9TaqTcEKgWf4hf8J6FzbB8tx2kYvEd4clM+T8DVLb/ZKo6MQTd7loFu
0k/wVmpOrMuagKLgPooj+ziwjrsX9XtOweoeaeEl/TFwemZlFusyA/0PAr5w
Ro/C8enOurqoOTjwZF2KWPQwXN9aeSb7ym8Y/yK/1unOEHDUVe64HLgA9zu3
KLnnDICwonHb1zssiPCrntBb1Q+G6Xr3p+L+QpDBic57Sj0gTrzRD638B9ed
ivlzBT9Cyqsn7Jyn2DD1zlXRDLX3oC25a3ndCXbUNddcTS9tBaUBoeFgPw4U
ivy+fpKnCQpzV54s9+HEktP8cj6sWrj88fkuznOceM9UtCvhbS3YcnhImF/g
xPMZV/I6MmqB1/ZV20Q4J+b0uf/MMqgFlxVBausTObFQbWF3WtIzWOc/whFf
yYkTjM8+PzSfQsLuqrtefzmRFf781K6kagj6YtehdIULceD0/J3cMpgz0Lnr
fJULDwUZQEd4GZwuWeOaHsOFr7Zcuqx0rAxsLvexVt7mwosaC1vUxcpgp+IR
GVYOF7KHqmwojyiFP2ctvZtbuLDeKMfOye0x+AsYr3AW4EbKr2KnWqNiYPor
9qQJc2OKvnt468ZicBmg3e8W5cZl4kj3PLUYrEqb1fev5UZ97v4rtjcfgdoR
fXuVLdxYIRipKX+jCOYe7CpkN+dGB5lHx6MTHoK3toZxWgI3ju9YF03tyAU2
z4TQm3e40TnA+M5sai7EpE+VXkwl7+92+CTmmgv5HHlrjj/gxmnfGwzK3xwY
amYwN5Rx45ndLfRohRywPLQYW9LBjfQV+Zs2Xc8Cdc/arsaVFJRSDpLTCbkH
jemr+SrEKFiiNRuib3oPLN77Q85qCva83xQbve4eeKpuyY2WoaC0DvA8e5EJ
Oaz0AJPtFDS9pHqplz8T6JFha7rNKajckZk+czAdWOl7nH7GUvC+2CVB6XUp
oDuvE7ctkYK416Vc5nUyhJnsaDiXTMHJqHy5R37JQF3aKMN1j8znzdMXJ1vv
gOjRFUNrSimoKKdz2zH0NmwV6XU0+UhBm8FBmRD2RPB177iV0EPBsIcD53aU
JUBFw5v63n4KnhIeoAW7JoCO93Np11EKflg8qF34Lh6M2h4Mhs5TkFD2VX+Q
HQfOUWccSxg82Jf1reufZyzkfj15a16SB41crcciFGNhQt2pXkeGB6eGXnOp
vb0JPiOW0q8VeZB74ymtnroYuKi3c3BIiwflnHj4PcqvQ8pfLkcRex6ckdEK
HeqIgnavFIdz93jw5S9X+d+jYaAYK7Tol82Dd7x6849GhUH4oyuJPvk8eEyY
J6NaMQzUmT6vPR6Tdg7TdPW5CHfdjVVPNJDxfkwZ80iEgJvLXx7zIR70DONn
yxs5D40RPvdMRnlwgvfBaKfBeZDMGtPeP86D11sL7RYKzkH7t05vgxkeLIl7
els+0B92OBb26XBQsepS79H1yn7AZWv/SFGGioczemajfpwB+wud+xTkqRhw
wZnya8ITKlOMhuUUqSg1rXXXcs4D3HrUGdLbqRhUuduEEDwN761WhIvrUZHP
lrIn2fckKPpHSIrqUzFKRYiSm+QKlxMXK1caUbG1vUnq4TMX0Oj8PiFgQcVP
llu3JYo7Q5p5nRWXExWDKVVnp1iOsOClPs3uQsUC4ydZj3QcwSL24bXlU1TM
2FhX73zZAbjf3aljeVNRw+X6uKeWPZze7604HUbF62Y05Z/Lh+Gl+/dGZgSZ
b0fur8FGa5C6ZndsIpqK9M1PoOWWFXxo2Zfw/RYV84sHr7rttgRNA5l//ZlU
XHxx4vMytxmo3n8d9SqLitwqXMW1a01AedlnVUkeFXunI+oacT/IVL5QuFxC
RaWHczM5jw1hzarTpR7lVHw4Gs2M4DAAsTMiutbVVPQKqah46LgX+DY4H1Ss
p+KZ2OkdXQf0gBIu8GVVExXfq7kV9vQisH0tP7nUTMXlF6ntJkxdmEuihLS3
U3HrzI+lvTWawJwpoj7ppGKEZf3sPdMdMGZiHX+/m4oxsSLTSRxq0E/JzfUf
oOJIqo2yfuNW6HYyU3EYpuJsn/owV/Zm+FC78GzfGBXlq/ujH7EpwpvVmYYq
E1Q8Uj246cYdeXjpv69jzRQVhWY+3k3zkIW6D9N2lDkq+vnmpw2HroMnyilj
xDwVv6kcbnqeJgFlV/V8exap+OglVVKmSgwejY4vNSyT87nh4zVtvBLy9eKj
HnLScHZ/WapdGT88SNNalcRDw4xtAWYVTdyQxvp2N5SPhq6+2vv6by/r3rG6
rnBqBQ2z8xcFhGJ+6cY9Vi21WEVDl9NRBYKfx3WvC/braIvTUPmXrKHI18+6
V9wimuUkaLjVvGfh0NFXumEvNx9cIUXDdx81IzatytQNkunqX5Ch4aa9puHy
x8/o+oeEnBySp2HpsXcJ6rQqXa9e+dlWRRp+GjugwTrdoeum/i64XJmGjFVn
T56AYd0Tceeo6dvJ63X3MiYPTOvaM6Xio9Rp+PdlQsSkM0v3sFGzpM9OGlY7
q2Z3l3LAwWyvXBtdGrb+JUZSNtLAhIOhslePhhXyuouSRkJgaF//TFmfhgGH
hqn9ASKg9+SUId2IhsGXU/6jrWeAttjKDnYTGvJrtCTeM1wL6j5P7H6a01Bs
yNC+Y1YatrY5jXUeouGM8Xebq2xyIHeldCnHjoajG6zXJLxXgnVDNlG3HGl4
yaxDZyRxC6zW5Vp1wZmGhhVnOMtat4Hgb0sFEw8aLk8vH1pWUAeqxdLjHd40
9A75qBEVoQEcRVk60mdpGM7B25PDpgXzzr8t5oJomFdjddZyI8JMfVp//0Ua
nh3eeq0xYRdMSBqcfHWZhl5CbE9CVuyGgY+3g1Ou05DjfPTcu+360LJXMxdT
aTh9eEiwb+sBOP8qRDk0g4bRgWU/LqApKOxrLHv2gBzPaLCSr8QMruw3rd9Z
SMMsaSla2qQF7Dno3KtaS8PQIt6OhA/WMNeZ7+DbQMN9rq1/9GWOwH2rqdGS
lzScbFnVMht4FDiOXphVfkdDnvScXi0DO6hzuMW/cYCGW64qGjzLcgSvoa44
12EaflB77nrB2wmkTqxhZI/RMC56s1r5ruMQ4pojJztNwxCR0fEU4gRoez7T
leTgxUzWfppC2EmovPDDS3g9L/p6PEqM1PEClyXleVMFXqx4YUmovvICsVC/
4JhNvKiQN/FP8qA3+F1ajuZT48WrL9oy73n7wPZo0fvc+rw4eFThoneLHxQl
7fr4x5UX2Wutvix/CwB7eqSNxmlerHOgNVjeCgSBlDeD/l68aEscSBnCC3D6
rjVz9jwvjsoYOOVmB4HiAw8eZjQvOgQJ1XddD4WskmTNoQJedJxnSDQPXgK3
RRvF7ke8OPI2u1ppdzhs3btWoq2UF1fKbk+LyAqHp933/lbX8OIKs5RuCY/L
0LFc8PxWKy+6i/Q4vOO5AuwmtXt3/eTFv5a5btru0WA3PmSeociHWTkjFZV+
sSCjmqWXpMyH9okle8rKYmEs2FXl+nY+NHK6qan4Kxb8hCdEzu/kQ6voLYxL
527BNY1fn0yN+DBidB/za1gcVF/hsV8+xYcnxhov7i1MAFHZTW72eXzYVzD/
VNc+GWLjrlnlFfLh3ejOyxOlycDL8VNvroQcv6DYTJ43BdgG8ySuPuFD5YNT
sTpVKTCRtuFteSsfZsyFzcyvToXG1bJbBZh8eJOnpTCClQZ+K1f/rtnOj92S
phoPYu8BERYwRNnBj+fZBFqlG++B23R3m7kWP1YLdhZ8m78HDu23c77v5sct
pm0Sqg73YX+M6JFVh/gxytp2BUX1AcjyCj91O8eP8SljHQ5jWfCBnXqJ8ZQf
LaUm918KzwNmYbK9WR0/Kne2lVjU5gHtqJJWZCM/jmV7/nX6kwf42GRu7g0/
/hM1YN/tlQ9FToku7f2klYRZ/xwK4NoLGePIZX5ce7p31tqkEPZE6Ij80hNA
n3l7V96HxVBO9c1ubxHA7+3P2/qEy2E0KGyy9q0AHrgr5xioWg706Zuqhe8F
cJb2rWa7dTkE9TxsiO4RQN/tn3KnUsthT/7oF70fAnhe3M0vY2MFfDA+Kl5O
FcRH8hK2zQaVMBWzKyrZQBDpgdWBf8n98yZRITenJkFsPvgigRVSC0TMbxGV
rhWYXMCf/nVLE8hGRm454yaEgkO9f/64tcLQ0b5eve9CaPlkj81/tPdgONLx
p9xTGB+nbRdZN0r2fT7OJ8UmhTGJ33p/bGE3mFT8ZyTmvxK7HRRGBEY/A/Ov
WxDn75X45mnSZrrPAGR+Civz9F2FjvfGi845DwHrpI5DwOIqfHDzhtWl88Mg
uXTLxjtQBF3OTEastRqFUYNrr6lcoji83PziMIzBC/k3sPaaKHZuKBsrZP0A
N2o2lzRNDFccNp+28foJlRnrdV7cEsP4QeVSy44JWL+850J9vBgGSmdYiXdP
QKydc/XzRDE0Li5s6SL7sZOrs9WeJovhH5fvjP2jE7A6YYNyeaYYRrlw6wn9
mYCgSEWpnBIxfK3MV7gkOQl6nlvZr70Xw6+z5/6ccJ6ENi3tJgthceRIe++n
MD4JV6vOLuqvEkdON8dgDuYkGKg92qYlKo5ZX7hUesj+sU5ZJk2WIY7hcf2Z
QWR/WSpNPTe3ThwLbJ38/qMy4Q5Pp0LSVnEM2FwtqyHPhOMd7td7TMWRJ+DZ
je/2TFhnltXw1lwcVxlOhh1yYsLnN18W6g+KI3e/J0+dMxOsXpo751uL4ylf
uRdXTzPBsHqH7oVj4viBrX70dwDZ76ZzTq05I471h902bUxgwoLbfwcdYsQx
Ztszo6kmJtwMvM8TGiuOE1O8vVtamCB/taDmbpw43jHcoOf+hgmH8mpk+5LE
ceyAUvLHD0x4/L1v9lC6OHYv6u47/5UJp0+sSTAuFkejM8cm5uaZMGB3t1P9
gzh+2Vxg0SRHwDmPrKhDnWQ8+l6zEAUCBIMLtf26xNEybIxPRYkAndRnD0p6
xVGgRO/Jza0EpPT2+236Jo7kZviLqBYBltZrRWXmxFG9JD3d0pSAZrP0QwJi
dGxpkdxw248At8aRWh46HV91T+hm+hMgoLFJgWM1Hb19Y2NyzhNgIVXN+i1J
x5mNNh25QQT0TX5IH5CjY1eUzUjwZQKYVynjpWp0dPRl1XnHExD7b//Boh10
bL9duAYSCVDxiX+aq0nHXpuqXOptAs4fWXfzrg4ds0XEzGJTCOBQ2KkauZeO
nxqJd96ZBIg2eYQcPURH2Vr6juAiAqo0yr5bWpP5eH52Figm4OhDlpnpETq2
up+qTS4hIC0+UnaPHR09Ltr+zC4jQMEps3mzMx2r+QwV458QoL3cuZL9LB2P
7rKYeNxEwBcfiaBFfzLeV8Pr3K8ICBt1HPl1no71D93MLJsJePmWWTkeRMe1
e37sHn1NgGkq1a7zMh2F3Rnv+t4R4KSpnZOTQMeIx7dVBHoIODX59tfnJDqy
nv8a2NVLgFfmsT0rk+m4UHWx2ruPgFBa+GDQXTp2Bz8cb+gnILWnRcIim44b
9W/vVhoi4P4NG7fIXDpyHopBzW8E5O+arHqaT0eL+t/OesMEVOcJWW14RMcf
Uz0K+qMEdAVYx/6tpOMGIa8rq8YJ6N/848u2J2R+Ep61LNLDg4GbXZ/SMcDl
4pr+nwTM7kt7/b6Ojlv2vNsXP0mA0OoRrpwWOo4kfndsmiJAvM3/4OdWOka+
NHkRMU3A2kvUe8JtdByrbjXcNUPA5nElCPpAR/7Xss/zZgkweuITYN5HR+XC
UwfxNwHmnlzNV/rJeiq99a6H9GGZJLGnX+l4sWmLp+c8Aa5Xq0vlh+noc3j1
yugFAjx1jTlsR8l6KhcSX/GHAP+Zz2a3xuio/qldJ5b05aNszMUJOtLPrJwK
ZxFwTTBOextBR/eMfRd+k45rkL3mMk3HZd6KDScWCchUNFB4/4t8npb537b+
JSD3S7c/ZYGOWW2zMzdJF8e5NWmx6DhY8UtmnHQt64ZT9j86DtlWDN9cIqCp
SKqkj42BWkl6/n2k3ziVLAtxMlBDTUZB5h8BnWK7TfS5GahaBKzjpPted6Ze
4GFg2/SViQzSQyEuP4tpDPxzeuRfN+nx7Quao3wM/E012sa/TMD0aHSUhCAD
7ZSywneSXkiR+GQmxEDZirFfx0kvmxTKXVnJwAwealQUaQon+NWIMDCWNa+Z
S1qgsr1hSoyBIqNFfC/+973d3UlYnsHA6rvrl7pJS0jNHbORYGCwt4XgOGmZ
joiiWEkGtmxWgd+kFSPFl5qkGHhe4sXNJdLbtPKMF6UZ+P//F/4PlPGZ+g==
"]]},
Annotation[#, "Charting`Private`Tag$7151#1"]& ]}, {}},
AspectRatio->1,
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox[
StyleBox[
"\"|\[LeftAngleBracket]\[Phi]|\[Psi]\[RightAngleBracket]\\!\\(\\*\
SuperscriptBox[\\(|\\), \\(2\\)]\\)\"",
GrayLevel[0], 20, StripOnInput -> False], TraditionalForm], None}, {
FormBox[
StyleBox["\"\[Alpha]\"",
GrayLevel[0], 20, StripOnInput -> False], TraditionalForm], None}},
FrameStyle->Directive[
GrayLevel[0]],
FrameTicks->{{{{0,
FormBox["0", TraditionalForm]}, {0.2,
FormBox["0.2`", TraditionalForm]}, {0.4,
FormBox["0.4`", TraditionalForm]}, {0.6,
FormBox["0.6`", TraditionalForm]}, {0.8,
FormBox["0.8`", TraditionalForm]}, {1,
FormBox["1", TraditionalForm]}}, {}}, {{{0,
FormBox["0", TraditionalForm]}, {
NCache[Rational[1, 2] Pi, 1.5707963267948966`],
FormBox[
FractionBox["\[Pi]", "2"], TraditionalForm]}, {
NCache[Pi, 3.141592653589793],
FormBox["\[Pi]", TraditionalForm]}, {
NCache[Rational[3, 2] Pi, 4.71238898038469],
FormBox[
FractionBox[
RowBox[{"3", " ", "\[Pi]"}], "2"], TraditionalForm]}, {
NCache[2 Pi, 6.283185307179586],
FormBox[
RowBox[{"2", " ", "\[Pi]"}], TraditionalForm]}}, {}}},
FrameTicksStyle->20,
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
ImageSize->400,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->
NCache[{{0, 2 Pi}, {0., 0.9999999999999958}}, {{0, 6.283185307179586}, {0.,
0.9999999999999958}}],
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.832569181355859*^9, 3.832569263574923*^9}, {
3.8329048713018417`*^9, 3.832904893455504*^9}, 3.832905411034993*^9,
3.832905939573628*^9, 3.8329060860765743`*^9, {3.832906299123213*^9,
3.832906324950776*^9}, {3.832906431796363*^9, 3.8329064402277603`*^9}, {
3.832906532392518*^9, 3.8329065398614883`*^9}, {3.832906576424082*^9,
3.832906595015193*^9}, {3.8329066283755302`*^9, 3.8329066707187033`*^9}, {
3.8329067037262907`*^9, 3.83290673481155*^9}, 3.8329069316134253`*^9,
3.832907031304904*^9, 3.832907098463006*^9},
CellLabel->"Out[17]=",ExpressionUUID->"0c6be5b8-6b11-45f2-8754-0e4c75e1d55a"]
}, Open ]]
}, Open ]]
},
WindowSize->{808, 663},
WindowMargins->{{4, Automatic}, {Automatic, 4}},
FrontEndVersion->"12.3 for Mac OS X x86 (64-bit) (May 11, 2021)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"62057852-bbfe-49ef-a1dd-085b01ba6bac"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[558, 20, 602, 11, 135, "Text",ExpressionUUID->"e891f68f-aff1-4190-aff7-893279bf4859"],
Cell[1163, 33, 1380, 37, 112, "Text",ExpressionUUID->"ddf9a9c7-8855-4773-9712-f85d3d5c6749"],
Cell[2546, 72, 702, 15, 112, "Text",ExpressionUUID->"8fdd40a4-1dea-4209-8d34-b2a2111e6ee8"],
Cell[CellGroupData[{
Cell[3273, 91, 302, 5, 69, "Chapter",ExpressionUUID->"6d08e2c9-0303-4b7a-898e-6059c019c726"],
Cell[3578, 98, 343, 7, 52, "Input",ExpressionUUID->"935941a9-a64b-4d10-bb4e-4454ce594e8a"]
}, Open ]],
Cell[CellGroupData[{
Cell[3958, 110, 214, 4, 69, "Chapter",ExpressionUUID->"c8c4aefd-0702-41a6-9ed8-a5815cfaaeef"],
Cell[CellGroupData[{
Cell[4197, 118, 7424, 212, 754, "Input",ExpressionUUID->"bea2b51a-7ad0-4c5f-9ff9-9f2210622479"],
Cell[11624, 332, 751, 12, 46, "Output",ExpressionUUID->"0df9cf71-a701-406b-ad0e-088884d931b7"],
Cell[12378, 346, 752, 12, 46, "Output",ExpressionUUID->"04b480b4-a9b4-4f62-a0f4-b85ca25ee4d8"],
Cell[13133, 360, 11579, 221, 408, "Output",ExpressionUUID->"0c6be5b8-6b11-45f2-8754-0e4c75e1d55a"]
}, Open ]]
}, Open ]]
}
]
*)