-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresnet.py
220 lines (178 loc) · 8.02 KB
/
resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import torch
import torch.nn as nn
import torch.nn.functional as F
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(
in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, criterion, num_classes=10):
super(ResNet, self).__init__()
self.in_planes = 48
num_blocks = [2, 2, 2, 2]
self._criterion = criterion
block = BasicBlock
self.conv1 = nn.Conv2d(3, 48, kernel_size=3,
stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(48)
self.layer1 = self._make_layer(block, 48, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 96, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 192, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 384, num_blocks[3], stride=2)
self.linear = nn.Linear(384*block.expansion, num_classes)
# self.in_planes = 64
# num_blocks = [2, 2, 2, 2]
# self._criterion = criterion
# block = BasicBlock
# self.conv1 = nn.Conv2d(3, 64, kernel_size=3,
# stride=1, padding=1, bias=False)
# self.bn1 = nn.BatchNorm2d(64)
# self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
# self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
# self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
# self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
# self.linear = nn.Linear(512*block.expansion, num_classes)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
# def forward(self, x, alphas):
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = F.avg_pool2d(out, 4)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
def new(self):
model_new = ResNet(self._criterion).cuda()
return model_new
# def _loss(self, input, alphas ,target):
# logits = self(input, alphas)
def _loss(self, input ,target):
logits = self(input)
return self._criterion(logits, target)
# import torch
# import torch.nn as nn
# import torch.nn.functional as F
# import torch.nn.init as init
# from torch.autograd import Variable
# # __all__ = ['ResNet', 'resnet20', 'resnet32', 'resnet44', 'resnet56', 'resnet110', 'resnet1202']
# def _weights_init(m):
# classname = m.__class__.__name__
# #print(classname)
# if isinstance(m, nn.Linear) or isinstance(m, nn.Conv2d):
# init.kaiming_normal_(m.weight)
# class LambdaLayer(nn.Module):
# def __init__(self, lambd):
# super(LambdaLayer, self).__init__()
# self.lambd = lambd
# def forward(self, x):
# return self.lambd(x)
# class BasicBlock(nn.Module):
# expansion = 1
# def __init__(self, in_planes, planes, stride=1, option='A'):
# super(BasicBlock, self).__init__()
# self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
# self.bn1 = nn.BatchNorm2d(planes)
# self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
# self.bn2 = nn.BatchNorm2d(planes)
# self.shortcut = nn.Sequential()
# if stride != 1 or in_planes != planes:
# if option == 'A':
# """
# For CIFAR10 ResNet paper uses option A.
# """
# self.shortcut = LambdaLayer(lambda x:
# F.pad(x[:, :, ::2, ::2], (0, 0, 0, 0, planes//4, planes//4), "constant", 0))
# elif option == 'B':
# self.shortcut = nn.Sequential(
# nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
# nn.BatchNorm2d(self.expansion * planes)
# )
# def forward(self, x):
# out = F.relu(self.bn1(self.conv1(x)))
# out = self.bn2(self.conv2(out))
# out += self.shortcut(x)
# out = F.relu(out)
# return out
# class Bottleneck(nn.Module):
# expansion = 4
# def __init__(self, in_planes, planes, stride=1):
# super(Bottleneck, self).__init__()
# self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
# self.bn1 = nn.BatchNorm2d(planes)
# self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
# stride=stride, padding=1, bias=False)
# self.bn2 = nn.BatchNorm2d(planes)
# self.conv3 = nn.Conv2d(planes, self.expansion *
# planes, kernel_size=1, bias=False)
# self.bn3 = nn.BatchNorm2d(self.expansion*planes)
# self.shortcut = nn.Sequential()
# if stride != 1 or in_planes != self.expansion*planes:
# self.shortcut = nn.Sequential(
# nn.Conv2d(in_planes, self.expansion*planes,
# kernel_size=1, stride=stride, bias=False),
# nn.BatchNorm2d(self.expansion*planes)
# )
# def forward(self, x):
# out = F.relu(self.bn1(self.conv1(x)))
# out = F.relu(self.bn2(self.conv2(out)))
# out = self.bn3(self.conv3(out))
# out += self.shortcut(x)
# out = F.relu(out)
# return out
# class ResNet(nn.Module):
# def __init__(self, block = BasicBlock, num_blocks = [2, 2, 2, 2], num_classes=10): #18
# # def __init__(self, block = BasicBlock, num_blocks = [9, 9, 9, 9], num_classes=10): #56
# # def __init__(self, block=Bottleneck, num_blocks=[3, 4, 6, 3], num_classes=10): #50
# super(ResNet, self).__init__()
# self.in_planes = 16
# self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False)
# self.bn1 = nn.BatchNorm2d(16)
# self.layer1 = self._make_layer(block, 16, num_blocks[0], stride=1)
# self.layer2 = self._make_layer(block, 32, num_blocks[1], stride=2)
# self.layer3 = self._make_layer(block, 64, num_blocks[2], stride=2)
# self.linear = nn.Linear(64, num_classes)
# self.apply(_weights_init)
# def _make_layer(self, block, planes, num_blocks, stride):
# strides = [stride] + [1]*(num_blocks-1)
# layers = []
# for stride in strides:
# layers.append(block(self.in_planes, planes, stride))
# self.in_planes = planes * block.expansion
# return nn.Sequential(*layers)
# def forward(self, x):
# out = F.relu(self.bn1(self.conv1(x)))
# out = self.layer1(out)
# out = self.layer2(out)
# out = self.layer3(out)
# out = F.avg_pool2d(out, out.size()[3])
# out = out.view(out.size(0), -1)
# out = self.linear(out)
# return out