diff --git a/.circleci/config.yml b/.circleci/config.yml index 1aafa6144..9a5633a2a 100644 --- a/.circleci/config.yml +++ b/.circleci/config.yml @@ -114,7 +114,7 @@ jobs: command: | source ./ci/_activate_current_env.sh cd docs - python -m pytest -n 2 --doctest-glob="*.rst" -W "error::DeprecationWarning" + python -m pytest -n auto --doctest-glob="*.rst" -W "error::DeprecationWarning" cd .. - save_cache: key: deps-{{ .Branch }}-{{ checksum "ci/pyuvdata_tests.yml" }} diff --git a/docs/uvdata_tutorial.rst b/docs/uvdata_tutorial.rst index 78f614910..41676d31e 100644 --- a/docs/uvdata_tutorial.rst +++ b/docs/uvdata_tutorial.rst @@ -768,6 +768,12 @@ c) Resampling a BDA dataset in time d) Averaging in frequency ************************* +The :meth:`pyuvdata.UVData.frequency_average` method takes a number of channels to +average together. Use the `keep_ragged` parameter to control the handling if the +number of frequencies in each spectral window does not divide evenly by the number of +channels to be averaged together. Use the `respect_spws` parameter to control whether +averaging will be done over spectral window boundaries. + .. code-block:: python >>> import os @@ -780,7 +786,7 @@ d) Averaging in frequency Channel width: [122070.3125 122070.3125 122070.3125 122070.3125] >>> # Average by a factor of 2 in frequency - >>> uvd.frequency_average(2) + >>> uvd.frequency_average(n_chan_to_avg=2, keep_ragged=True) >>> print("Channel width after frequency averaging: ", uvd.channel_width) Channel width after frequency averaging: [244140.625 244140.625] @@ -789,8 +795,7 @@ UVData: Plotting Making a simple waterfall plot. Note: there is now support for reading in only part of a uvfits, uvh5 or miriad file -(see :ref:`large_files`), so you need not read in the -entire file to plot one waterfall. +(see :ref:`large_files`), so you need not read in the entire file to plot one waterfall. .. code-block:: python @@ -802,7 +807,6 @@ entire file to plot one waterfall. >>> filename = os.path.join(DATA_PATH, 'day2_TDEM0003_10s_norx_1src_1spw.uvfits') >>> uvd = UVData.from_file(filename, use_future_array_shapes=True) - >>> # Note that the length of the array along axis=1 is always 1. >>> print(uvd.data_array.shape) (1360, 64, 4) >>> print(uvd.Ntimes)