-
Notifications
You must be signed in to change notification settings - Fork 0
/
tubes.py
221 lines (191 loc) · 11.1 KB
/
tubes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
"""
Build tubes and evaluate
"""
import os
import time, json
import datetime
import numpy as np
import torch
import pdb
import pickle
import copy
import torch.utils.data as data_utils
from modules import utils
from modules.evaluation import evaluate_tubes
from modules.box_utils import decode, nms
from data import custum_collate, get_gt_video_list
from modules.tube_helper import nms3dt
import modules.gen_agent_paths as gen_paths #update_agent_paths, copy_live_to_dead,
from modules.tube_helper import trim_tubes
logger = utils.get_logger(__name__)
def build_eval_tubes(args, val_dataset):
for epoch in args.EVAL_EPOCHS:
args.det_itr = epoch
logger.info('Building tubes at ' + str(epoch))
log_file = open("{pt:s}/tubeing-{it:02d}-{sq:02d}.log".format(pt=args.SAVE_ROOT, it=epoch, sq=args.TEST_SEQ_LEN), "w", 10)
args.det_save_dir = args.det_save_dir = os.path.join(args.SAVE_ROOT, "detections-{it:02d}-{sq:02d}-{n:d}/".format(it=epoch, sq=args.TEST_SEQ_LEN, n=int(100*args.GEN_NMS)))
args.tube_save_dir = "{pt:s}/tubes-{it:02d}-{sq:02d}-{n:d}-{tk:d}-{s:s}-{io:d}-{jp:d}/".format(pt=args.SAVE_ROOT, it=epoch,
sq=args.TEST_SEQ_LEN, n=int(100*args.GEN_NMS), tk=args.TOPK, s=args.PATHS_COST_TYPE,
io=int(args.PATHS_IOUTH*100), jp=args.PATHS_JUMP_GAP)
tube_file = args.tube_save_dir+ 'tubes_{}_{:d}.pkl'.format(args.TRIM_METHOD, int(args.TUBES_ALPHA*10))
if args.JOINT_4M_MARGINALS:
tube_file = args.tube_save_dir+ 'tubes_{}_{:d}-j4m.pkl'.format(args.TRIM_METHOD, int(args.TUBES_ALPHA*10))
log_file = open("{pt:s}/tubeing-{it:02d}-{sq:02d}-j4m.log".format(pt=args.SAVE_ROOT, it=epoch, sq=args.TEST_SEQ_LEN), "w", 10)
if not os.path.isdir(args.tube_save_dir):
os.makedirs(args.tube_save_dir)
assert os.path.isdir(args.det_save_dir), args.det_save_dir + ' detection directory does not exists '
log_file.write(args.exp_name + '\n')
tt0 = time.perf_counter()
log_file.write('Building tubes......\n')
paths = perform_building(args, val_dataset.video_list, epoch)
childs = []
if args.JOINT_4M_MARGINALS:
childs = val_dataset.childs
make_tubes(args, paths, val_dataset.video_list, childs, tube_file)
# torch.cuda.synchronize()
logger.info('Computation time {:0.2f}'.format(time.perf_counter() - tt0))
# result_file = args.SAVE_ROOT + '/video-map-results.json'
results = {}
table = '\n|class'
map_line = ['|mAP |' for _ in range(len(args.SUBSETS)*len(args.label_types[1:]))]
metric_types = ['stiou'] #['tiou','siou','stiou']
for metric_type in metric_types:
for TUBES_EVAL_THRESH in args.TUBES_EVAL_THRESHS:
table += '|{:s} {:0.02f}'.format(metric_type, TUBES_EVAL_THRESH)
result_file = "{pt:s}/video-ap-results-{tm:s}-{a:d}-{th:d}-{m:s}.json".format(tm=args.TRIM_METHOD, a=int(args.TUBES_ALPHA*10), pt=args.tube_save_dir, th=int(TUBES_EVAL_THRESH*100), m=metric_type)
if args.JOINT_4M_MARGINALS:
result_file = "{pt:s}/video-ap-results-{tm:s}-{a:d}-{th:d}-{m:s}-j4m.json".format(tm=args.TRIM_METHOD, a=int(args.TUBES_ALPHA*10), pt=args.tube_save_dir, th=int(TUBES_EVAL_THRESH*100), m=metric_type)
mcount =0
for subset in args.SUBSETS:
if len(subset)<2:
continue
sresults = evaluate_tubes(val_dataset.anno_file, tube_file, dataset=args.DATASET, subset=subset, iou_thresh=TUBES_EVAL_THRESH, metric_type=metric_type)
for _, label_type in enumerate(args.label_types[1:]):
name = subset + ' & ' + label_type
rstr = '\n\nResults for {:s} @ {:0.02f} {:s}\n'.format(name, TUBES_EVAL_THRESH, metric_type)
logger.info(rstr)
log_file.write(rstr+'\n')
results[name] = {'mAP': sresults[label_type]['mAP'], 'APs': sresults[label_type]['ap_all'],
'mR':sresults[label_type]['mR'], 'Recalls': sresults[label_type]['recalls'],
'ap_strs': sresults[label_type]['ap_strs']}
map_line[mcount] += '{:0.1f}/{:0.01f}|'.format(sresults[label_type]['mAP'],sresults[label_type]['mR'])
mcount += 1
for ap_str in sresults[label_type]['ap_strs']:
logger.info(ap_str)
log_file.write(ap_str+'\n')
with open(result_file, 'w') as f:
json.dump(results, f)
mcount = 0
for subset in args.SUBSETS:
if len(subset)<2:
continue
for nlt, label_type in enumerate(args.label_types[1:]):
name = subset + ' & ' + label_type
print(args.label_types, len(args.all_classes))
table += '|\n'
table += '|:-:|:-:|:-:|:-:|:-:|:-:|:-:|\n' + map_line[mcount] + '\n'
mcount += 1
for c, cls in enumerate(args.all_classes[nlt+1]):
table += '|{:s}'.format(cls)
for metric_type in metric_types:
for TUBES_EVAL_THRESH in args.TUBES_EVAL_THRESHS:
result_file = "{pt:s}/video-ap-results-{tm:s}-{a:d}-{th:d}-{m:s}.json".format(tm=args.TRIM_METHOD, a=int(args.TUBES_ALPHA*10), pt=args.tube_save_dir, th=int(TUBES_EVAL_THRESH*100), m=metric_type)
if args.JOINT_4M_MARGINALS:
result_file = "{pt:s}/video-ap-results-{tm:s}-{a:d}-{th:d}-{m:s}-j4m.json".format(tm=args.TRIM_METHOD, a=int(args.TUBES_ALPHA*10), pt=args.tube_save_dir, th=int(TUBES_EVAL_THRESH*100), m=metric_type)
with open(result_file, 'r') as f:
results = json.load(f)
table += '|{:0.01f}/{:0.01f}'.format(results[name]['APs'][c],results[name]['Recalls'][c])
table += '|\n'
logger.info(table)
log_file.close()
def perform_building(args, video_list, epoch):
"""Build agent-level tube or called paths"""
all_paths = {}
for videoname in video_list:
total_dets = 0
video_dir = args.det_save_dir + videoname + '/'
assert os.path.isdir(
video_dir), 'Detection should exist @ ' + video_dir
if args.DATASET == 'ucf24':
dirname = args.tube_save_dir + videoname.split('/')[0]
if not os.path.isdir(dirname):
os.makedirs(dirname)
agent_path_save_name = args.tube_save_dir + videoname + '_paths.pkl'.format()
if args.COMPUTE_PATHS or not os.path.isfile(agent_path_save_name):
frames_names = os.listdir(video_dir)
frame_ids = [int(fn.split('.')[0]) for fn in frames_names if fn.endswith('.pkl')]
num_classes_to_use = args.num_classes_list[0] + args.num_classes_list[1]
t1 = time.perf_counter()
live_paths = []
dead_paths = []
for frame_num in sorted(frame_ids):
save_name = '{:s}/{:05d}.pkl'.format(video_dir, frame_num)
with open(save_name, 'rb') as f:
det_boxes = pickle.load(f)
det_boxes = det_boxes['main']
pickn = min(args.TOPK, det_boxes.shape[0])
det_boxes = det_boxes[:args.TOPK,:]
det_boxes = det_boxes[det_boxes[:,4]>args.CONF_THRESH,:]
num_dets = 0
if det_boxes.shape[0]>0:
frame = {}
frame['boxes'] = det_boxes[:,:4]
frame['scores'] = det_boxes[:,4]
frame['allScores'] = det_boxes[:,4:]
num_dets = det_boxes.shape[0]
live_paths, dead_paths = gen_paths.update_agent_paths(live_paths,
dead_paths, frame, num_classes_to_use,
iouth=args.PATHS_IOUTH, time_stamp=frame_num,
costtype=args.PATHS_COST_TYPE,
jumpgap=args.PATHS_JUMP_GAP,
min_len=args.PATHS_MIN_LEN)
total_dets += num_dets
if frame_num % 600 == 0 and frame_num>1:
logger.info('Time taken at fn {:d}, num dets {:d}, num live_paths {:d} time {:0.02f}'.format(frame_num, num_dets, len(live_paths), time.perf_counter() - t1))
t1 = time.perf_counter()
paths = gen_paths.copy_live_to_dead(live_paths, dead_paths,args.PATHS_MIN_LEN)
paths = gen_paths.fill_gaps(
paths, min_len_with_gaps=args.PATHS_MIN_LEN,
minscore=args.PATHS_MINSCORE)
## dump agent paths to disk
with open(agent_path_save_name,'wb') as f:
pickle.dump(paths, f)
else:
with open(agent_path_save_name, 'rb') as f:
paths = pickle.load(f)
all_paths[videoname] = paths
return all_paths
def apply_labelwise_nms(all_tubes):
labelwise_tubes = {}
for tube in all_tubes:
label = 'l'+str(tube['label_id'])
if label not in labelwise_tubes:
labelwise_tubes[label] = [tube]
else:
labelwise_tubes[label].append(tube)
det_tubes = []
for label, ltubes in labelwise_tubes.items():
ltubes = nms3dt(ltubes)
for tube in ltubes:
det_tubes.append(tube)
return det_tubes
def make_tubes(args, paths, video_list, childs, tube_file):
"""Make tubes from paths and dump in tube_file"""
if args.COMPUTE_TUBES or not os.path.isfile(tube_file):
# logger.info('building agent tubes')
detection_tubes = {}
for ltype in args.label_types[1:]:
detection_tubes[ltype] = {}
for vid, videoname in enumerate(video_list):
start_id = 1
for nlt, ltype in enumerate(args.label_types[1:]):
logger.info('building tubes for '+ ltype)
# print(args.num_classes_list, args.label_types)
numc = args.num_classes_list[nlt+1]
all_tubes = trim_tubes(start_id, numc, copy.deepcopy(paths[videoname]), childs, args.num_classes_list, topk=args.TUBES_TOPK, alpha=args.TUBES_ALPHA, min_len=args.TUBES_MINLEN, trim_method=args.TRIM_METHOD)
# det_tubes = apply_labelwise_nms(all_tubes)
detection_tubes[ltype][videoname] = all_tubes
start_id += numc
logger.info(str(vid+1) + '/'+ str(len(video_list)) + ' '+ str(len(detection_tubes[ltype][videoname])) +' tubes built for '+ ltype+' '+ videoname)
with open(tube_file, 'wb') as f:
pickle.dump(detection_tubes, f)