-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlearning_move_wise.py
229 lines (184 loc) · 8.62 KB
/
learning_move_wise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# August 2020,
# Learning by costs doesn't tell the full story. Costs are heavily dependent on material.
# Check every move made by a player in the same state. How many states like this do you see?
from helper_fns import *
import numpy as np
import matplotlib.pyplot as plt
import math, pymongo, copy
from bson import objectid
s1lookup = process_lookup("beta")
s2lookup = process_lookup("tango-2-3")
print()
def plot_player(p, season):
#NEWprint("Analysing {0} in season {1}".format(p,season))
if what_config() != season:
if season == 1:
set_config("beta")
else:
set_config("tango-2-3")
if season == 1:
lookup = s1lookup
page_hits_query = {"user":p, "kind":"move_viewed", "error":{"$exists":False}, "user_move":"True", "balance_code":{"$exists":False}}
games_query = {"usernames":p, "winner":{"$exists":True}, "balance_code":{"$exists":False}}
else:
lookup = s2lookup
page_hits_query = {"user":p, "kind":"move_viewed", "error":{"$exists":False}, "user_move":"True", "balance_code":{"$exists":True}}
games_query = {"usernames":p, "winner":{"$exists":True}, "balance_code":{"$exists":True}}
state_dictionary = {}
moves = {}
notations_seen = []
count = 0
for m in db.page_hits.find(page_hits_query):
moves[count] = m
count += 1
costs = {}
for g in db.completed_games.find(games_query):
# ignore corrupted games
if g["_id"] in [objectid.ObjectId("5e98b4658a225cfc82573fd1"), objectid.ObjectId("5eaaee2c684de5692fc01ef6"), objectid.ObjectId("5ec108ef29108c1ba22cb375")]:
continue
# for every game played by p in season 2
pair = g["p1c1"][0] + g["p1c2"][0] if p == g["usernames"][0] else g["p2c1"][0] + g["p2c2"][0]
ordered_pair = pair
if chars.index(pair[0]) > chars.index(pair[1]):
ordered_pair = pair[1]+pair[0]
opp = g["p2c1"][0] + g["p2c2"][0] if p == g["usernames"][0] else g["p1c1"][0] + g["p1c2"][0]
move_count = 0
state = get_initial_state(g)
for m in g["Moves"]:
new_state = copy.deepcopy(state)
do_action(m,new_state)
num_found = 0
move_count+=1
uc1_health = str(new_state[1+(9*g["usernames"].index(p))+chars.index(pair[0])])
uc2_health = str(new_state[1+(9*g["usernames"].index(p))+chars.index(pair[1])])
oc1_health = str(new_state[10-(9*g["usernames"].index(p))+chars.index(opp[0])])
oc2_health = str(new_state[10-(9*g["usernames"].index(p))+chars.index(opp[1])])
# find the correct move position
good_log = {}
for move_log in moves.values():
if move_log["move_count"] == str(move_count) and move_log["action"] == m and move_log["uc1"] == pair[0] and move_log["uc2"] == pair[1] and move_log["oc1"] == opp[0] and \
move_log["oc2"] == opp[1] and move_log["uc1_health"] == uc1_health and move_log["uc2_health"] == uc2_health and move_log["oc1_health"] == oc1_health and move_log["oc2_health"] == oc2_health and \
move_log["time"] > g["start_time"] and move_log["time"] < g["end_time"]:
good_log = move_log
num_found+=1
if g["usernames"].index(p) == 1:
state = flip_state(state)
if num_found > 3:
blah = 0
#print("clash:",g,m)
elif check_actions_available(state, ordered_pair, 0.15, lookup) and num_found > 0:
actual, possible = cost(state,ordered_pair,m, lookup,classify_mistake=True)
costs[good_log["time"]] = (possible-actual) / possible
if str(state) in state_dictionary.keys():
state_dictionary[str(state)] += [(possible-actual) / possible]
else:
state_dictionary[str(state)] = [(possible-actual) / possible]
state = new_state
got_worse = 0
got_better = 0
no_change = 0
all_optimal = 0
repeated_mistake = 0
grads = []
for k in state_dictionary.keys():
if len(state_dictionary[k]) > 1:
grad = np.polyfit(range(len(state_dictionary[k])), state_dictionary[k], 1)[0]
grads += [grad]
#print(state_dictionary[k], grad)
if state_dictionary[k].count(0) == len(state_dictionary[k]):
all_optimal += 1
#print("all optimal")
elif state_dictionary[k].count(state_dictionary[k][0]) == len(state_dictionary[k]) and state_dictionary[k][0] != 0:
repeated_mistake += 1
#print("repeated mistake")
if grad < 0.001 and grad > -0.001:
#print("no change")
no_change += 1
elif grad > 0:
#print("worse")
got_worse += 1
else:
#print("better")
got_better += 1
#NEWprint("{0} states were seen multiple times, in {1} the player improved, in {2} they got worse. In {3} they played optimally every time, in {4} they made the same mistake every time.".format(got_worse+got_better+no_change, got_better, got_worse, all_optimal, repeated_mistake, no_change))
results = [costs[t] for t in sorted(costs.keys())]
# ordered_critical_costs = [costs[t] for t in res]
# res = [np.mean(l) for l in np.array_split(ordered_critical_costs, 15)]
# plt.scatter(range(len(res)),res,label=p)
x = [x/len(results) for x in range(len(results))]
#NEWprint("{0} critical moves were made, {1} were optimal\n".format(len(results),results.count(0)))
#plt.scatter(x, results, label = "{0}:{1}".format(p,str(season)))
# #x = [x/len(res) for x in range(len(res))]
# x = range(len(res))
# poly = np.poly1d(np.polyfit(x,res,2))
# #poly = np.poly1d(np.polyfit(x,ordered_critical_costs,1))
# x = np.linspace(0,14)
# y = poly(x)
# plt.plot(x,y, label=p)
return np.mean(grads) #NEWgot_better / (got_better + got_worse) if got_better + got_worse > 0 else 0.5
# Find top 10 players in either season
s1players = {}
s2players = {}
for p in db.players.find({"Username":{"$exists":True}}):
if p["Username"] not in ["apropos0", "cptKav", "probablytom"]:
s1players[p["Username"]] = db.completed_games.count_documents({"winner":{"$exists":True}, "usernames":p["Username"], "balance_code":{"$exists":False}})
s2players[p["Username"]] = db.completed_games.count_documents({"winner":{"$exists":True}, "usernames":p["Username"], "balance_code":{"$exists":True}})
s1players = {k:v for k, v in sorted(s1players.items(), key=lambda x: x[1], reverse=True)}
s2players = {k:v for k, v in sorted(s2players.items(), key=lambda x: x[1], reverse=True)}
num_players = 75 # TUNABLE
fig, (ax0, ax1) = plt.subplots(ncols=2, nrows=1, figsize=(15,6), sharey=True)
count = 0
gradients = []
for p in s1players.keys():
if count >= num_players:
break
gradients += [plot_player(p,1)]
count+=1
print(gradients)
for g in gradients:
ax0.plot(["start","end"],[0,g], alpha=0.25)
ax0.plot(["start","end"],[0,np.mean(gradients)])
s1avg = np.mean(gradients)
ax0.plot(["start","end"],[0,np.mean(gradients)], color="black", lw=2)
ax0.axhline(y=0, linestyle=(0, (5, 5)))
ax0.set_title("Season 1")
ax0.set_xlabel("Average change over time at repeated states")
ax0.set_ylabel("Change in Relative Cost")
count = 0
gradients = []
for p in s2players.keys():
if count >= num_players:
break
gradients += [plot_player(p,2)]
count+=1
print(gradients)
for g in gradients:
ax1.plot(["start","end"],[0,g], alpha=0.25)
ax1.plot(["start","end"],[0,np.mean(gradients)], color="black", lw=2)
ax1.axhline(y=0, linestyle=(0, (5, 5)))
ax1.set_title("Season 2")
ax1.set_xlabel("Average change over time at repeated states")
print("In season 1 the average gradient is {0}, in season 2 it is {1}".format(s1avg, np.mean(gradients)))
plt.tight_layout()
plt.show()
# count = 0
# improved_ratios = []
# for p in s1players.keys():
# if count < num_players:
# improved_ratios += [plot_player(p,1)]
# elif count >= num_players:
# break
# count+=1
# print("Of {0} players in season 1, {1} got better".format(num_players, [x>0.5 for x in improved_ratios].count(True)))
# improved_ratios = []
# count = 0
# for p in s2players.keys():
# if count < num_players:
# improved_ratios += [plot_player(p,2)]
# elif count >= num_players:
# break
# count+=1
# print("Of {0} players in season 2, {1} got better".format(num_players, [x>0.5 for x in improved_ratios].count(True)))
# plt.legend()
# plt.tight_layout()
# plt.show()