-
Notifications
You must be signed in to change notification settings - Fork 4
/
pop_growth.html
660 lines (462 loc) · 17.6 KB
/
pop_growth.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
<!DOCTYPE html>
<html lang="" xml:lang="">
<head>
<title>Welcome to Population Ecology!</title>
<meta charset="utf-8" />
<meta name="date" content="2021-04-08" />
<script src="libs/header-attrs/header-attrs.js"></script>
<link href="libs/remark-css/default.css" rel="stylesheet" />
<link href="libs/remark-css/default-fonts.css" rel="stylesheet" />
</head>
<body>
<textarea id="source">
class: center, middle, inverse, title-slide
# Welcome to Population Ecology!
## ⚔<br/>
###
### 04/08/2021
---
# 3 part lecture (with breaks)
.pull-left[
- **Part 1** Exponential growth
- **Part 2** Logistic growth - _Density dependent_
- **Part 3** Logistic growth with stochasticity
]
.pull-right[
![pop](pop_growth_files/lego_pop_img.png)
]
---
# Part 1: Why be interested in population growth?
--
- Project future populations
- Human population expected to be 9.8 billion by 2050
--
- Conservation of species
--
- Sustainable use of resources
--
- Many more
---
class: inverse, middle, center
#Part 1: Let's start with exponential population growth
Density independent growth
`$$\frac{dN}{dt}=rN$$`
---
#Exponential growth
What is required for a population to grow?
--
How many births and how many deaths?
`$$N_{t+1} = N_t + B - D + I - E$$`
- `\(B\)` = _Births_
- `\(D\)` = _Deaths_
- `\(I\)` = _Immigration_
- `\(E\)` = _Emigration_
--
If we assume that immigration and emigration are equal, then the change in population size is:
`$$\Delta N = B - D$$`
---
#Exponential growth
`$$\Delta N = B - D$$`
.pull-left[
- More births than deaths the population grows
.center[
<img src="pop_growth_files/happy_face.png" style="width: 50%" />
]
]
.pull-right[
- More deaths than births the population declines
{{content}}
]
--
![die](pop_growth_files/happy_face_blood.jpg)
{{content}}
---
#Exponential growth
_Change in population_ ( `\(dN\)` ) _over a very small interval of time_ ( `\(dt\)` ) can be described as:
`$$\frac{dN}{dt}=B-D$$`
--
- Births and deaths are also described in rates:
.pull-left[
`$$B = bN$$`
`\(b\)` = instantaneous birth rate
[births / (individual * time)]
]
.pull-right[
`$$D = dN$$`
`\(d\)` = instantaneous death rate
[deaths / (individual * time)]
]
---
#Exponential growth
_SO_ change in population over time can be described as
`$$\frac{dN}{dt}=(b-d)N$$`
--
`$$\frac{dN}{dt}=(0.55-0.50)N$$`
--
`$$\frac{dN}{dt}=(0.55-0.50)*100$$`
--
`$$\frac{dN}{dt}=0.05*100$$`
--
`$$\frac{dN}{dt}=5$$`
---
#Exponential growth
If we let `\(b-d\)` become the constant `\(r\)`, the __intrinsic rate of increase__, we have the continuous exponential growth equation:
`$$\frac{dN}{dt}=rN$$`
--
.center[
<img src="pop_growth_files/ta_da.png" style="width: 60%" />
]
---
#Exponential growth
Change in population is equal to the intrinsic rate of increase ( `\(r\)` ) multiplied by the population size ( `\(N\)` )
.pull-left[
`$$\frac{dN}{dt}=rN$$`
]
.pull-right[
`\(N\)` = _population size_
`\(r\)` = _intrinsic rate or increase_
]
`\(r\)` defines how fast a population is growing or declining
- `\(r=0\)` no growth
- `\(r>0\)` positive growth
- `\(r<0\)` negative growth
The differential equation tells us growth __rate__ not population size
---
#Exponential growth
The abundance of an exponentially growing population at a given time `\(t\)` can be worked out by:
`$$N_t = N_0e^{rt}$$`
Look familiar from assignment 1?
--
The discrete version of the exponential equation tells us the population per time-step:
`$$N_{t+1} = N_t + r_dN_t$$`
`$$N_{t+1} = 100 + 0.05 * 100$$`
`$$N_{t+1} = 105$$`
`\(N_t\)` = Population size at time t
`\(r_d\)` = discrete growth factor
---
#Exponential growth
.pull-left[
Theoretical populations growing and declining as a result of different values of `\(r\)`
- `\(r=0\)` no growth
- `\(r>0\)` positive growth
- `\(r<0\)` negative growth
Because growth rate is exponential, by taking the natural logarithm of the population size the graphed lines become straight
]
.pull-right[
![](pop_growth_files/figure-html/plot-exp-1.png)<!-- -->
]
---
# Exponential growth
.pull-left[Exponential growth]
.pull-right[Logarithm of exponential growth]
![](pop_growth_files/figure-html/plot-chunk-1.png)![](pop_growth_files/figure-html/plot-chunk-2.png)
---
#Growth rates
Common name | `\(r\)` [individuals/(individual*day)] | Doubling time
------------|-------------------------------------|---------
Virus | 300.0 | 3.3 minutes
Bacterium | 58.7 | 17 minutes
Protozoan | 1.59 | 10.5 hours
Hydra | 0.34 | 2 days
Flour beetle| 0.101 | 6.9 days
Brown rat | 0.0148 | 46.8 days
Domestic cow| 0.001 | 1.9 years
Mangrove | 0.00055 | 3.5 years
Southern beech | 0.000075 | 25.3 years
---
#Growth rates
Population increases exponentially but __Growth rate__ over __population size__ increases proportionally with the population
![](pop_growth_files/figure-html/plot-chunk1-1.png)![](pop_growth_files/figure-html/plot-chunk1-2.png)
---
# Exponential growth
- Populations growing exponentially have a doubling time
- The doubling time depends on the growth rate `\(r\)` and is _not_ every year
- (ง'̀-'́)ง Surely no species can grow forever exponentially?!?!?!
- _Correct!_ Welcome to part 2, __density dependence__
---
class: inverse, middle, center
#Take 5 minutes to discuss the assumptions of the exponential growth model
( ͡° ͜ʖ ͡°)
---
class: inverse, middle, center
#Part 2: Logistic population growth
Density dependent growth
`$$\frac{dN}{dt}=rN\left(1- \frac{N}{K} \right)$$`
---
#Logistic growth
Now we will look at populations which do not grow forever but reach a __carrying capacity__ ( `\(K\)` )
`\(K\)` represents the maximum population size that can be supported considering limiting factors such as food, shelter and space
`$$\frac{dN}{dt}=rN\left(1- \frac{N}{K} \right)$$`
`\(N\)` = Population size
`\(r\)` = Intrinsic rate of increase
`\(K\)` = Carrying capacity
---
#Logistic growth
Consider the term `\(\left(1- \frac{N}{K} \right)\)` as a penalty on the growth of the population depending on the number of individuals in the community
- Very crowded communities have a high penalty compared to ones with plenty of space and resources
`$$\frac{dN}{dt}=rN\left(1- \frac{N}{K} \right)$$`
--
- At the point the population reaches the carrying capacity: `\(N\)` will = `\(K\)`, and the fraction `\(\frac{N}{K}\)` will = 1
- The term `\(\left(1- \frac{N}{K} \right)\)` will collapse to 0 and the change in population will = 0. The equation will be multiplied by 0 and equal 0
- So the population will remain at size `\(K\)`
---
#Logistic growth
If the population is very small, `\(N\)` is small relative to `\(K\)`, then the penalty is small
`$$\frac{dN}{dt}=rN\left(1- \frac{N}{K} \right)$$`
--
However, as we learned from exponential growth, a population grows in proportion to its size.
- A population of 1000 seabirds will produce more eggs than a population of 100.
- In the logistic growth equation the proportion added to the population decreases as the population grows, reaching 0 when `\(N = K\)`
---
#Logistic growth
`$$\frac{dN}{dt}=rN\left(1- \frac{N}{K} \right)$$`
- If `\(K = 100\)` and `\(N = 7\)` then the unused space is `\(1-(7/100) = 0.93\)` and the population is growing at 93% of the growth rate of an exponentially growing population
- If `\(K = 100\)` and `\(N = 98\)` then the unused proportion of capacity is `\(1-(98/100) = 0.02\)` and growth is at 2% of the growth rate of an exponentially growing population
--
The point at which a population is the largest relative to the penalty for its size is at `\(K/2\)`
- What this means is the growth rate of a population is fastest at half its carrying capacity
- As the population exceeds `\(K/2\)` the penalty increases but below `\(K/2\)` the population is small and the proportion added to the population is also small
---
#Logistic growth
_Thanos should have studied population ecology_
.pull-left[
- If a species is at capacity, its growth rate will increase to maximum if you cut it in half.
- Not all species are equal so cutting all in half will not have an equal effect...
]
.pull-right[
<img src="pop_growth_files/thanos.jpg" style="width: 100%" />
]
---
#Logistic growth
.pull-left[
_Paramecium_ growing to capacity.
<img src="pop_growth_files/paramecium.jpg" />
]
.pull_right[
![](pop_growth_files/figure-html/plot-chunk2-1.png)<!-- -->
]
---
#Logistic growth
.center[
<img src="pop_growth_files/yeast_seal.png" style="width: 60%"/>
]
---
#Logistic growth
Now we will look at the discrete form of the equation:
`$$N_{t+1} = N_t + r_dN_t\left(1- \frac{N_t}{K} \right)$$`
`\(N_t\)` = Population size at time t
`\(r_d\)` = discrete growth factor
`\(K\)` = Carrying capacity
--
- Instead of telling us the change in a population at an infinitely small point in time, the discrete equation tells us the size of the population at a given time.
---
#Logistic growth
The size of the population at the next time-step is equal to:
- The size of the current population plus the current population multiplied by the discrete growth rate and the density penalty.
`$$N_{t+1} = N_t + r_dN_t\left(1- \frac{N_t}{K} \right)$$`
--
`$$N_{t+1} = 100 + 0.05 * 100 \left(1- \frac{100}{200} \right)$$`
--
`$$N_{t+1} = 102.5$$`
--
Remember how in the exponential model `\(N_{t+1} = 105\)` ?
---
#Logistic growth
__Unlike__ the exponential model, in te logistic model, growth rate is dependent on population size and reaches its peak at half of the carrying capacity
![](pop_growth_files/figure-html/plot-chunk3-1.png)![](pop_growth_files/figure-html/plot-chunk3-2.png)
---
#Logistic growth
.pull-left[
**Logistic** growth rate vs population size
]
.pull-right[
**Exponential** growth rate vs population size
]
![](pop_growth_files/figure-html/plot-chunk4-1.png)![](pop_growth_files/figure-html/plot-chunk4-2.png)
---
class: inverse, middle, center
#Take 5 minutes to discuss the assumptions of the logistic growth model
(ᵔᴥᵔ)
---
class: inverse, middle, center
#Part 3: Introducing stochasticity
Non-deterministic growth
---
#Stochasticity
Until now, everything we have looked at has been _entirely_ deterministic but is this true of the real world?
`$$N_{t+1} = N_t + r_dN_t\left(1- \frac{N_t}{K} \right)$$`
.pull-left[
Environmental stochasticity
- Populations go through good and bad times and population growth rate is not constant
- We can represent this by adding variability to the growth rate `\(r_d\)`
]
.pull-right[
Demographic stochasticity
- By chance a population might have a run of births or a run of deaths
- Demographic stochasticity includes the probability of births and deaths in the parameter `\(r\)`
]
--
- Variability can also be included in `\(K\)`, the carrying capacity!
We will focus on _environmental stochasticity_
---
#Stochasticity
Even if __average__ growth rate is positive some stochasticity can drive extinction
![](pop_growth_files/figure-html/plot-chunk5-1.png)![](pop_growth_files/figure-html/plot-chunk5-2.png)
---
#Recap
We have looked at:
- discrete and continuous equations for __exponential growth__
- also known as __density independent__ growth
- discrete and continuous equations for __logistic growth__
- also known as __density dependent__ growth
- __Stochastic__ logistic growth
- We have discussed model __assumptions__
---
#Key points
- __Exponentially__ growing populations grow proportional to their size indefinitely
- __Logistically__ growing populations experience a penalty that increases with population size
- Growth rate is greatest at half the carrying capacity, when the population size is at its largest relative to the density penalty
- __Stochasticity__ can have a serious effect on populations and deterministic models do not account for stochasticity
- __Assumptions are key__, _think about these for the assignment_
---
#Things to be aware of
- Differences in continuous and discrete equation
- Different notation and descriptions of `\(r\)`
- Mathematical differences
- Many different population growth equations
- We have not talked about the model `\(N_{t+1} = \lambda N_t\left(1- \frac{N_t}{K} \right)\)`.
- Concepts can be transferable but be aware results may not be the same
- This is just the beginning
- Population growth models get _much much_ more complicated to deal with more complicated species, for example, age structured population and competition
---
# Top tips for the assignment
- Attend labs and office hours
- Understand the two key graphs: population vs time and growth-rate vs population
- Use the app to understand different parameters (but do not use screenshots from the app for your assignment)
- Rubbish in rubbish out. If model outputs look crazy or the numbers don't make logical sense then double check your inputs and equations
---
class: inverse, middle, center
#Go forth and model!!!
\ (•◡•) /
<!-- <iframe src="https://quinnasena.shinyapps.io/r_logistic/" width="100%" height="1024px"></frame> -->
<!-- pagedown::chrome_print("pop_growth.Rmd", "growth_app/www/pop_growth.pdf") -->
</textarea>
<style data-target="print-only">@media screen {.remark-slide-container{display:block;}.remark-slide-scaler{box-shadow:none;}}</style>
<script src="https://remarkjs.com/downloads/remark-latest.min.js"></script>
<script>var slideshow = remark.create({
"highlightStyle": "github",
"highlightLines": true,
"countIncrementalSlides": false
});
if (window.HTMLWidgets) slideshow.on('afterShowSlide', function (slide) {
window.dispatchEvent(new Event('resize'));
});
(function(d) {
var s = d.createElement("style"), r = d.querySelector(".remark-slide-scaler");
if (!r) return;
s.type = "text/css"; s.innerHTML = "@page {size: " + r.style.width + " " + r.style.height +"; }";
d.head.appendChild(s);
})(document);
(function(d) {
var el = d.getElementsByClassName("remark-slides-area");
if (!el) return;
var slide, slides = slideshow.getSlides(), els = el[0].children;
for (var i = 1; i < slides.length; i++) {
slide = slides[i];
if (slide.properties.continued === "true" || slide.properties.count === "false") {
els[i - 1].className += ' has-continuation';
}
}
var s = d.createElement("style");
s.type = "text/css"; s.innerHTML = "@media print { .has-continuation { display: none; } }";
d.head.appendChild(s);
})(document);
// delete the temporary CSS (for displaying all slides initially) when the user
// starts to view slides
(function() {
var deleted = false;
slideshow.on('beforeShowSlide', function(slide) {
if (deleted) return;
var sheets = document.styleSheets, node;
for (var i = 0; i < sheets.length; i++) {
node = sheets[i].ownerNode;
if (node.dataset["target"] !== "print-only") continue;
node.parentNode.removeChild(node);
}
deleted = true;
});
})();
(function() {
"use strict"
// Replace <script> tags in slides area to make them executable
var scripts = document.querySelectorAll(
'.remark-slides-area .remark-slide-container script'
);
if (!scripts.length) return;
for (var i = 0; i < scripts.length; i++) {
var s = document.createElement('script');
var code = document.createTextNode(scripts[i].textContent);
s.appendChild(code);
var scriptAttrs = scripts[i].attributes;
for (var j = 0; j < scriptAttrs.length; j++) {
s.setAttribute(scriptAttrs[j].name, scriptAttrs[j].value);
}
scripts[i].parentElement.replaceChild(s, scripts[i]);
}
})();
(function() {
var links = document.getElementsByTagName('a');
for (var i = 0; i < links.length; i++) {
if (/^(https?:)?\/\//.test(links[i].getAttribute('href'))) {
links[i].target = '_blank';
}
}
})();
// adds .remark-code-has-line-highlighted class to <pre> parent elements
// of code chunks containing highlighted lines with class .remark-code-line-highlighted
(function(d) {
const hlines = d.querySelectorAll('.remark-code-line-highlighted');
const preParents = [];
const findPreParent = function(line, p = 0) {
if (p > 1) return null; // traverse up no further than grandparent
const el = line.parentElement;
return el.tagName === "PRE" ? el : findPreParent(el, ++p);
};
for (let line of hlines) {
let pre = findPreParent(line);
if (pre && !preParents.includes(pre)) preParents.push(pre);
}
preParents.forEach(p => p.classList.add("remark-code-has-line-highlighted"));
})(document);</script>
<script>
slideshow._releaseMath = function(el) {
var i, text, code, codes = el.getElementsByTagName('code');
for (i = 0; i < codes.length;) {
code = codes[i];
if (code.parentNode.tagName !== 'PRE' && code.childElementCount === 0) {
text = code.textContent;
if (/^\\\((.|\s)+\\\)$/.test(text) || /^\\\[(.|\s)+\\\]$/.test(text) ||
/^\$\$(.|\s)+\$\$$/.test(text) ||
/^\\begin\{([^}]+)\}(.|\s)+\\end\{[^}]+\}$/.test(text)) {
code.outerHTML = code.innerHTML; // remove <code></code>
continue;
}
}
i++;
}
};
slideshow._releaseMath(document);
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement('script');
script.type = 'text/javascript';
script.src = 'https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-MML-AM_CHTML';
if (location.protocol !== 'file:' && /^https?:/.test(script.src))
script.src = script.src.replace(/^https?:/, '');
document.getElementsByTagName('head')[0].appendChild(script);
})();
</script>
</body>
</html>