diff --git a/orangecontrib/spectroscopy/io/agilent.py b/orangecontrib/spectroscopy/io/agilent.py index 8fe543077..fb4166bd1 100644 --- a/orangecontrib/spectroscopy/io/agilent.py +++ b/orangecontrib/spectroscopy/io/agilent.py @@ -2,7 +2,7 @@ import numpy as np from Orange.data import FileFormat, ContinuousVariable, Domain -from orangecontrib.spectroscopy.utils.agilent import agilentImage, agilentImageIFG, agilentMosaic, agilentMosaicIFG, \ +from agilent_format import agilentImage, agilentImageIFG, agilentMosaic, agilentMosaicIFG, \ agilentMosaicTiles from orangecontrib.spectroscopy.io.util import SpectralFileFormat, _spectra_from_image, TileFileFormat @@ -205,6 +205,9 @@ def read_tile(self): # the not-tiled reader for y in range(ytiles - 1, -1, -1): tile = tiles[x, y]() + if np.isnan(tile).all(): + # Return an empty Table if tile doesn't exist (instead of storing a tile of nans) + yield Orange.data.Table.from_domain(domain) x_size, y_size = tile.shape[1], tile.shape[0] x_locs = np.linspace(x*x_size*px_size, (x+1)*x_size*px_size, num=x_size, endpoint=False) y_locs = np.linspace((ytiles-y-1)*y_size*px_size, (ytiles-y)*y_size*px_size, num=y_size, endpoint=False) diff --git a/orangecontrib/spectroscopy/utils/agilent.py b/orangecontrib/spectroscopy/utils/agilent.py deleted file mode 100644 index d8247bbb1..000000000 --- a/orangecontrib/spectroscopy/utils/agilent.py +++ /dev/null @@ -1,625 +0,0 @@ -__version__ = "0.4.4" - -import configparser -from pathlib import Path -import struct - -import numpy as np - -DEBUG = False - -def base_data_path(path: Path) -> Path: - """ - Find the correct base for data files - - For example, folder with ["ab9.dmt", "AB9_0000_0000.dmd"] should return "AB9" - """ - if path.suffix == ".dmt": - for child in path.parent.iterdir(): - if child.suffix == ".dmt": - continue - elif child.stem.casefold() == (path.stem + "_0000_0000").casefold(): - return child.with_name(child.stem.split("_0000_0000")[0]) - else: - return path - -def bsp_path(path: Path) -> Path: - """ - Find the correct Path for the bsp file - - Necessary as bsp can be equal to .dat/.seq, or lowercase - """ - bsp = path.with_suffix(".bsp") - if bsp.is_file(): - return bsp - else: - return path.parent.joinpath(bsp.name.lower()) - -def check_files(filename, exts): - """ - takes filename string and list of extensions, checks that they all exist and - returns a Path - """ - p = Path(filename) - p = base_data_path(p) - for ext in exts: - if ext == ".dmt": - # Always lowercase - ps = dmt_path(p) - elif ext in [".drd", ".dmd"]: - # Always has at least _0000_0000 tile - ps = p.parent.joinpath(p.stem + "_0000_0000" + ext) - elif ext == ".bsp": - # Can be lowercase (if reprocessed, for example) - ps = bsp_path(p) - else: - ps = p.with_suffix(ext) - if not ps.is_file(): - raise OSError('File "{}" was not found.'.format(ps)) - return p - -def dmt_path(path: Path) -> Path: - return path.parent.joinpath(path.with_suffix(".dmt").name.lower()) - -def _readint(f): - return struct.unpack("i", f.read(4))[0] - -def _readdouble(f): - return struct.unpack("d", f.read(8))[0] - -def _get_wavenumbers(f): - """ - takes an open file handle, grabs the startwavenumber, numberofpoints and step, - calculates wavenumbers array and returns all in dict - """ - d = {} - f.seek(2228) - d['StartPt'] = _readint(f) - f.seek(2236) - d['Npts'] = _readint(f) - f.seek(2216) - d['PtSep'] = _readdouble(f) - d['wavenumbers'] = [d['PtSep'] * (d['StartPt'] + i) for i in range(d['Npts'])] - - if DEBUG: - for k,v in d.items(): - if k == "wavenumbers": - print(k, len(v), v[0], v[-1], type(v)) - else: - print(k,v, type(v)) - return d - -def _get_params(f): - """ - Takes an open file handle and reads a preset selection of parameters - returns in a dictionary - """ - STRP = b'\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x10\x11\x12\x13\x14\x15\x16\x17\x18' - - def _get_section(dat, section): - skip = [b'', b'\n', b'\"', b'\t', b',', b'\r', - b'\x0b', b'\x0c', b'\x0e', b'\x0f', b'\x1a', b'\x1c'] - d = {} - part = dat.partition(bytes(section, encoding='utf8')) - dat = part[2].lstrip(STRP) - try: - n = dat[0] - except IndexError: - raise IndexError("Section not found") - dat = dat[1:].split(b'\x00') - i = 0 - for n in range(n): - while dat[i].strip(STRP) in skip: - i += 1 - k = dat[i].strip(STRP).decode('utf8', errors='replace') - i += 1 - while dat[i].strip(STRP) in skip: - i += 1 - if dat[i].strip(STRP) in [b'Data', b'PropType']: - # Give up, maybe end of section - return d - else: - v = dat[i].strip(STRP).decode('utf8', errors='replace') - i += 1 - d[k] = v - return d - - def _get_prop_d(dat, param): - part = dat.partition(bytes(param, encoding='utf8')) - val_b = part[2].partition(bytes("1.00", encoding='utf8'))[2] - val = struct.unpack("d", val_b[12:20])[0] - return val - - def _get_prop_str(dat, param): - b_param = b'\x00' + bytes(param, encoding='utf8') + b'\x04' - part = dat.partition(b_param) - val = part[2][:100].lstrip(STRP + b'\n').split(b'\x00')[0].strip(STRP) - return val.decode('utf8', errors='replace') - - d = {} - f.seek(0) - dat = f.read() - - d['Visible Pixel Size'] = _get_prop_d(dat, 'Visible Pixel Size') - d['FPA Pixel Size'] = _get_prop_d(dat, 'FPA Pixel Size') - d['Rapid Stingray'] = _get_section(dat, 'Rapid Stingray') - d['Time Stamp'] = d['Rapid Stingray']['Time Stamp'] - - k_int = ['PixelAggregationSize', - 'Resolution', - 'Under Sampling Ratio', - ] - for k in k_int: - try: - d[k] = int(_get_prop_str(dat, k)) - except ValueError: - pass - - k_float = ['Effective Laser Wavenumber', - ] - for k in k_float: - try: - d[k] = float(_get_prop_str(dat, k)) - except ValueError as e: - pass - - k_str = ['Symmetry', - ] - for k in k_str: - d[k] = _get_prop_str(dat, k) - - return d - -def _get_ifg_params(f): - """ - Takes an open file handle and reads a preset selection of parameters - returns in a dictionary - """ - def _get_proptype_data(dat, param): - part = dat.partition(bytes(param, encoding='utf8')) - val_b = part[2].partition(bytes("1.00", encoding='utf8'))[2] - PtSep = struct.unpack("d", val_b[12:20])[0] - StartPt = struct.unpack("i", val_b[24:28])[0] - Npts = struct.unpack("i", val_b[32:36])[0] - return PtSep, StartPt, Npts - - d = {} - f.seek(0) - dat = f.read() - - d['PtSep'], d['StartPt'], d['Npts'] = _get_proptype_data(dat, 'Interferogram') - - if DEBUG: - for k,v in d.items(): - print(k,v, type(v)) - return d - - -def _fpa_size(datasize, Npts): - """ - Determine FPA size (255 block preamble, wavenumbers, sqrt) - FPA is most likely 128 or 64 pixels square - This also provides sanity check for wavelengths array - - Args: - datasize (int): size of data (after reading as float32) - Npts (int): number of points in spectra - """ - fpasize = datasize - 255 - fpasize /= Npts - if fpasize not in [(2**n)**2 for n in range(1,8)]: - raise ValueError("Unexpected FPA size: {}".format(fpasize)) - fpasize = int(np.sqrt(fpasize)) - return fpasize - -def _reshape_tile(data, shape): - """ - Reshape and transpose FPA tile data - """ - # Reshape ndarray - data = data[255:] - # Using shape attribute to raise error if a copy is made of the array - data.shape = shape - # Transpose to standard [ rows, columns, wavelengths ] - data = np.transpose(data, (1,2,0)) - return data - - -def get_visible_images(p): - """ - Takes a Path to the datafile and returns a list of visible images. - - This only works for Mosaic datasets with "IRCutout.bmp" or "VisMosaicCollectImages_Thumbnail.bmp" - - Each item is a dict with at least: - 'name': IR Cutout or Entire Image - 'image_ref' Path to image file - 'pos_x' Bottom-left corner, x (microns) - 'pos_y' Bottom-left corner, y (microns) - 'img_size_x' Width of image (microns) - 'img_size_y' Height of image (microns) - """ - visible_images = [] - - config = configparser.ConfigParser() - config.read(p.parent.joinpath("IrMosaicInfo.cfg")) - config.read(p.parent.joinpath("VisMosaicInfo.cfg")) - - cutout_path = p.parent.joinpath("IrCutout.bmp") - if cutout_path.is_file() and config.has_section('MicronMeasurements'): - d = {'name': "IR Cutout", - 'image_ref': cutout_path, - 'pos_x': 0, - 'pos_y': 0, - 'img_size_x': float(config['MicronMeasurements']['IrCollectWidthMicrons']), - 'img_size_y': float(config['MicronMeasurements']['IrCollectHeightMicrons']), - } - visible_images.append(d) - - full_img_path = p.parent.joinpath("VisMosaicCollectImages_Thumbnail.bmp") - if full_img_path.is_file() and config.has_section('MicronMeasurements') \ - and config.has_section('VisMosaicDefinition'): - d = {'name': "Entire Image", - 'image_ref': full_img_path, - 'pos_x': -1 * float(config['MicronMeasurements']['IrCollectStartLocationMicronsX']), - 'pos_y': float(config['MicronMeasurements']['IrCollectStartLocationMicronsY']) - + float(config['MicronMeasurements']['IrCollectHeightMicrons']) - - float(config['VisMosaicDefinition']['MosaicSizeMicronsY']), - 'img_size_x': float(config['VisMosaicDefinition']['MosaicSizeMicronsX']), - 'img_size_y': float(config['VisMosaicDefinition']['MosaicSizeMicronsY']), - } - visible_images.append(d) - - return visible_images - - -class DataObject(object): - """ - Simple container of a data array and information about that array. - Based on PyMca5.DataObject - - Attributes: - info (dict): Dictionary of acquisition information - data (:obj:`ndarray`): n-dimensional array of data - """ - - def __init__(self): - self.info = {} - self.data = np.array([]) - - -class agilentImage(DataObject): - """ - Extracts the spectra from an Agilent single tile FPA image. - - Attributes beyond .info and .data are provided for consistency with MATLAB code - - Args: - filename (str): full path to .dat file - MAT (bool): Output array using image coordinates (matplotlib/MATLAB) - - Attributes: - info (dict): Dictionary of acquisition information - data (:obj:`ndarray`): 3-dimensional array (height x width x wavenumbers) - wavenumbers (list): Wavenumbers in order of .data array - width (int): Width of image in pixels (rows) - height (int): Width of image in pixels (columns) - filename (str): Full path to .bsp file - acqdate (str): Date and time of acquisition - - Based on agilent-file-formats MATLAB code by Alex Henderson: - https://bitbucket.org/AlexHenderson/agilent-file-formats - """ - - def __init__(self, filename, MAT=False): - super().__init__() - p = check_files(filename, [".dat", ".bsp"]) - self.MAT = MAT - self._get_bsp_info(p) - self._get_dat(p) - - self.wavenumbers = self.info['wavenumbers'] - self.width = self.data.shape[0] - self.height = self.data.shape[1] - self.filename = bsp_path(p).as_posix() - self.acqdate = self.info['Time Stamp'] - - def _get_bsp_info(self, p_in): - p = bsp_path(p_in) - with p.open(mode='rb') as f: - self.info.update(_get_wavenumbers(f)) - self.info.update(_get_params(f)) - - def _get_dat(self, p_in): - p = p_in.with_suffix(".dat") - with p.open(mode='rb') as f: - data = np.fromfile(f, dtype=np.float32) - fpasize = _fpa_size(data.size, self.info['Npts']) - data = _reshape_tile(data, (self.info['Npts'], fpasize, fpasize)) - - if self.MAT: - # Rotate and flip tile to match matplotlib/MATLAB image coordinates - data = np.flipud(data) - - self.data = data - - if DEBUG: - print("FPA Size is {}".format(fpasize)) - -class agilentMosaicTiles(DataObject): - """ - UNSTABLE API - - This class provides an array of _get_dmd() closures to allow lazy tile-by-tile - file loading by consumers. - - The API is not considered stable at this time, so if you are wish to load - mosiac files with a stable interface, use agilentMosaic as in previous - versions. - """ - - def __init__(self, filename, MAT=False): - super().__init__() - p = check_files(filename, [".dmt", ".dmd"]) - self.MAT = MAT - self._get_dmt_info(p) - self._get_tiles(p) - - self.wavenumbers = self.info['wavenumbers'] - self.width = self.tiles.shape[0] * self.info['fpasize'] - self.height = self.tiles.shape[1] * self.info['fpasize'] - self.filename = dmt_path(p).as_posix() - self.acqdate = self.info['Time Stamp'] - - self.vis = get_visible_images(p) - - def _get_dmt_info(self, p_in): - # .dmt is always lowercase - p = dmt_path(p_in) - with p.open(mode='rb') as f: - self.info.update(_get_wavenumbers(f)) - self.info.update(_get_params(f)) - - def _get_tiles(self, p_in): - # Determine mosiac dimensions by counting .dmd files - xtiles = sum(1 for _ in - p_in.parent.glob(p_in.stem + "_[0-9][0-9][0-9][0-9]_0000.dmd")) - ytiles = sum(1 for _ in - p_in.parent.glob(p_in.stem + "_0000_[0-9][0-9][0-9][0-9].dmd")) - # _0000_0000.dmd primary file - p = p_in.parent.joinpath(p_in.stem + "_0000_0000.dmd") - Npts = self.info['Npts'] - fpasize = self.info['fpasize'] = _fpa_size(p.stat().st_size / 4, Npts) - - if DEBUG: - print("{0} x {1} tiles found".format(xtiles, ytiles)) - print("FPA size is {}".format(fpasize)) - print("Total dimensions are {0} x {1} or {2} spectra.".format( - xtiles*fpasize, ytiles*fpasize, xtiles*ytiles*fpasize**2)) - - tiles = np.zeros((xtiles, ytiles), dtype=object) - for (x, y) in np.ndindex(tiles.shape): - p_dmd = p_in.parent.joinpath(p_in.stem + "_{0:04d}_{1:04d}.dmd".format(x,y)) - tiles[x, y] = self._get_dmd(p_dmd, Npts, fpasize) - self.tiles = tiles - - @staticmethod - def _get_dmd(p_dmd, Npts, fpasize): - def _get_dmd_data(p_dmd=p_dmd): - with p_dmd.open(mode='rb') as f: - tile = np.fromfile(f, dtype=np.float32) - tile = _reshape_tile(tile, (Npts, fpasize, fpasize)) - return tile - return _get_dmd_data - - -class agilentMosaic(agilentMosaicTiles): - """ - Extracts the spectra from an Agilent mosaic FPA image. - - Attributes beyond .info and .data are provided for consistency with MATLAB code - - Args: - filename (str): full path to .dmt file - MAT (bool): Output array using image coordinates (matplotlib/MATLAB) - dtype (np.dtype): Set dtype of output array (float32 or float64) - - Attributes: - info (dict): Dictionary of acquisition information - data (:obj:`ndarray`): 3-dimensional array (height x width x wavenumbers) - wavenumbers (list): Wavenumbers in order of .data array - width (int): Width of mosaic in pixels (rows) - height (int): Width of mosaic in pixels (columns) - filename (str): Full path to .dmt file - acqdate (str): Date and time of acquisition - - Based on agilent-file-formats MATLAB code by Alex Henderson: - https://bitbucket.org/AlexHenderson/agilent-file-formats - """ - - def __init__(self, filename, MAT=False, dtype=np.float32): - super().__init__(filename, MAT) - self.dtype = dtype - self._get_data() - - def _get_data(self): - xtiles = self.tiles.shape[0] - ytiles = self.tiles.shape[1] - Npts = self.info['Npts'] - fpasize = self.info['fpasize'] - # Allocate array - # (rows, columns, wavenumbers) - data = np.zeros((ytiles*fpasize, xtiles*fpasize, Npts), - dtype=self.dtype) - if DEBUG: - print("self.tiles: ", self.tiles.shape) - print("self.data: ", data.shape) - - for (x, y) in np.ndindex(self.tiles.shape): - tile = self.tiles[x, y]() - if self.MAT: - # Rotate and flip tile to match matplotlib/MATLAB image coordinates - tile = np.flipud(tile) - data[y*fpasize:(y+1)*fpasize, x*fpasize:(x+1)*fpasize, :] = tile - else: - # Tile data is in normal cartesian coordinates - # but tile numbering (000x_000y) - # is left-to-right, top-to-bottom (image coordinates) - data[(ytiles-y-1)*fpasize:(ytiles-y)*fpasize, (x)*fpasize:(x+1)*fpasize, :] = tile - - self.data = data - - -class agilentImageIFG(DataObject): - """ - Extracts the interferograms from an Agilent single tile FPA image. - - Args: - filename (str): full path to .seq file - MAT (bool): Output array using image coordinates (matplotlib/MATLAB) - - Attributes: - info (dict): Dictionary of acquisition information - data (:obj:`ndarray`): 3-dimensional array (height x width x wavenumbers) - filename (str): Full path to .bsp file - """ - - def __init__(self, filename, MAT=False): - super().__init__() - p = check_files(filename, [".seq", ".bsp"]) - self.MAT = MAT - self._get_bsp_info(p) - self._get_seq(p) - - self.filename = bsp_path(p).as_posix() - - def _get_bsp_info(self, p_in): - p = bsp_path(p_in) - with p.open(mode='rb') as f: - self.info.update(_get_ifg_params(f)) - self.info.update(_get_params(f)) - - def _get_seq(self, p_in): - p = p_in.with_suffix(".seq") - with p.open(mode='rb') as f: - data = np.fromfile(f, dtype=np.float32) - fpasize = _fpa_size(data.size, self.info['Npts']) - data = _reshape_tile(data, (self.info['Npts'], fpasize, fpasize)) - - if self.MAT: - # Rotate and flip tile to match matplotlib/MATLAB image coordinates - data = np.flipud(data) - - self.data = data - - if DEBUG: - print("FPA Size is {}".format(fpasize)) - - -class agilentMosaicIFGTiles(DataObject): - """ - UNSTABLE API - - This class provides an array of _get_drd() closures to allow lazy tile-by-tile - file loading by consumers. - - The API is not considered stable at this time, so if you are wish to load - mosiac files with a stable interface, use agilentMosaic as in previous - versions. - """ - - def __init__(self, filename, MAT=False): - super().__init__() - p = check_files(filename, [".dmt", ".drd"]) - self.MAT = MAT - self._get_dmt_info(p) - self._get_tiles(p) - - self.filename = dmt_path(p).as_posix() - - def _get_dmt_info(self, p_in): - # .dmt is always lowercase - p = dmt_path(p_in) - with p.open(mode='rb') as f: - self.info.update(_get_ifg_params(f)) - self.info.update(_get_params(f)) - - def _get_tiles(self, p_in): - # Determine mosiac dimensions by counting .drd files - xtiles = sum(1 for _ in - p_in.parent.glob(p_in.stem + "_[0-9][0-9][0-9][0-9]_0000.drd")) - ytiles = sum(1 for _ in - p_in.parent.glob(p_in.stem + "_0000_[0-9][0-9][0-9][0-9].drd")) - # _0000_0000.drd primary file - p = p_in.parent.joinpath(p_in.stem + "_0000_0000.drd") - Npts = self.info['Npts'] - fpasize = self.info['fpasize'] = _fpa_size(p.stat().st_size / 4, Npts) - - if DEBUG: - print("{0} x {1} tiles found".format(xtiles, ytiles)) - print("FPA size is {}".format(fpasize)) - print("Total dimensions are {0} x {1} or {2} spectra.".format( - xtiles*fpasize, ytiles*fpasize, xtiles*ytiles*fpasize**2)) - - tiles = np.zeros((xtiles, ytiles), dtype=object) - for (x, y) in np.ndindex(tiles.shape): - p_drd = p_in.parent.joinpath(p_in.stem + "_{0:04d}_{1:04d}.drd".format(x,y)) - tiles[x, y] = self._get_drd(p_drd, Npts, fpasize) - self.tiles = tiles - - @staticmethod - def _get_drd(p_drd, Npts, fpasize): - def _get_drd_data(p_drd=p_drd): - with p_drd.open(mode='rb') as f: - tile = np.fromfile(f, dtype=np.float32) - tile = _reshape_tile(tile, (Npts, fpasize, fpasize)) - return tile - return _get_drd_data - - -class agilentMosaicIFG(agilentMosaicIFGTiles): - """ - Extracts the interferograms from an Agilent mosaic FPA image. - - Args: - filename (str): full path to .dmt file - MAT (bool): Output array using image coordinates (matplotlib/MATLAB) - dtype (np.dtype): Set dtype of output array (float32 or float64)) - - Attributes: - info (dict): Dictionary of acquisition information - data (:obj:`ndarray`): 3-dimensional array (height x width x wavenumbers) - filename (str): Full path to .dmt file - """ - - def __init__(self, filename, MAT=False, dtype=np.float32): - super().__init__(filename, MAT) - self.dtype = dtype - self._get_data() - - def _get_data(self): - xtiles = self.tiles.shape[0] - ytiles = self.tiles.shape[1] - Npts = self.info['Npts'] - fpasize = self.info['fpasize'] - # Allocate array - # (rows, columns, wavenumbers) - data = np.zeros((ytiles*fpasize, xtiles*fpasize, Npts), - dtype=self.dtype) - if DEBUG: - print("self.tiles: ", self.tiles.shape) - print("self.data: ", data.shape) - - for (x, y) in np.ndindex(self.tiles.shape): - tile = self.tiles[x, y]() - if self.MAT: - # Rotate and flip tile to match matplotlib/MATLAB image coordinates - tile = np.flipud(tile) - data[y*fpasize:(y+1)*fpasize, x*fpasize:(x+1)*fpasize, :] = tile - else: - # Tile data is in normal cartesian coordinates - # but tile numbering (000x_000y) - # is left-to-right, top-to-bottom (image coordinates) - data[(ytiles-y-1)*fpasize:(ytiles-y)*fpasize, (x)*fpasize:(x+1)*fpasize, :] = tile - - self.data = data diff --git a/setup.py b/setup.py index 435e83a32..456010009 100644 --- a/setup.py +++ b/setup.py @@ -145,6 +145,7 @@ def include_documentation(local_dir, install_dir): 'lmfit>=1.0.2', 'bottleneck', 'pebble', + 'agilent-format>=0.4.5' ], extras_require={ 'test': ['coverage']