-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMarine birds out of sample sim code.R
130 lines (78 loc) · 2.54 KB
/
Marine birds out of sample sim code.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
#---------------#
#-Out of sample-#
#---------------#
#Community expected abundance
lambda.total.oos <- runif(1, 10000, 20000)
#Community composition
pi.oos <- comp.fun(nspecies)
#Species-specific abundance
lambda.oos <- lambda.total.oos * pi.oos
#Out of sample data
N <- C <- matrix(NA, ncol = nspecies, nrow = nsites)
#Observer data
OBS <- array(NA, dim = c(nsites, nspecies, 2))
#Confusion matrix
confusion.matrix <- array(NA, dim = c(nsites, nspecies, nspecies))
for(j in 1:nsites){
#Latent abundance w/correct ID
N[j,] <- rpois(nspecies, lambda.total.oos * pi.oos * alpha.OBS)
for(i in 1:nspecies){
confusion.matrix[j,i,] <- rmultinom(1, N[j,i], phi.psi[i,])
}
#Latent abundance w/miss ID
C[j,] <- apply(confusion.matrix[j,,], MARGIN = 2, sum)
#Observer 1 data
OBS[j,,1] <- rbinom(n = nspecies, size = C[j,], prob = p)
#Observer 2 data
OBS[j,,2] <- rbinom(n = nspecies, size = C[j,], prob = p)
}
code <- nimbleCode({
for(j in 1:nsites){
for(o in 1:nobs){
for(i in 1:nspecies){
OBS[j,i,o] ~ dpois(lambda[i] * correction[i])
}
}#end o
}#end j
for(i in 1:nspecies){
log(lambda[i]) <- lambda0[i]
lambda0[i] ~ dnorm(0, 0.01)
correction[i] ~ dnorm(mean.correction[i], sd = sd.correction[i])
}#end i
lambda.total <- sum(lambda[1:nspecies])
})
#-Informed priors-#
mean.correction <- summary(out2)[[1]][grepl("correction\\[", attr(summary(out2)[[1]], "dimnames")[[1]]), "Mean"]
sd.correction <- summary(out2)[[1]][grepl("correction\\[", attr(summary(out2)[[1]], "dimnames")[[1]]), "SD"]
#-Compile data-#
data <- list(OBS = OBS,
mean.correction = mean.correction,
sd.correction = sd.correction
)
constants <- list(nspecies = nspecies, nsites = nsites, nobs = 2)
#-Initial values-#
inits <- function(){list(lambda.total = lambda.total.oos,
lambda = lambda.oos
)}
#-Parameters to save-#
params <- c(
"lambda.total",
"lambda"
)
#-MCMC settings-#
model <- nimbleModel(code = code,
constants = constants,
data = data,
inits = inits())
MCMCconf <- configureMCMC(model, monitors = params)
MCMC <- buildMCMC(MCMCconf)
compiled.model <- compileNimble(model, MCMC)
nc <- 3
ni <- 20000
nb <- 10000
nt <- 1
#-Run model-#
out3 <- runMCMC(compiled.model$MCMC,
niter = ni, nburnin = nb,
nchains = nc, thin = nt,
samplesAsCodaMCMC = TRUE)