-
Notifications
You must be signed in to change notification settings - Fork 29
/
logger.py
293 lines (242 loc) · 11.9 KB
/
logger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import numpy as np
import torch
import torch.nn.functional as F
import imageio
import os
import cv2
from skimage.draw import circle
import matplotlib.pyplot as plt
import collections
from optic_flow_utils import *
from modules.util import make_coordinate_grid
class Logger:
def __init__(self, log_dir, checkpoint_freq=100, visualizer_params=None, zfill_num=8, log_file_name='log.txt'):
self.loss_list = []
self.cpk_dir = log_dir
self.visualizations_dir = os.path.join(log_dir, 'train-vis')
if visualizer_params:
if not os.path.exists(self.visualizations_dir):
os.makedirs(self.visualizations_dir)
self.visualizer = Visualizer(**visualizer_params)
self.log_file = open(os.path.join(log_dir, log_file_name), 'a')
self.zfill_num = zfill_num
self.checkpoint_freq = checkpoint_freq
self.epoch = 0
self.best_loss = float('inf')
self.names = None
def log_scores(self, loss_names):
loss_mean = np.array(self.loss_list).mean(axis=0)
loss_string = "; ".join(["%s - %.5f" % (name, value) for name, value in zip(loss_names, loss_mean)])
loss_string = str(self.epoch).zfill(self.zfill_num) + ") " + loss_string
print(loss_string, file=self.log_file)
self.loss_list = []
self.log_file.flush()
def visualize_rec(self, inp, out):
image = self.visualizer.visualize(inp['driving'], inp['source'], out)
imageio.imsave(os.path.join(self.visualizations_dir, "%s-rec.png" % str(self.epoch).zfill(self.zfill_num)), image)
def save_cpk(self, emergent=False):
cpk = {k: v.state_dict() for k, v in self.models.items()}
cpk['epoch'] = self.epoch
cpk_path = os.path.join(self.cpk_dir, '%s-checkpoint.pth.tar' % str(self.epoch).zfill(self.zfill_num))
if not (os.path.exists(cpk_path) and emergent):
torch.save(cpk, cpk_path)
@staticmethod
def load_cpk(checkpoint_path, generator=None, discriminator=None, kp_detector=None, tdmm=None,
optimizer_generator=None, optimizer_discriminator=None, optimizer_kp_detector=None, optimizer_tdmm=None,
local_rank=None):
checkpoint = torch.load(checkpoint_path, map_location=torch.device('cpu'))
if generator is not None:
generator.load_state_dict(checkpoint['generator'])
generator.to(local_rank)
if kp_detector is not None:
kp_detector.load_state_dict(checkpoint['kp_detector'])
kp_detector.to(local_rank)
if tdmm is not None:
tdmm.load_state_dict(checkpoint['tdmm'])
tdmm.to(local_rank)
if discriminator is not None:
try:
discriminator.load_state_dict(checkpoint['discriminator'])
discriminator.to(local_rank)
except:
print ('No discriminator in the state-dict. Dicriminator will be randomly initialized')
if optimizer_generator is not None:
optimizer_generator.load_state_dict(checkpoint['optimizer_generator'])
if optimizer_discriminator is not None:
try:
optimizer_discriminator.load_state_dict(checkpoint['optimizer_discriminator'])
except RuntimeError as e:
print ('No discriminator optimizer in the state-dict. Optimizer will be not initialized')
if optimizer_kp_detector is not None:
optimizer_kp_detector.load_state_dict(checkpoint['optimizer_kp_detector'])
if optimizer_tdmm is not None:
optimizer_tdmm.load_state_dict(checkpoint['optimizer_tdmm'])
return checkpoint['epoch']
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
if 'models' in self.__dict__:
self.save_cpk()
self.log_file.close()
def log_iter(self, losses):
losses = collections.OrderedDict(losses.items())
if self.names is None:
self.names = list(losses.keys())
self.loss_list.append(list(losses.values()))
def log_epoch(self, epoch, models, inp, out):
self.epoch = epoch
self.models = models
if (self.epoch + 1) % self.checkpoint_freq == 0:
self.save_cpk()
self.log_scores(self.names)
self.visualize_rec(inp, out)
def log_epoch_tdmm(self, epoch, models):
self.epoch = epoch
self.models = models
if (self.epoch + 1) % self.checkpoint_freq == 0:
self.save_cpk()
self.log_scores(self.names)
class Visualizer:
def __init__(self, kp_size=5, draw_border=False, colormap='gist_rainbow'):
self.kp_size = kp_size
self.draw_border = draw_border
self.colormap = plt.get_cmap(colormap)
def draw_image_with_kp(self, image, kp_array):
image = np.copy(image)
spatial_size = np.array(image.shape[:2][::-1])[np.newaxis]
kp_array = spatial_size * (kp_array + 1) / 2
num_kp = kp_array.shape[0]
for kp_ind, kp in enumerate(kp_array):
rr, cc = circle(kp[1], kp[0], self.kp_size, shape=image.shape[:2])
image[rr, cc] = np.array(self.colormap(kp_ind / num_kp))[:3]
return image
def create_image_column_with_kp(self, images, kp):
image_array = np.array([self.draw_image_with_kp(v, k) for v, k in zip(images, kp)])
return self.create_image_column(image_array)
def create_image_column(self, images):
if self.draw_border:
images = np.copy(images)
images[:, :, [0, -1]] = (1, 1, 1)
images[:, :, [0, -1]] = (1, 1, 1)
return np.concatenate(list(images), axis=0)
def create_image_grid(self, *args):
out = []
for arg in args:
if type(arg) == tuple:
out.append(self.create_image_column_with_kp(arg[0], arg[1]))
else:
out.append(self.create_image_column(arg))
return np.concatenate(out, axis=1)
def visualize(self, driving, source, out):
images = []
# Source image with keypoints
source = source.data.cpu()
kp_source = out['kp_source']['value'].data.cpu().numpy()
source = np.transpose(source, [0, 2, 3, 1])
images.append((source, kp_source))
# Equivariance visualization
if 'transformed_frame' in out:
transformed = out['transformed_frame'].data.cpu().numpy()
transformed = np.transpose(transformed, [0, 2, 3, 1])
transformed_kp = out['transformed_kp']['value'].data.cpu().numpy()
images.append((transformed, transformed_kp))
# Driving image with keypoints
kp_driving = out['kp_driving']['value'].data.cpu().numpy()
driving = driving.data.cpu().numpy()
driving = np.transpose(driving, [0, 2, 3, 1])
images.append((driving, kp_driving))
# Deformed image
if 'deformed' in out:
deformed = out['deformed'].data.cpu().numpy()
deformed = np.transpose(deformed, [0, 2, 3, 1])
images.append(deformed)
# Result with and without keypoints
prediction = out['prediction'].data.cpu().numpy()
prediction = np.transpose(prediction, [0, 2, 3, 1])
if 'kp_norm' in out:
kp_norm = out['kp_norm']['value'].data.cpu().numpy()
images.append((prediction, kp_norm))
images.append(prediction)
# Occlusion map
if 'occlusion_map1' in out:
occlusion_map = out['occlusion_map1'].data.cpu().repeat(1, 3, 1, 1)
occlusion_map = F.interpolate(occlusion_map, size=source.shape[1:3]).numpy()
occlusion_map = np.transpose(occlusion_map, [0, 2, 3, 1])
images.append(occlusion_map)
if 'occlusion_map2' in out:
occlusion_map1 = 1.0 - out['occlusion_map2'].data.cpu().repeat(1, 3, 1, 1)
occlusion_map1 = F.interpolate(occlusion_map1, size=source.shape[1:3]).numpy()
occlusion_map1 = np.transpose(occlusion_map1, [0, 2, 3, 1])
images.append(occlusion_map1)
# Deformed images according to each individual transform
if 'sparse_deformed' in out:
full_mask = []
for i in range(out['sparse_deformed'].shape[1]):
image = out['sparse_deformed'][:, i].data.cpu()
image = F.interpolate(image, size=source.shape[1:3])
mask = out['mask'][:, i:(i+1)].data.cpu().repeat(1, 3, 1, 1)
mask = F.interpolate(mask, size=source.shape[1:3])
image = np.transpose(image.numpy(), (0, 2, 3, 1))
mask = np.transpose(mask.numpy(), (0, 2, 3, 1))
if i != 0:
color = np.array(self.colormap((i - 1) / (out['sparse_deformed'].shape[1] - 1)))[:3]
else:
color = np.array((0, 0, 0))
color = color.reshape((1, 1, 1, 3))
images.append(image)
if i != 0:
images.append(mask * color)
else:
images.append(mask)
full_mask.append(mask * color)
images.append(sum(full_mask))
if 'reenact' in out:
image = out['reenact'].data.cpu()
image = np.transpose(image.numpy(), (0, 2, 3, 1))
images.append(image)
if 'mask' in out:
full_mask = []
full_mask_bin = []
mask_bin = F.interpolate(out['mask'], size=source.shape[1:3], mode='bilinear')
mask_bin = (torch.max(mask_bin, dim=1, keepdim=True)[0] == mask_bin).float()
tdmm_mask = None
# formulate mask bin
for i in range(out['mask'].shape[1]):
mask = out['mask'][:, i:(i+1)].data.cpu().repeat(1, 3, 1, 1)
mask = F.interpolate(mask, size=source.shape[1:3], mode='bilinear')
mask = np.transpose(mask.numpy(), (0, 2, 3, 1))
mask_bin_part = mask_bin[:, i:(i+1)].data.cpu().repeat(1, 3, 1, 1)
mask_bin_part = np.transpose(mask_bin_part.numpy(), (0, 2, 3, 1))
if i != 0:
if i != (out['mask'].shape[1] - 1):
color = np.array(self.colormap((i - 1) / (out['mask'].shape[1] - 1)))[:3]
else:
tdmm_mask = mask_bin_part
color = np.array((1.0, 1.0, 1.0)) # full white for 3D mask
else:
color = np.array((0, 0, 0))
color = color.reshape((1, 1, 1, 3))
full_mask.append(mask * color)
full_mask_bin.append(mask_bin_part * color)
images.append(sum(full_mask))
images.append(0.3 * driving + 0.7 * sum(full_mask))
images.append(sum(full_mask_bin))
images.append(0.3 * driving + 0.7 * sum(full_mask_bin))
images.append(tdmm_mask)
identity_grid = make_coordinate_grid((source.shape[1], source.shape[2]), type=source.type())
identity_grid = identity_grid.data.cpu().numpy()
if 'motion_field' in out and out['motion_field'].shape[0] == 1:
motion_field = F.interpolate(out['motion_field'], size=source.shape[1:3], mode='bilinear')
motion_field = motion_field.squeeze().permute(1, 2, 0).data.cpu().numpy()
motion_field = motion_field - identity_grid
optic_flow = flow_to_image(motion_field)[None, ...]
images.append(optic_flow)
if 'deformation' in out and out['deformation'].shape[0] == 1:
deformation = F.interpolate(out['deformation'].permute(0, 3, 1, 2), size=source.shape[1:3], mode='bilinear')
deformation = deformation.squeeze().permute(1, 2, 0).data.cpu().numpy()
deformation = deformation - identity_grid
optic_flow = flow_to_image(deformation)[None, ...]
images.append(optic_flow)
image = self.create_image_grid(*images)
image = (255 * image).astype(np.uint8)
return image