-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtester_S3DIS.py
284 lines (227 loc) · 13.5 KB
/
tester_S3DIS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
from os import makedirs
from os.path import exists, join, dirname
from helper_ply import write_ply
from sklearn.metrics import confusion_matrix
from tool import DataProcessing as DP
import tensorflow as tf
import numpy as np
import time
def log_out(out_str, log_f_out):
log_f_out.write(out_str + '\n')
log_f_out.flush()
print(out_str)
class ModelTester:
def __init__(self, model, dataset, restore_snap=None):
my_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
self.saver = tf.train.Saver(my_vars, max_to_keep=100)
self.Log_file = open('log_test_' + str(dataset.val_split) + '.txt', 'a')
# Create a session for running Ops on the Graph.
on_cpu = False
if on_cpu:
c_proto = tf.ConfigProto(device_count={'GPU': 0})
else:
c_proto = tf.ConfigProto()
c_proto.gpu_options.allow_growth = True
self.sess = tf.Session(config=c_proto)
self.sess.run(tf.global_variables_initializer())
# Load trained model
if restore_snap is not None:
self.saver.restore(self.sess, restore_snap)
print("Model restored from " + restore_snap)
self.prob_logits = tf.nn.softmax(model.logits)
# Initiate global prediction over all test clouds
self.test_probs = [np.zeros(shape=[l.shape[0], model.config.num_classes], dtype=np.float32)
for l in dataset.input_labels['validation']]
def test(self, model, dataset, gen_pesudo=None, num_votes=100):
# Smoothing parameter for votes
test_smooth = 0.95
# Initialise iterator with validation/test data
self.sess.run(dataset.val_init_op)
# Number of points per class in validation set
val_proportions = np.zeros(model.config.num_classes, dtype=np.float32)
i = 0
for label_val in dataset.label_values:
if label_val not in dataset.ignored_labels:
val_proportions[i] = np.sum(
[np.sum(labels == label_val) for labels in dataset.input_labels['validation']])
i += 1
# Test saving path
saving_path = time.strftime('results/Log_%Y-%m-%d_%H-%M-%S', time.gmtime())
test_path = join('test', saving_path.split('/')[-1])
makedirs(test_path) if not exists(test_path) else None
if not gen_pesudo:
makedirs(join(test_path, 'val_preds')) if not exists(join(test_path, 'val_preds')) else None
step_id = 0
epoch_id = 0
last_min = -0.5
while last_min < num_votes:
try:
ops = (self.prob_logits,
model.labels,
model.inputs['input_inds'],
model.inputs['cloud_inds'],
)
stacked_probs, stacked_labels, point_idx, cloud_idx = self.sess.run(ops, {model.is_training: False})
stacked_labels -= 1
correct = np.sum(np.argmax(stacked_probs, axis=1) == stacked_labels)
acc = correct / float(np.prod(np.shape(stacked_labels)))
print('step' + str(step_id) + ' acc:' + str(acc))
stacked_probs = np.reshape(stacked_probs, [model.config.val_batch_size, model.config.num_points,
model.config.num_classes])
for j in range(np.shape(stacked_probs)[0]):
probs = stacked_probs[j, :, :]
p_idx = point_idx[j, :]
c_i = cloud_idx[j][0]
self.test_probs[c_i][p_idx] = test_smooth * self.test_probs[c_i][p_idx] + (1 - test_smooth) * probs
step_id += 1
except tf.errors.OutOfRangeError:
new_min = np.min(dataset.min_possibility['validation'])
log_out('Epoch {:3d}, end. Min possibility = {:.1f}'.format(epoch_id, new_min), self.Log_file)
if last_min + 1 < new_min:
# Update last_min
last_min += 1
# Show vote results (On subcloud so it is not the good values here)
log_out('\nConfusion on sub clouds', self.Log_file)
confusion_list = []
num_val = len(dataset.input_labels['validation'])
for i_test in range(num_val):
probs = self.test_probs[i_test]
for l_ind, label_value in enumerate(dataset.label_values):
if label_value in dataset.ignored_labels:
probs = np.insert(probs, l_ind, 0, axis=1)
preds = dataset.label_values[np.argmax(probs, axis=1)].astype(np.int32)
labels = dataset.input_labels['validation'][i_test]
# Confs
confusion_list += [confusion_matrix(labels, preds, dataset.label_values)]
# ==================================================== #
# Generate pesudo labels for subclouds #
# ==================================================== #
if gen_pesudo:
random_ratio = 0.05
trust_ratio = 0.01 / random_ratio
num_pts = len(preds)
trust_preds = np.zeros_like(preds, dtype=np.int32)
random_num = max(int(num_pts * random_ratio), 1)
random_idx = np.random.choice(num_pts, random_num, replace=False)
# First, randomly choose 5% of points to keep the overall coverage
preds_random_selected = preds[random_idx]
probs_random_selected = probs[random_idx]
probs_random_selected_max_val = np.max(probs_random_selected, axis=1)
trust_idx_all = []
# Trust the one with the highest probability for each class based on the predicted semantics
for i in range(dataset.num_classes):
ind_per_class = np.where(preds_random_selected == i)[
0] # index of points belongs to a specific class
num_per_class = len(ind_per_class)
if num_per_class > 0:
trust_num = max(int(num_per_class * trust_ratio), 1)
probs_max_val_per_class = probs_random_selected_max_val[ind_per_class]
trust_pts_idx_per_class = probs_max_val_per_class.argsort()[-trust_num:][::-1]
trust_idx_per_class = ind_per_class[trust_pts_idx_per_class]
trust_idx_per_class = random_idx[trust_idx_per_class]
trust_idx_all.append(trust_idx_per_class)
trust_idx_all = np.concatenate(trust_idx_all, axis=0)
trust_preds[trust_idx_all] = preds[trust_idx_all]
print(np.sum(preds[trust_idx_all] == labels[trust_idx_all]) / len(trust_idx_all))
name = dataset.input_names['validation'][i_test] + '.ply'
write_ply(join(dirname(test_path), name), [trust_preds], ['pred'])
# Regroup confusions
C = np.sum(np.stack(confusion_list), axis=0).astype(np.float32)
# Remove ignored labels from confusions
for l_ind, label_value in reversed(list(enumerate(dataset.label_values))):
if label_value in dataset.ignored_labels:
C = np.delete(C, l_ind, axis=0)
C = np.delete(C, l_ind, axis=1)
# Rescale with the right number of point per class
C *= np.expand_dims(val_proportions / (np.sum(C, axis=1) + 1e-6), 1)
# Compute IoUs
IoUs = DP.IoU_from_confusions(C)
m_IoU = np.mean(IoUs)
s = '{:5.2f} | '.format(100 * m_IoU)
for IoU in IoUs:
s += '{:5.2f} '.format(100 * IoU)
log_out(s + '\n', self.Log_file)
if gen_pesudo:
return
if int(np.ceil(new_min)) % 1 == 0:
# Project predictions
log_out('\nReproject Vote #{:d}'.format(int(np.floor(new_min))), self.Log_file)
proj_probs_list = []
for i_val in range(num_val):
# Reproject probs back to the evaluations points
proj_idx = dataset.val_proj[i_val]
probs = self.test_probs[i_val][proj_idx, :]
for l_ind, label_value in enumerate(dataset.label_values):
if label_value in dataset.ignored_labels:
probs = np.insert(probs, l_ind, 0, axis=1)
proj_probs_list += [probs]
# Show vote results
total_correct = 0
total_seen = 0
gt_classes = [0 for _ in range(dataset.num_classes)]
positive_classes = [0 for _ in range(dataset.num_classes)]
true_positive_classes = [0 for _ in range(dataset.num_classes)]
log_out('Confusion on full clouds', self.Log_file)
confusion_list = []
for i_test in range(num_val):
# Get the predicted labels
preds = dataset.label_values[np.argmax(proj_probs_list[i_test], axis=1)].astype(np.uint8)
# Confusion
labels = dataset.val_labels[i_test]
labels += 1
acc = np.sum(preds == labels) / len(labels)
log_out(dataset.input_names['validation'][i_test] + ' Acc:' + str(acc), self.Log_file)
# for overall acc
total_correct += np.sum(preds == labels)
total_seen += len(labels)
conf_matrix = confusion_matrix(labels, preds, dataset.label_values)
confusion_list += [conf_matrix]
gt_classes += np.sum(conf_matrix, axis=1)
positive_classes += np.sum(conf_matrix, axis=0)
true_positive_classes += np.diagonal(conf_matrix)
name = dataset.input_names['validation'][i_test] + '.ply'
write_ply(join(test_path, 'val_preds', name), [preds, labels], ['pred', 'label'])
overall_acc = total_correct / total_seen
log_out('Overall Acc:' + str(overall_acc), self.Log_file)
# Regroup confusions
C = np.sum(np.stack(confusion_list), axis=0)
# Remove ignored labels from confusions
for l_ind, label_value in reversed(list(enumerate(dataset.label_values))):
if label_value in dataset.ignored_labels:
C = np.delete(C, l_ind, axis=0)
C = np.delete(C, l_ind, axis=1)
IoUs = DP.IoU_from_confusions(C)
m_IoU = np.mean(IoUs)
s = '{:5.2f} | '.format(100 * m_IoU)
for IoU in IoUs:
s += '{:5.2f} '.format(100 * IoU)
log_out('-' * len(s), self.Log_file)
log_out(s, self.Log_file)
log_out('-' * len(s) + '\n', self.Log_file)
# new algorithm for mean IoU
iou_list = []
for n in range(1, dataset.num_classes, 1):
iou = true_positive_classes[n] / float(
gt_classes[n] + positive_classes[n] - true_positive_classes[n] + 0.1)
iou_list.append(iou)
mean_iou = sum(iou_list) / float(model.config.num_classes)
s = '{:5.2f} | '.format(100 * mean_iou)
for IoU in iou_list:
s += '{:5.2f} '.format(100 * IoU)
log_out('-' * len(s), self.Log_file)
log_out(s, self.Log_file)
log_out('-' * len(s) + '\n', self.Log_file)
log_out('mean IOU:{}'.format(mean_iou), self.Log_file)
# mean Acc
acc_list = []
for n in range(1, dataset.num_classes, 1):
acc = true_positive_classes[n] / float(gt_classes[n] + 1e-6)
acc_list.append(acc)
mean_acc = sum(acc_list) / float(model.config.num_classes)
print('mAcc value is :{}'.format(mean_acc))
return
self.sess.run(dataset.val_init_op)
epoch_id += 1
step_id = 0
continue
return