-
Notifications
You must be signed in to change notification settings - Fork 10
/
main_Toronto3D.py
342 lines (289 loc) · 16.6 KB
/
main_Toronto3D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
from os.path import join, exists, dirname, abspath
from SQN import Network
from tester_Toronto3D import ModelTester
from helper_ply import read_ply
from tool import ConfigToronto3D as cfg
from tool import DataProcessing as DP
from tool import Plot
import tensorflow as tf
import numpy as np
import time, pickle, argparse, glob, os, shutil
class Toronto3D:
def __init__(self, test_area_idx, labeled_point, retrain):
self.name = 'Toronto_3D'
root_path = '/data/qy/Dataset'
# set your dataset path here
self.path = join(root_path, self.name)
self.label_to_names = {0: 'unclassified', 1: 'Road', 2: 'Road marking', 3: 'Natural', 4: 'Building',
5: 'Utility line ', 6: 'Pole', 7: 'Car', 8: 'Fence'}
self.num_classes = len(self.label_to_names)
self.label_values = np.sort([k for k, v in self.label_to_names.items()])
self.label_to_idx = {l: i for i, l in enumerate(self.label_values)}
self.ignored_labels = np.array([0])
self.use_val = True # whether use validation set or not
self.val_split = 'L00' + str(test_area_idx)
self.all_files = np.sort(glob.glob(join(self.path, 'original_ply', '*.ply')))
# initialize
if '%' in labeled_point:
r = float(labeled_point[:-1]) / 100
self.num_with_anno_per_batch = max(int(cfg.num_points * r), 1)
else:
self.num_with_anno_per_batch = cfg.num_classes
self.num_per_class = np.zeros(self.num_classes)
self.val_proj = []
self.val_labels = []
self.possibility = {}
self.min_possibility = {}
self.input_trees = {'training': [], 'validation': []}
self.input_colors = {'training': [], 'validation': []}
self.input_labels = {'training': [], 'validation': []}
self.input_names = {'training': [], 'validation': []}
self.load_sub_sampled_clouds(cfg.sub_grid_size, labeled_point, retrain)
for ignore_label in self.ignored_labels:
self.num_per_class = np.delete(self.num_per_class, ignore_label)
def load_sub_sampled_clouds(self, sub_grid_size, labeled_point, retrain):
tree_path = join(self.path, 'input_{:.3f}'.format(sub_grid_size))
nums = np.zeros(9, dtype=np.int32)
for i, file_path in enumerate(self.all_files):
t0 = time.time()
cloud_name = file_path.split('/')[-1][:-4]
if self.val_split in cloud_name:
cloud_split = 'validation'
else:
cloud_split = 'training'
# Name of the input files
kd_tree_file = join(tree_path, '{:s}_KDTree.pkl'.format(cloud_name))
sub_ply_file = join(tree_path, '{:s}.ply'.format(cloud_name))
data = read_ply(sub_ply_file)
sub_colors = np.vstack((data['red'], data['green'], data['blue'])).T
sub_labels = data['class']
# compute num_per_class in training set
if cloud_split == 'training':
self.num_per_class += DP.get_num_class_from_label(sub_labels, self.num_classes)
# ======================================== #
# Random Sparse Annotation #
# ======================================== #
if cloud_split == 'training':
if '%' in labeled_point:
new_labels = np.zeros_like(sub_labels, dtype=np.int32)
num_pts = len(sub_labels)
r = float(labeled_point[:-1]) / 100
num_with_anno = max(int(num_pts * r), 1)
valid_idx = np.where(sub_labels)[0]
idx_with_anno = np.random.choice(valid_idx, num_with_anno, replace=False)
new_labels[idx_with_anno] = sub_labels[idx_with_anno]
sub_labels = new_labels
else:
for i in range(self.num_classes):
ind_per_class = np.where(sub_labels == i)[0] # index of points belongs to a specific class
num_per_class = len(ind_per_class)
if num_per_class > 0:
num_with_anno = int(labeled_point)
num_without_anno = num_per_class - num_with_anno
idx_without_anno = np.random.choice(ind_per_class, num_without_anno, replace=False)
sub_labels[idx_without_anno] = 0
# =================================================================== #
# retrain the model with predicted pseudo labels #
# =================================================================== #
if retrain:
pseudo_label_path = './test'
temp = read_ply(join(pseudo_label_path, cloud_name + '.ply'))
pseudo_label = temp['pred']
pseudo_label_ratio = 0.01
pseudo_label[sub_labels != 0] = sub_labels[sub_labels != 0]
sub_labels = pseudo_label
self.num_with_anno_per_batch = int(cfg.num_points * pseudo_label_ratio)
# Read pkl with search tree
with open(kd_tree_file, 'rb') as f:
search_tree = pickle.load(f)
self.input_trees[cloud_split] += [search_tree]
self.input_colors[cloud_split] += [sub_colors]
self.input_labels[cloud_split] += [sub_labels]
self.input_names[cloud_split] += [cloud_name]
size = sub_colors.shape[0] * 4 * 7
print('{:s} {:.1f} MB loaded in {:.1f}s'.format(kd_tree_file.split('/')[-1], size * 1e-6, time.time() - t0))
print('\nPreparing reprojected indices for testing')
# Get validation and test reprojected indices
for i, file_path in enumerate(self.all_files):
t0 = time.time()
cloud_name = file_path.split('/')[-1][:-4]
# Validation projection and labels
if self.val_split in cloud_name:
proj_file = join(tree_path, '{:s}_proj.pkl'.format(cloud_name))
with open(proj_file, 'rb') as f:
proj_idx, labels = pickle.load(f)
self.val_proj += [proj_idx]
self.val_labels += [labels]
print('{:s} done in {:.1f}s'.format(cloud_name, time.time() - t0))
def get_batch_gen(self, split):
if split == 'training':
num_per_epoch = cfg.train_steps * cfg.batch_size
elif split == 'validation':
num_per_epoch = cfg.val_steps * cfg.val_batch_size
# Reset possibility
self.possibility[split] = []
self.min_possibility[split] = []
for i, tree in enumerate(self.input_colors[split]):
self.possibility[split] += [np.random.rand(tree.data.shape[0]) * 1e-3]
self.min_possibility[split] += [float(np.min(self.possibility[split][-1]))]
def spatially_regular_gen():
# Generator loop
for i in range(num_per_epoch): # num_per_epoch
# Choose a random cloud
cloud_idx = int(np.argmin(self.min_possibility[split]))
# choose the point with the minimum of possibility as query point
point_ind = np.argmin(self.possibility[split][cloud_idx])
# Get points from tree structure
points = np.array(self.input_trees[split][cloud_idx].data, copy=False)
# Center point of input region
center_point = points[point_ind, :].reshape(1, -1)
# Add noise to the center point
noise = np.random.normal(scale=cfg.noise_init / 10, size=center_point.shape)
pick_point = center_point + noise.astype(center_point.dtype)
if len(points) < cfg.num_points:
queried_idx = self.input_trees[split][cloud_idx].query(pick_point, k=len(points))[1][0]
else:
queried_idx = self.input_trees[split][cloud_idx].query(pick_point, k=cfg.num_points)[1][0]
queried_idx = DP.shuffle_idx(queried_idx)
# Collect points and colors
queried_pc_xyz = points[queried_idx]
queried_pc_xyz = queried_pc_xyz - pick_point
queried_pc_colors = self.input_colors[split][cloud_idx][queried_idx]
queried_pc_labels = self.input_labels[split][cloud_idx][queried_idx]
dists = np.sum(np.square((points[queried_idx] - pick_point).astype(np.float32)), axis=1)
delta = np.square(1 - dists / np.max(dists))
self.possibility[split][cloud_idx][queried_idx] += delta
self.min_possibility[split][cloud_idx] = float(np.min(self.possibility[split][cloud_idx]))
if len(points) < cfg.num_points:
queried_pc_xyz, queried_pc_colors, queried_idx, queried_pc_labels = \
DP.data_aug(queried_pc_xyz, queried_pc_colors, queried_pc_labels, queried_idx, cfg.num_points)
if split == 'training':
unique_label_value = np.unique(queried_pc_labels)
if len(unique_label_value) <= 1:
i -= 1
continue
else:
# ================================================================== #
# Keep the same number of labeled points per batch #
# ================================================================== #
idx_with_anno = np.where(queried_pc_labels != self.ignored_labels[0])[0]
num_with_anno = len(idx_with_anno)
if num_with_anno > self.num_with_anno_per_batch:
idx_with_anno = np.random.choice(idx_with_anno, self.num_with_anno_per_batch, replace=False)
elif num_with_anno < self.num_with_anno_per_batch:
dup_idx = np.random.choice(idx_with_anno, self.num_with_anno_per_batch - len(idx_with_anno))
idx_with_anno = np.concatenate([idx_with_anno, dup_idx], axis=0)
xyz_with_anno = queried_pc_xyz[idx_with_anno]
labels_with_anno = queried_pc_labels[idx_with_anno]
else:
xyz_with_anno = queried_pc_xyz
labels_with_anno = queried_pc_labels
if True:
yield (queried_pc_xyz.astype(np.float32),
queried_pc_colors.astype(np.float32),
queried_pc_labels,
queried_idx.astype(np.int32),
np.array([cloud_idx], dtype=np.int32),
xyz_with_anno.astype(np.float32),
labels_with_anno.astype(np.int32))
gen_func = spatially_regular_gen
gen_types = (tf.float32, tf.float32, tf.int32, tf.int32, tf.int32, tf.float32, tf.int32)
gen_shapes = ([None, 3], [None, 3], [None], [None], [None], [None, 3], [None])
return gen_func, gen_types, gen_shapes
@staticmethod
def get_tf_mapping2():
def tf_map(batch_xyz, batch_features, batch_labels, batch_pc_idx, batch_cloud_idx, batch_xyz_anno,
batch_label_anno):
batch_features = tf.concat([batch_xyz, batch_features], axis=-1)
input_points = []
input_neighbors = []
input_pools = []
input_up_samples = []
for i in range(cfg.num_layers):
neighbour_idx = tf.py_func(DP.knn_search, [batch_xyz, batch_xyz, cfg.k_n], tf.int32)
sub_points = batch_xyz[:, :tf.shape(batch_xyz)[1] // cfg.sub_sampling_ratio[i], :]
pool_i = neighbour_idx[:, :tf.shape(batch_xyz)[1] // cfg.sub_sampling_ratio[i], :]
up_i = tf.py_func(DP.knn_search, [sub_points, batch_xyz, 1], tf.int32)
input_points.append(batch_xyz)
input_neighbors.append(neighbour_idx)
input_pools.append(pool_i)
input_up_samples.append(up_i)
batch_xyz = sub_points
input_list = input_points + input_neighbors + input_pools + input_up_samples
input_list += [batch_features, batch_labels, batch_pc_idx, batch_cloud_idx, batch_xyz_anno,
batch_label_anno]
return input_list
return tf_map
def init_input_pipeline(self):
print('Initiating input pipelines')
cfg.ignored_label_inds = [self.label_to_idx[ign_label] for ign_label in self.ignored_labels]
gen_function, gen_types, gen_shapes = self.get_batch_gen('training')
gen_function_val, _, _ = self.get_batch_gen('validation')
self.train_data = tf.data.Dataset.from_generator(gen_function, gen_types, gen_shapes)
self.val_data = tf.data.Dataset.from_generator(gen_function_val, gen_types, gen_shapes)
self.batch_train_data = self.train_data.batch(cfg.batch_size)
self.batch_val_data = self.val_data.batch(cfg.val_batch_size)
map_func = self.get_tf_mapping2()
self.batch_train_data = self.batch_train_data.map(map_func=map_func)
self.batch_val_data = self.batch_val_data.map(map_func=map_func)
self.batch_train_data = self.batch_train_data.prefetch(cfg.batch_size)
self.batch_val_data = self.batch_val_data.prefetch(cfg.val_batch_size)
iter = tf.data.Iterator.from_structure(self.batch_train_data.output_types, self.batch_train_data.output_shapes)
self.flat_inputs = iter.get_next()
self.train_init_op = iter.make_initializer(self.batch_train_data)
self.val_init_op = iter.make_initializer(self.batch_val_data)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=int, default=0, help='the number of GPUs to use [default: 0]')
parser.add_argument('--test_area', type=int, default=2, help='Which area to use for test, option: 1-6 [default: 5]')
parser.add_argument('--mode', type=str, default='train', help='options: train, test, vis')
parser.add_argument('--labeled_point', type=str, default='0.1%', help='0.1%/1%/10%/100%')
parser.add_argument('--gen_pseudo', default=False, action='store_true', help='generate pseudo labels or not')
parser.add_argument('--retrain', default=False, action='store_true', help='Re-training with pseudo labels or not')
FLAGS = parser.parse_args()
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ['CUDA_VISIBLE_DEVICES'] = str(FLAGS.gpu)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
Mode = FLAGS.mode
print('Settings:')
print('Mode:', FLAGS.mode)
print('Labeled_point', FLAGS.labeled_point)
print('gen_pseudo', FLAGS.gen_pseudo)
print('retrain', FLAGS.retrain)
shutil.rmtree('__pycache__') if exists('__pycache__') else None
if Mode == 'train':
# shutil.rmtree('results') if exists('results') else None
shutil.rmtree('train_log') if exists('train_log') else None
for f in os.listdir(dirname(abspath(__file__))):
if f.startswith('log_'):
os.remove(f)
test_area = FLAGS.test_area
dataset = Toronto3D(test_area, FLAGS.labeled_point, FLAGS.retrain)
dataset.init_input_pipeline()
if Mode == 'train':
model = Network(dataset, cfg, FLAGS.retrain)
model.train(dataset)
elif Mode == 'test':
cfg.saving = False
model = Network(dataset, cfg)
chosen_snapshot = -1
logs = np.sort([os.path.join('results', f) for f in os.listdir('results') if f.startswith('Log')])
chosen_folder = logs[-1]
snap_path = join(chosen_folder, 'snapshots')
snap_steps = [int(f[:-5].split('-')[-1]) for f in os.listdir(snap_path) if f[-5:] == '.meta']
chosen_step = np.sort(snap_steps)[-1]
chosen_snap = os.path.join(snap_path, 'snap-{:d}'.format(chosen_step))
tester = ModelTester(model, dataset, restore_snap=chosen_snap)
tester.test(model, dataset, FLAGS.gen_pseudo)
shutil.rmtree('train_log') if exists('train_log') else None
else:
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(dataset.train_init_op)
while True:
data_list = sess.run(dataset.flat_inputs)
xyz = data_list[0]
sub_xyz = data_list[1]
label = data_list[21]
Plot.draw_pc_sem_ins(xyz[0, :, :], label[0, :])
Plot.draw_pc_sem_ins(sub_xyz[0, :, :], label[0, 0:np.shape(sub_xyz)[1]])