-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathmain_SemanticKITTI.py
322 lines (280 loc) · 16.2 KB
/
main_SemanticKITTI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
from tool import DataProcessing as DP
from tool import ConfigSemanticKITTI as cfg
from tool import Plot
from os.path import join, exists, abspath, dirname
from SQN import Network
from tester_SemanticKITTI import ModelTester
import tensorflow as tf
import numpy as np
import os, argparse, pickle, shutil
class SemanticKITTI:
def __init__(self, test_id, labeled_point, gen_pseudo, retrain):
self.name = 'SemanticKITTI'
# set your dataset path here
root_path = '/data/qy/Dataset'
self.dataset_path = join(root_path, 'Semantic_KITTI', 'dataset', 'sequences_0.06')
self.label_to_names = {0: 'unlabeled', 1: 'car', 2: 'bicycle', 3: 'motorcycle', 4: 'truck',
5: 'other-vehicle', 6: 'person', 7: 'bicyclist', 8: 'motorcyclist',
9: 'road', 10: 'parking', 11: 'sidewalk', 12: 'other-ground', 13: 'building',
14: 'fence', 15: 'vegetation', 16: 'trunk', 17: 'terrain', 18: 'pole',
19: 'traffic-sign'}
self.num_classes = len(self.label_to_names)
self.label_values = np.sort([k for k, v in self.label_to_names.items()])
self.label_to_idx = {l: i for i, l in enumerate(self.label_values)}
self.ignored_labels = np.sort([0])
self.gen_pseudo = gen_pseudo
self.retrain = retrain
self.use_val = True # whether use validation set or not
self.val_split = '08'
self.seq_list = np.sort(os.listdir(self.dataset_path))
self.test_scan_number = str(test_id)
self.train_list, self.val_list, self.test_list = DP.get_file_list(self.dataset_path,
self.test_scan_number,
self.gen_pseudo)
self.train_list = DP.shuffle_list(self.train_list)
self.val_list = DP.shuffle_list(self.val_list)
self.possibility = []
self.min_possibility = []
self.num_per_class = np.array([55437630, 320797, 541736, 2578735, 3274484, 552662, 184064, 78858,
240942562, 17294618, 170599734, 6369672, 230413074, 101130274, 476491114,
9833174, 129609852, 4506626, 1168181])
if '%' in labeled_point:
r = float(labeled_point[:-1]) / 100
self.num_with_anno_per_batch = max(int(cfg.num_points * r), 1)
else:
self.num_with_anno_per_batch = cfg.num_classes
self.labeled_point = labeled_point
def get_batch_gen(self, split):
if split == 'training':
num_per_epoch = int(len(self.train_list) / cfg.batch_size) * cfg.batch_size
path_list = self.train_list
elif split == 'validation':
num_per_epoch = int(len(self.val_list) / cfg.val_batch_size) * cfg.val_batch_size
cfg.val_steps = int(len(self.val_list) / cfg.batch_size)
path_list = self.val_list
elif split == 'test':
num_per_epoch = int(len(self.test_list) / cfg.val_batch_size) * cfg.val_batch_size * 4
path_list = self.test_list
for test_file_name in path_list:
points = np.load(test_file_name)
self.possibility += [np.random.rand(points.shape[0]) * 1e-3]
self.min_possibility += [float(np.min(self.possibility[-1]))]
def spatially_regular_gen():
# Generator loop
for i in range(num_per_epoch):
if split != 'test':
cloud_ind = i
pc_path = path_list[cloud_ind]
pc, tree, labels = self.get_data(pc_path)
# crop a small point cloud
pick_idx = np.random.choice(len(pc), 1)
selected_pc, selected_labels, selected_idx = self.crop_pc(pc, labels, tree, pick_idx)
if split == 'training':
unique_label_value = np.unique(selected_labels)
if len(unique_label_value) <= 1:
i -= 1
continue
else:
# ================================================================== #
# Keep the same number of labeled points per batch #
# ================================================================== #
idx_with_anno = np.where(selected_labels != self.ignored_labels[0])[0]
num_with_anno = len(idx_with_anno)
if num_with_anno > self.num_with_anno_per_batch:
idx_with_anno = np.random.choice(idx_with_anno, self.num_with_anno_per_batch,
replace=False)
elif num_with_anno < self.num_with_anno_per_batch:
dup_idx = np.random.choice(idx_with_anno,
self.num_with_anno_per_batch - len(idx_with_anno))
idx_with_anno = np.concatenate([idx_with_anno, dup_idx], axis=0)
xyz_with_anno = selected_pc[idx_with_anno]
labels_with_anno = selected_labels[idx_with_anno]
else:
xyz_with_anno = selected_pc
labels_with_anno = selected_labels
else:
cloud_ind = int(np.argmin(self.min_possibility))
pick_idx = np.argmin(self.possibility[cloud_ind])
pc_path = path_list[cloud_ind]
pc, tree, labels = self.get_data(pc_path)
selected_pc, selected_labels, selected_idx = self.crop_pc(pc, labels, tree, pick_idx)
# update the possibility of the selected pc
dists = np.sum(np.square((selected_pc - pc[pick_idx]).astype(np.float32)), axis=1)
delta = np.square(1 - dists / np.max(dists))
self.possibility[cloud_ind][selected_idx] += delta
self.min_possibility[cloud_ind] = np.min(self.possibility[cloud_ind])
xyz_with_anno = selected_pc
labels_with_anno = selected_labels
if True:
yield (selected_pc.astype(np.float32),
selected_labels.astype(np.int32),
selected_idx.astype(np.int32),
np.array([cloud_ind], dtype=np.int32),
xyz_with_anno.astype(np.float32),
labels_with_anno.astype(np.int32))
gen_func = spatially_regular_gen
gen_types = (tf.float32, tf.int32, tf.int32, tf.int32, tf.float32, tf.int32)
gen_shapes = ([None, 3], [None], [None], [None], [None, 3], [None])
return gen_func, gen_types, gen_shapes
def get_data(self, file_path):
seq_id = file_path.split('/')[-3]
frame_id = file_path.split('/')[-1][:-4]
kd_tree_path = join(self.dataset_path, seq_id, 'KDTree', frame_id + '.pkl')
# Read pkl with search tree
with open(kd_tree_path, 'rb') as f:
search_tree = pickle.load(f)
points = np.array(search_tree.data, copy=False)
# Load labels
if int(seq_id) >= 11:
labels = np.zeros(np.shape(points)[0], dtype=np.uint8)
else:
labeled_point = self.labeled_point
label_path = join(self.dataset_path, seq_id, 'labels', frame_id + '.npy')
labels = np.squeeze(np.load(label_path))
if int(seq_id) != 8:
# ======================================== #
# Random Sparse Annotation #
# ======================================== #
if not self.gen_pseudo:
if '%' in labeled_point:
new_labels = np.zeros_like(labels, dtype=np.int32)
num_pts = len(labels)
r = float(labeled_point[:-1]) / 100
num_with_anno = max(int(num_pts * r), 1)
valid_idx = np.where(labels)[0]
idx_with_anno = np.random.choice(valid_idx, num_with_anno, replace=False)
new_labels[idx_with_anno] = labels[idx_with_anno]
labels = new_labels
else:
for i in range(self.num_classes):
ind_per_class = np.where(labels == i)[0] # index of points belongs to a specific class
num_per_class = len(ind_per_class)
if num_per_class > 0:
num_with_anno = int(labeled_point)
num_without_anno = num_per_class - num_with_anno
idx_without_anno = np.random.choice(ind_per_class, num_without_anno, replace=False)
labels[idx_without_anno] = 0
# =================================================================== #
# retrain the model with predicted pseudo labels #
# =================================================================== #
if self.retrain:
pseudo_label_path = './test/sequences'
temp = np.load(join(pseudo_label_path, seq_id, 'predictions', frame_id + '.npy'))
pseudo_label = np.squeeze(temp)
pseudo_label_ratio = 0.01
pseudo_label[labels != 0] = labels[labels != 0]
labels = pseudo_label
self.num_with_anno_per_batch = int(cfg.num_points * pseudo_label_ratio)
return points, search_tree, labels
@staticmethod
def crop_pc(points, labels, search_tree, pick_idx):
# crop a fixed size point cloud for training
center_point = points[pick_idx, :].reshape(1, -1)
select_idx = search_tree.query(center_point, k=cfg.num_points)[1][0]
select_idx = DP.shuffle_idx(select_idx)
select_points = points[select_idx]
select_labels = labels[select_idx]
return select_points, select_labels, select_idx
@staticmethod
def get_tf_mapping2():
def tf_map(batch_pc, batch_label, batch_pc_idx, batch_cloud_idx, batch_xyz_anno,
batch_label_anno):
features = batch_pc
input_points = []
input_neighbors = []
input_pools = []
input_up_samples = []
for i in range(cfg.num_layers):
neighbour_idx = tf.py_func(DP.knn_search, [batch_pc, batch_pc, cfg.k_n], tf.int32)
sub_points = batch_pc[:, :tf.shape(batch_pc)[1] // cfg.sub_sampling_ratio[i], :]
pool_i = neighbour_idx[:, :tf.shape(batch_pc)[1] // cfg.sub_sampling_ratio[i], :]
up_i = tf.py_func(DP.knn_search, [sub_points, batch_pc, 1], tf.int32)
input_points.append(batch_pc)
input_neighbors.append(neighbour_idx)
input_pools.append(pool_i)
input_up_samples.append(up_i)
batch_pc = sub_points
input_list = input_points + input_neighbors + input_pools + input_up_samples
input_list += [features, batch_label, batch_pc_idx, batch_cloud_idx, batch_xyz_anno,
batch_label_anno]
return input_list
return tf_map
def init_input_pipeline(self):
print('Initiating input pipelines')
cfg.ignored_label_inds = [self.label_to_idx[ign_label] for ign_label in self.ignored_labels]
gen_function, gen_types, gen_shapes = self.get_batch_gen('training')
gen_function_val, _, _ = self.get_batch_gen('validation')
gen_function_test, _, _ = self.get_batch_gen('test')
self.train_data = tf.data.Dataset.from_generator(gen_function, gen_types, gen_shapes)
self.val_data = tf.data.Dataset.from_generator(gen_function_val, gen_types, gen_shapes)
self.test_data = tf.data.Dataset.from_generator(gen_function_test, gen_types, gen_shapes)
self.batch_train_data = self.train_data.batch(cfg.batch_size)
self.batch_val_data = self.val_data.batch(cfg.val_batch_size)
self.batch_test_data = self.test_data.batch(cfg.val_batch_size)
map_func = self.get_tf_mapping2()
self.batch_train_data = self.batch_train_data.map(map_func=map_func)
self.batch_val_data = self.batch_val_data.map(map_func=map_func)
self.batch_test_data = self.batch_test_data.map(map_func=map_func)
self.batch_train_data = self.batch_train_data.prefetch(cfg.batch_size)
self.batch_val_data = self.batch_val_data.prefetch(cfg.val_batch_size)
self.batch_test_data = self.batch_test_data.prefetch(cfg.val_batch_size)
iter = tf.data.Iterator.from_structure(self.batch_train_data.output_types, self.batch_train_data.output_shapes)
self.flat_inputs = iter.get_next()
self.train_init_op = iter.make_initializer(self.batch_train_data)
self.val_init_op = iter.make_initializer(self.batch_val_data)
self.test_init_op = iter.make_initializer(self.batch_test_data)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=int, default=0, help='the number of GPUs to use [default: 0]')
parser.add_argument('--mode', type=str, default='train', help='options: train, test, vis')
parser.add_argument('--test_area', type=str, default='14', help='options: 11,12,13,14,15,16,17,18,19,20,21')
parser.add_argument('--labeled_point', type=str, default='0.1%', help='0.1%/1%/10%/100%')
parser.add_argument('--gen_pseudo', default=False, action='store_true', help='generate pseudo labels or not')
parser.add_argument('--retrain', default=False, action='store_true', help='Re-training with pseudo labels or not')
FLAGS = parser.parse_args()
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ['CUDA_VISIBLE_DEVICES'] = str(FLAGS.gpu)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
Mode = FLAGS.mode
print('Settings:')
print('Mode:', FLAGS.mode)
print('Labeled_point', FLAGS.labeled_point)
print('gen_pseudo', FLAGS.gen_pseudo)
print('retrain', FLAGS.retrain)
shutil.rmtree('__pycache__') if exists('__pycache__') else None
if Mode == 'train':
# shutil.rmtree('results') if exists('results') else None
shutil.rmtree('train_log') if exists('train_log') else None
for f in os.listdir(dirname(abspath(__file__))):
if f.startswith('log_'):
os.remove(f)
test_area = FLAGS.test_area
dataset = SemanticKITTI(test_area, FLAGS.labeled_point, FLAGS.gen_pseudo, FLAGS.retrain)
dataset.init_input_pipeline()
if Mode == 'train':
model = Network(dataset, cfg, FLAGS.retrain)
model.train(dataset)
elif Mode == 'test':
cfg.saving = False
model = Network(dataset, cfg)
chosen_snapshot = -1
logs = np.sort([os.path.join('results', f) for f in os.listdir('results') if f.startswith('Log')])
chosen_folder = logs[-1]
snap_path = join(chosen_folder, 'snapshots')
snap_steps = [int(f[:-5].split('-')[-1]) for f in os.listdir(snap_path) if f[-5:] == '.meta']
chosen_step = np.sort(snap_steps)[-1]
chosen_snap = os.path.join(snap_path, 'snap-{:d}'.format(chosen_step))
tester = ModelTester(model, dataset, restore_snap=chosen_snap)
tester.test(model, dataset, FLAGS.gen_pseudo)
shutil.rmtree('train_log') if exists('train_log') else None
else:
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(dataset.train_init_op)
while True:
a = sess.run(dataset.flat_inputs)
pos = a[0]
sub_pos1 = a[1]
label = a[17]
Plot.draw_pc_sem_ins(pos[0, :, :], label[0, :])
Plot.draw_pc_sem_ins(sub_pos1[0, :, :], label[0, 0:np.shape(sub_pos1)[1]])