It is quite simple to support snpe backend: Client/Server mode.
this mode
- Can split
model convert
andinference
environments;
- Inference irrelevant matters are done on host
- We can get the real running results of gpu/npu instead of cpu simulation values
-
Can cover cost-sensitive device, armv7/risc-v/mips chips meet product requirements, but often have limited support for Python;
-
Can simplify mmdeploy installation steps. If you only want to convert snpe model and test, you don't need to compile the .whl package.
Download the prebuilt snpe inference server package, adb push
it to the phone and execute.
Note that the phone must have a qcom chip.
$ wget https://media.githubusercontent.com/media/tpoisonooo/mmdeploy_snpe_testdata/main/snpe-inference-server-1.59.tar.gz
...
$ sudo apt install adb
$ adb push snpe-inference-server-1.59.tar.gz /data/local/tmp/
# decompress and execute
$ adb shell
venus:/ $ cd /data/local/tmp
130|venus:/data/local/tmp $ tar xvf snpe-inference-server-1.59.tar.gz
...
130|venus:/data/local/tmp $ source export1.59.sh
130|venus:/data/local/tmp $ ./inference_server
...
Server listening on [::]:60000
At this point the inference service should print all the ipv6 and ipv4 addresses of the device and listen on the port.
tips:
- If
adb devices
cannot find the device, may be:- Some cheap cables can only charge and cannot transmit data
- or the "developer mode" of the phone is not turned on
- If you need to compile the binary by self, please refer to NDK Cross Compiling snpe Inference Service
- If a
segmentation fault
occurs when listening on a port, it may be because:- The port number is already occupied, use another port
Matters | Version | Remarks |
---|---|---|
host OS | ubuntu18.04 x86_64 | snpe specified version |
Python | 3.6.0 | snpe specified version |
Download snpe-1.59 from the official website
$ unzip snpe-1.59.0.zip
$ export SNPE_ROOT=${PWD}/snpe-1.59.0.3230
$ cd /path/to/mmdeploy
$ export PYTHONPATH=${PWD}/service/snpe/client:${SNPE_ROOT}/lib/python:${PYTHONPATH}
$ export LD_LIBRARY_PATH=${SNPE_ROOT}/lib/x86_64-linux-clang:${LD_LIBRARY_PATH}
$ export PATH=${SNPE_ROOT}/bin/x86_64-linux-clang:${PATH}
$ python3 -m pip install -e .
Take Resnet-18 as an example. First refer to documentation to install mmcls and use tools/deploy.py
to convert the model.
$ export MODEL_CONFIG=/path/to/mmclassification/configs/resnet/resnet18_8xb16_cifar10.py
$ export MODEL_PATH=https://download.openmmlab.com/mmclassification/v0/resnet/resnet18_b16x8_cifar10_20210528-bd6371c8.pth
# Convert the model
$ cd /path/to/mmdeploy
$ python3 tools/deploy.py configs/mmcls/classification_snpe_static.py $MODEL_CONFIG $MODEL_PATH /path/to/test.png --work-dir resnet18 --device cpu --uri 10.0.0.1\:60000 --dump-info
# Test
$ python3 tools/test.py configs/mmcls/classification_snpe_static.py $MODEL_CONFIG --model reset18/end2end.dlc --metrics accuracy precision f1_score recall --uri 10.0.0.1\:60000
Note that --uri
is required to specify the ip and port of the snpe inference service, ipv4 and ipv6 addresses can be used.
If you also need to compile mmdeploy SDK with Android NDK, please continue reading.
# Download android OCV
$ export OPENCV_VERSION=4.5.4
$ wget https://github.com/opencv/opencv/releases/download/${OPENCV_VERSION}/opencv-${OPENCV_VERSION}-android-sdk.zip
$ unzip opencv-${OPENCV_VERSION}-android-sdk.zip
$ export ANDROID_OCV_ROOT=`realpath opencv-${OPENCV_VERSION}-android-sdk`
# Download ndk r23b
$ wget https://dl.google.com/android/repository/android-ndk-r23b-linux.zip
$ unzip android-ndk-r23b-linux.zip
$ export ANDROID_NDK_ROOT=`realpath android-ndk-r23b`
$ cd /path/to/mmdeploy
$ mkdir build && cd build
$ cmake .. \
-DMMDEPLOY_BUILD_SDK=ON \
-DCMAKE_TOOLCHAIN_FILE=${ANDROID_NDK_ROOT}/build/cmake/android.toolchain.cmake \
-DMMDEPLOY_TARGET_BACKENDS=snpe \
-DANDROID_ABI=arm64-v8a -DANDROID_PLATFORM=android-30 \
-DANDROID_STL=c++_static \
-DOpenCV_DIR=${ANDROID_OCV_ROOT}/sdk/native/jni/abi-arm64-v8a \
-DMMDEPLOY_BUILD_EXAMPLES=ON
$ make && make install
$ tree ./bin
./bin
├── image_classification
├── image_restorer
├── image_segmentation
├── mmdeploy_onnx2ncnn
├── object_detection
├── ocr
├── pose_detection
└── rotated_object_detection
Options | Description |
---|---|
CMAKE_TOOLCHAIN_FILE | Load NDK parameters, mainly used to select compiler |
MMDEPLOY_TARGET_BACKENDS=snpe | Inference backend |
ANDROID_STL=c++_static | In case of NDK environment can not find suitable c++ library |
MMDEPLOY_SHARED_LIBS=ON | snpe does not provide static library |
Here is all cmake build option description.
First make sure that--dump-info
is used during convert model, so that the resnet18
directory has the files required by the SDK such as pipeline.json
.
adb push
the model directory, executable file and .so to the device.
$ cd /path/to/mmdeploy
$ adb push resnet18 /data/local/tmp
$ adb push tests/data/tiger.jpeg /data/local/tmp/resnet18/
$ cd /path/to/install/
$ adb push lib /data/local/tmp
$ adb push bin/image_classification /data/local/tmp/resnet18/
Set up environment variable and execute the sample.
$ adb push /path/to/mmcls/demo/demo.JPEG /data/local/tmp
$ adb shell
venus:/ $ cd /data/local/tmp/resnet18
venus:/data/local/tmp/resnet18 $ export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/data/local/tmp/lib
venus:/data/local/tmp/resnet18 $ ./image_classification cpu ./ tiger.jpeg
..
label: 3, score: 0.3214