-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPersistenceImages.py
304 lines (268 loc) · 9.34 KB
/
PersistenceImages.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import numpy as np
import gudhi as gd
import random as rd
import pickle as pickle
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from scipy.integrate import quad, dblquad
def RVSimplexTree(points):
rips_complex = gd.RipsComplex(points,max_edge_length=0.5)
simplex_tree = rips_complex.create_simplex_tree(max_dimension=3)
diag1 = simplex_tree.persistence(homology_coeff_field=2, min_persistence=0)
return simplex_tree
def ACSimplexTree(pt_cloud):
alpha_complex = gd.AlphaComplex(points=pt_cloud)
simplex_tree3 = alpha_complex.create_simplex_tree(max_alpha_square=60.0)
diag3 = simplex_tree3.persistence(homology_coeff_field=2, min_persistence=0)
return simplex_tree3
def ACPlotDiags(pt_cloud, homologyDegree = 1):
alpha_complex = gd.AlphaComplex(points=pt_cloud)
simplex_tree3 = alpha_complex.create_simplex_tree(max_alpha_square=60.0)
diag3 = simplex_tree3.persistence(homology_coeff_field=2, min_persistence=0)
gd.plot_persistence_diagram(diag3)
diag = simplex_tree3.persistence_intervals_in_dimension(homologyDegree)
return diag
def ACgetDiagram(pt_cloud, homologyDegree):
st = ACSimplexTree(pt_cloud)
st.persistence(homology_coeff_field=2, min_persistence=0)
diag = st.persistence_intervals_in_dimension(homologyDegree)
return diag
def RVgetDiagram(pt_cloud, homologyDegree):
st = RVSimplexTree(pt_cloud)
st.persistence(homology_coeff_field=2, min_persistence=0)
diag = st.persistence_intervals_in_dimension(homologyDegree)
return diag
def listDiagrams(list_pts_cloud, homologyDegree):
listDiag = []
for pt_cloud in list_pts_cloud:
diag = ACgetDiagram(pt_cloud, homologyDegree)
listDiag.append(diag)
return listDiag
def getAllListsDiagram(listData, numberOfSeriesToKeep, homologyDegree):
listDiag = []
for i in range(3):
list_pts_cloud = listData[i][0:numberOfSeriesToKeep]
listDiagToAdd = listDiagrams(list_pts_cloud, homologyDegree)
listDiag = listDiag+listDiagToAdd
return listDiag
def weightFunction(arrayDiag, b):
persistence = arrayDiag[:,1]
boolIsGreaterThanb = persistence > b
res = boolIsGreaterThanb + np.logical_not(boolIsGreaterThanb)*arrayDiag[:,1]/b
return res
def gaussian(arrayDiag, x,y, sigma2, b):
res = arrayDiag - [x, y]
res = res**2
res = np.sum(res, axis = 1)
res = res /(2*sigma2)
res = np.exp(-res)
res = res /(2*np.pi * sigma2) #we carefully divide by sigma2 and not sqrt(sigma2) because of the 2-dimensions
return res
def getFuction(arrayDiag, x ,y, sigma2, b):
values = weightFunction(arrayDiag, b) * gaussian(arrayDiag, x,y, sigma2, b)
value = np.sum(values)
return value
def integrateOnPixel(arrayDiag, sigma2, b, xStart, xEnd, yStart, yEnd):
return dblquad(lambda x, y: getFuction(arrayDiag, x ,y, sigma2, b), yStart, yEnd, lambda x: xStart, lambda x: xEnd)
def getExpxTx2(arrayDiag0, tabx, sigma2):
n = np.shape(arrayDiag0)[0]
#checker la ligne suivante pour voir si ça produit le résultat voulu
resx = arrayDiag0[0] - np.tile(tabx, (n, 1))
resx = resx**2
resx = resx/(2*sigma2)
resx = np.exp(-resx)
print("resx = ",resx)
return resx
def fastInt(arrayDiag, tabx, taby, sigma2, b):
resx = getExpxTx2(arrayDiag[:,0], tabx, sigma2)/(2*np.pi * sigma2)
resy = getExpxTx2(arrayDiag[:,1], taby, sigma2)
diagonalMatrix = weightFunction(arrayDiag, b)
diagonalMatrix = np.diag(diagonalMatrix)
print("arrayDiag =", diagonalMatrix)
res = np.dot(diagonalMatrix, resx)
res = np.dot( np.transpose(resy), res)
return res
def integrateOnPixelFast(arrayDiag, sigma2, b, xStart, xEnd, yStart, yEnd):
lengthMeshx = 100
lengthMeshy = 100
tabx = np.linspace(xStart, xEnd, lengthMeshx)
taby = np.linspace(yStart, yEnd, lengthMeshy)
valuesOnMesh = fastInt(arrayDiag, tabx ,taby, sigma2, b)
valuesOnMesh = valuesOnMesh.cumsum(axis=0).cumsum(axis=1)/(lengthMeshx*lengthMeshy)
A = valuesOnMesh[0,0]
B = valuesOnMesh[lengthMeshy-1, lengthMeshx-1]
C = valuesOnMesh[lengthMeshy -1, 0]
D = valuesOnMesh[0, lengthMeshx-1]
print(A,B,C,D)
res = A + B - C - D
return res
def persistenceImage(diag, sigma2, b, xRes, yRes, xMin, xMax, yMin, yMax):
arrayDiag = fromListToArray(diag)
arrayDiag[:, 1] = arrayDiag[:, 1] -arrayDiag[:, 0] #here the diagram is trannsformed from B to T(B)
image = np.zeros((yRes, xRes))
deltaX = (xMax-xMin)/(xRes+1)
deltaY = (yMax-yMin)/(yRes+1)
for j in range(xRes):
xStart = xMin + j * deltaX
xEnd = xMin + (j+1) * deltaX
for i in range(yRes):
yStart = yMin + i * deltaY
yEnd = yMin + (i+1) * deltaY
#print(arrayDiag)
value = integrateOnPixel(arrayDiag, sigma2, b, xStart, xEnd, yStart, yEnd)
image[yRes-i-1,j] = value[0]
return image
def fromListToArray(diag):
n = len(diag)
m = 2
tab = np.zeros((n , m))
i=0
for point in diag:
tab[i, 0] = point[0]
tab[i, 1] = point[1]
i=i+1
return tab
def persistenceImageFromPtCloud(pt_cloud, homologyDegree, sigma2, b, xRes, yRes, xMin, xMax, yMin, yMax):
diag = ACgetDiagram(pt_cloud, homologyDegree)
image = persistenceImage(diag, sigma2, b, xRes, yRes, xMin, xMax, yMin, yMax)
print(image)
return image
def getDistMat(listDiag):
n=len(listDiag)
dist_mat = np.zeros((n,n))
i=0
for diag1 in listDiag:
j=0
for diag2 in listDiag:
if(j < i):
db = gd.bottleneck_distance(diag1,diag2)
dist_mat[i,j] = db
dist_mat[j,i] = db
j=j+1
i=i+1
return dist_mat
def getLabel(numberOfSeriesToKeep):
label_color=[]
listeColor=['blue', 'red', 'green']
for i in range(3):
for j in range(numberOfSeriesToKeep):
lettre = listeColor[i]
label_color.append(lettre)
return label_color
def getListPIfromListDiag(listDiag, sigma2, b, xRes, yRes, xMin, xMax, yMin, yMax):
listPI = []
for diag in listDiag:
persistIm = persistenceImage(diag, sigma2, b, xRes, yRes, xMin, xMax, yMin, yMax)
listPI.append(persistIm)
return listPI
def getDistMatFromPi(listPI):
n=len(listPI)
dist_mat = np.zeros((n,n))
i=0
for PI1 in listPI:
j=0
for PI2 in listPI:
if(j < i):
dist = np.sum((PI1 - PI2)**2)
dist_mat[i,j] = dist
dist_mat[j,i] = dist
j=j+1
i=i+1
return dist_mat
def getDistMatFromListDiag(listDiag, sigma2, b, xRes, yRes, xMin, xMax, yMin, yMax):
listPI = getListPIfromListDiag(listDiag, sigma2, b, xRes, yRes, xMin, xMax, yMin, yMax)
dist_mat = getDistMatFromPi(listPI)
return dist_mat
def getIndivInCluster(clusters, numero, label_color):
indivInCluster = clusters[numero]
colorInCluster = [label_color[i] for i in indivInCluster]
return colorInCluster
def errorInCluster(cluster, nbclusters):
count = np.zeros(nbclusters)
for point in cluster:
if(point == "blue"):
count[0] = count[0]+1
if(point == "green"):
count[1] = count[1]+1
if(point == "red"):
count[0] = count[0]+1
if(point == "yellow"):
count[1] = count[1]+1
if(point == "black"):
count[0] = count[0]+1
if(point == "pink"):
count[1] = count[1]+1
colorCluster = np.argmax(count)
count[colorCluster] = 0
res = np.sum(count)
return res
###########################################################################################################
"""
f = open("data_acc.dat","rb")
data = pickle.load(f,encoding="latin1")
f.close()
data_A = data[0]
data_A_sample = data_A[0]
data_B = data[1]
data_B_sample = data_B[0]
data_C = data[2]
data_C_sample = data_C[0]
#we set the parameters
pt_cloud = data_B_sample
homologyDegree = 1
sigma2=0.0001
b=0.02
xRes = 20
yRes = 10
xMin = 0
xMax = 0.2
yMin = 0
yMax = 0.02
###first we plot the data :
fig = plt.figure()
ax = Axes3D(fig)
ax.scatter(data_A_sample[:,0], data_A_sample[:,1], data_A_sample[:,2])
plt.title('Data')
plt.show()
###The the peristence diagram for the degree 1 of homology
diag = ACgetDiagram(data_A_sample, homologyDegree)
lx=[]
ly=[]
lTy=[]
for points in diag:
lx.append(points[0])
ly.append(points[1])
lTy.append(points[1]-points[0])
#The persistence diagram B
plt.plot(lx, ly, 'ro')
plt.title('Persistence digram B for the first group homology')
plt.axes().set_aspect('equal')
plt.show()
#the transformed diagram T(B)
plt.plot(lx, lTy, 'ro')
plt.title('Transformed diagram T(B)')
plt.axes().set_aspect('equal')
plt.show()
#the function :
arrayDiag = fromListToArray(diag)
arrayDiag[:,1] = arrayDiag[:,1] -arrayDiag[:,0]
nx=100
ny=100
x = np.linspace(xMin, xMax, nx)
y = np.linspace(yMin, yMax, ny)
z = np.array([getFuction(arrayDiag, i ,j, sigma2, b) for j in y for i in x])
Z = z.reshape(nx, ny)
plt.imshow(Z, interpolation='bilinear')
plt.show()
im = plt.imshow(Z, extent=(xMin, xMax, yMin, yMax))
plt.contourf(x, y, Z, 100)
plt.title('The function $\sum f(u) \phi_u(x,y)$')
plt.show()
#the persitence image :
res = persistenceImageFromPtCloud(pt_cloud, homologyDegree, sigma2, b, xRes, yRes, xMin, xMax, yMin, yMax)
plt.imshow(res)
plt.axis('off')
plt.colorbar(im)
plt.title('Persistance Image')
plt.show()
"""