-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloss.py
175 lines (132 loc) · 6.04 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import torch.nn.functional as F
from catalyst.contrib import registry
from torch import nn
import torch
def log_t(u, t):
"""Compute log_t for `u`."""
if t == 1.0:
return torch.log(u)
else:
return (u ** (1.0 - t) - 1.0) / (1.0 - t)
def exp_t(u, t):
"""Compute exp_t for `u`."""
if t == 1.0:
return torch.exp(u)
else:
return torch.relu(1.0 + (1.0 - t) * u) ** (1.0 / (1.0 - t))
def compute_normalization_fixed_point(activations, t, num_iters=5):
"""Returns the normalization value for each example (t > 1.0).
Args:
activations: A multi-dimensional tensor with last dimension `num_classes`.
t: Temperature 2 (> 1.0 for tail heaviness).
num_iters: Number of iterations to run the method.
Return: A tensor of same rank as activation with the last dimension being 1.
"""
mu = torch.max(activations, dim=-1).values.view(-1, 1)
normalized_activations_step_0 = activations - mu
normalized_activations = normalized_activations_step_0
i = 0
while i < num_iters:
i += 1
logt_partition = torch.sum(exp_t(normalized_activations, t), dim=-1).view(-1, 1)
normalized_activations = normalized_activations_step_0 * (logt_partition ** (1.0 - t))
logt_partition = torch.sum(exp_t(normalized_activations, t), dim=-1).view(-1, 1)
return -log_t(1.0 / logt_partition, t) + mu
def compute_normalization(activations, t, num_iters=5):
"""Returns the normalization value for each example.
Args:
activations: A multi-dimensional tensor with last dimension `num_classes`.
t: Temperature 2 (< 1.0 for finite support, > 1.0 for tail heaviness).
num_iters: Number of iterations to run the method.
Return: A tensor of same rank as activation with the last dimension being 1.
"""
if t < 1.0:
return None # not implemented as these values do not occur in the authors experiments...
else:
return compute_normalization_fixed_point(activations, t, num_iters)
def tempered_softmax(activations, t, num_iters=5):
"""Tempered softmax function.
Args:
activations: A multi-dimensional tensor with last dimension `num_classes`.
t: Temperature tensor > 0.0.
num_iters: Number of iterations to run the method.
Returns:
A probabilities tensor.
"""
if t == 1.0:
normalization_constants = torch.log(torch.sum(torch.exp(activations), dim=-1))
else:
normalization_constants = compute_normalization(activations, t, num_iters)
return exp_t(activations - normalization_constants, t)
def bi_tempered_logistic_loss(activations, labels, t1, t2, label_smoothing=0.0, num_iters=5, num_classes = 5):
"""Bi-Tempered Logistic Loss with custom gradient.
Args:
activations: A multi-dimensional tensor with last dimension `num_classes`.
labels: A tensor with shape and dtype as activations.
t1: Temperature 1 (< 1.0 for boundedness).
t2: Temperature 2 (> 1.0 for tail heaviness, < 1.0 for finite support).
label_smoothing: Label smoothing parameter between [0, 1).
num_iters: Number of iterations to run the method.
Returns:
A loss tensor.
"""
target = F.one_hot(labels, num_classes).float()
if label_smoothing > 0.0:
target = (1 - num_classes / (num_classes - 1) * label_smoothing) * target + label_smoothing / (num_classes - 1)
probabilities = tempered_softmax(activations, t2, num_iters)
temp1 = (log_t(target + 1e-10, t1) - log_t(probabilities, t1)) * target
temp2 = (1 / (2 - t1)) * (torch.pow(target, 2 - t1) - torch.pow(probabilities, 2 - t1))
loss_values = temp1 - temp2
return torch.sum(torch.sum(loss_values, dim=-1))
@registry.Criterion
class TemperedLogLoss(nn.Module):
def __init__(self, label_smoothing=0.05, t1 = 0.2, t2 = 4, num_iters = 7):
super().__init__()
self.label_smoothing = label_smoothing
self.t1 = t1
self.t2 = t2
self.num_iters = num_iters
def forward(self, input, target):
return bi_tempered_logistic_loss(input, target, self.t1, self.t2, self.label_smoothing, self.num_iters, input.size(1))
@registry.Criterion
class FocalCosineLoss(nn.Module):
def __init__(self, alpha=1, gamma=2, xent=.1):
super(FocalCosineLoss, self).__init__()
self.alpha = alpha
self.gamma = gamma
self.xent = xent
self.y = torch.Tensor([1]).cuda()
def forward(self, input, target, reduction="mean"):
cosine_loss = F.cosine_embedding_loss(input, F.one_hot(target, num_classes=input.size(-1)), self.y, reduction=reduction)
cent_loss = F.cross_entropy(F.normalize(input), target, reduce=False)
pt = torch.exp(-cent_loss)
focal_loss = self.alpha * (1-pt)**self.gamma * cent_loss
if reduction == "mean":
focal_loss = torch.mean(focal_loss)
return cosine_loss + self.xent * focal_loss
@registry.Criterion
class LabelSmoothingLoss(nn.Module):
def __init__(self, smooth_factor=0.05):
super().__init__()
self.smooth_factor = smooth_factor
def _smooth_labels(self, num_classes, target):
# When label smoothing is turned on,
# KL-divergence between q_{smoothed ground truth prob.}(w)
# and p_{prob. computed by model}(w) is minimized.
# If label smoothing value is set to zero, the loss
# is equivalent to NLLLoss or CrossEntropyLoss.
# All non-true labels are uniformly set to low-confidence.
target_one_hot = F.one_hot(target, num_classes).float()
target_one_hot[target_one_hot == 1] = 1 - self.smooth_factor
target_one_hot[target_one_hot == 0] = self.smooth_factor
return target_one_hot
def forward(self, input, target):
logp = F.log_softmax(input, dim=1)
target_one_hot = self._smooth_labels(input.size(1), target)
return F.kl_div(logp, target_one_hot, reduction='sum')
def get_loss(name_loss, t1 = 0.7, t2 = 2):
LEVELS = {
'label_smooth_cross_entropy': LabelSmoothingLoss(),
'tempared_log_loss': TemperedLogLoss(t1 = t1, t2 = t2),
}
return LEVELS[name_loss]