-
Notifications
You must be signed in to change notification settings - Fork 6
/
shamirsecret.rb
281 lines (218 loc) · 7.95 KB
/
shamirsecret.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
require "openssl"
class ShamirSecret
attr_reader :_coefficients
attr_reader :secretdata
def initialize(threshold, secretdata=nil)
@threshold = threshold
@secretdata = secretdata
@_coefficients = []
if secretdata
secretdata.each_char do |secretbyte|
thesecoefficients = secretbyte+OpenSSL::Random.random_bytes(@threshold-1)
@_coefficients << thesecoefficients
end
end
end
def is_valid_share(share)
raise "Share is of incorrect length: #{share.size}" if share.size !=2
raise "Must initialize coefficient before checking is_valid_share" unless @_coefficients
raise "Must initialize coefficient before checking is_valid_share" if @_coefficients.size != share[1].size
x = share[0]
fx = share[1]
correctshare = compute_share(x)
correctshare == share
end
def compute_share(x)
raise "x should be integer" unless x.class == Fixnum
raise "x must be between 1 and 255" if x <= 0 || x >256
raise "@_coefficient must be initialized" if @_coefficients.empty?
sharebytes = []
@_coefficients.each do |thiscoefficient|
thisshare = _f(x,thiscoefficient)
sharebytes << thisshare
end
return x, sharebytes
end
def recover_secretdata(shares)
newshares = []
shares.each do |share|
newshares << share unless newshares.include?(share)
end
shares = newshares
if @threshold > shares.size
raise "Threshold: #{@threshold} is smaller than the number of uniquie shares: #{shares.size}"
end
if @secretdata
raise "Recovoring secretdata when some is stored. Use check_share instead"
end
xs = []
shares.each do |share|
if xs.include?(share[0])
raise "Different shares with the same first byte: #{share[0]}"
end
if share[1].size != shares[0][1].size
raise "Shares have different lengths!"
end
xs << share[0]
end
mycoefficients = []
mysecretdata = ''
shares[0][1].size.times.each do |byte_to_use|
fxs = []
shares.each do |share|
fxs << share[1][byte_to_use]
end
resulting_poly = _full_lagrange(xs,fxs)
if resulting_poly[0..@threshold-1] + [0]*(shares.size - @threshold) != resulting_poly
raise "Share do not match. Cannot decode"
end
mycoefficients << resulting_poly.map{|p| p.chr}.join
mysecretdata += resulting_poly[0].chr
end
@_coefficients = mycoefficients
@secretdata = mysecretdata
end
private
def _f(x, coefs_bytes)
raise "invalid share index value. cannot be 0" if x == 0
accumulator = 0
x_i = 1
coefs_bytes.each_byte do |c|
accumulator = _gf256_add(accumulator, _gf256_mul(c, x_i))
x_i = _gf256_mul(x_i, x)
end
return accumulator
end
def _multiply_polynomials(a,b)
resultterms = []
termpadding = []
b.each do |bterm|
thisvalue = termpadding.clone
a.each do |aterm|
val = _gf256_mul(aterm, bterm)
thisvalue << _gf256_mul(aterm, bterm)
end
resultterms = _add_polynomials(resultterms, thisvalue)
termpadding << 0
end
return resultterms
end
def _add_polynomials(a,b)
if a.size < b.size
a = a + [0]*(b.size - a.size)
elsif a.size > b.size
b = b + [0]*(a.size - b.size)
end
result = []
a.size.times do |pos|
result << _gf256_add(a[pos], b[pos])
end
return result
end
def _full_lagrange(xs, fxs)
returnedcoefficients = []
fxs.size.times do |i|
this_polynomial = [1]
fxs.size.times do |j|
next if i == j
denominator = _gf256_sub(xs[i], xs[j])
this_term = [_gf256_div(xs[j], denominator), _gf256_div(1, denominator)]
this_polynomial = _multiply_polynomials(this_polynomial, this_term)
end
this_polynomial = _multiply_polynomials(this_polynomial, [fxs[i]]) if fxs[i]
returnedcoefficients = _add_polynomials(returnedcoefficients, this_polynomial)
end
return returnedcoefficients
end
GF256_EXP = [
0x01, 0x03, 0x05, 0x0f, 0x11, 0x33, 0x55, 0xff,
0x1a, 0x2e, 0x72, 0x96, 0xa1, 0xf8, 0x13, 0x35,
0x5f, 0xe1, 0x38, 0x48, 0xd8, 0x73, 0x95, 0xa4,
0xf7, 0x02, 0x06, 0x0a, 0x1e, 0x22, 0x66, 0xaa,
0xe5, 0x34, 0x5c, 0xe4, 0x37, 0x59, 0xeb, 0x26,
0x6a, 0xbe, 0xd9, 0x70, 0x90, 0xab, 0xe6, 0x31,
0x53, 0xf5, 0x04, 0x0c, 0x14, 0x3c, 0x44, 0xcc,
0x4f, 0xd1, 0x68, 0xb8, 0xd3, 0x6e, 0xb2, 0xcd,
0x4c, 0xd4, 0x67, 0xa9, 0xe0, 0x3b, 0x4d, 0xd7,
0x62, 0xa6, 0xf1, 0x08, 0x18, 0x28, 0x78, 0x88,
0x83, 0x9e, 0xb9, 0xd0, 0x6b, 0xbd, 0xdc, 0x7f,
0x81, 0x98, 0xb3, 0xce, 0x49, 0xdb, 0x76, 0x9a,
0xb5, 0xc4, 0x57, 0xf9, 0x10, 0x30, 0x50, 0xf0,
0x0b, 0x1d, 0x27, 0x69, 0xbb, 0xd6, 0x61, 0xa3,
0xfe, 0x19, 0x2b, 0x7d, 0x87, 0x92, 0xad, 0xec,
0x2f, 0x71, 0x93, 0xae, 0xe9, 0x20, 0x60, 0xa0,
0xfb, 0x16, 0x3a, 0x4e, 0xd2, 0x6d, 0xb7, 0xc2,
0x5d, 0xe7, 0x32, 0x56, 0xfa, 0x15, 0x3f, 0x41,
0xc3, 0x5e, 0xe2, 0x3d, 0x47, 0xc9, 0x40, 0xc0,
0x5b, 0xed, 0x2c, 0x74, 0x9c, 0xbf, 0xda, 0x75,
0x9f, 0xba, 0xd5, 0x64, 0xac, 0xef, 0x2a, 0x7e,
0x82, 0x9d, 0xbc, 0xdf, 0x7a, 0x8e, 0x89, 0x80,
0x9b, 0xb6, 0xc1, 0x58, 0xe8, 0x23, 0x65, 0xaf,
0xea, 0x25, 0x6f, 0xb1, 0xc8, 0x43, 0xc5, 0x54,
0xfc, 0x1f, 0x21, 0x63, 0xa5, 0xf4, 0x07, 0x09,
0x1b, 0x2d, 0x77, 0x99, 0xb0, 0xcb, 0x46, 0xca,
0x45, 0xcf, 0x4a, 0xde, 0x79, 0x8b, 0x86, 0x91,
0xa8, 0xe3, 0x3e, 0x42, 0xc6, 0x51, 0xf3, 0x0e,
0x12, 0x36, 0x5a, 0xee, 0x29, 0x7b, 0x8d, 0x8c,
0x8f, 0x8a, 0x85, 0x94, 0xa7, 0xf2, 0x0d, 0x17,
0x39, 0x4b, 0xdd, 0x7c, 0x84, 0x97, 0xa2, 0xfd,
0x1c, 0x24, 0x6c, 0xb4, 0xc7, 0x52, 0xf6, 0x01]
GF256_LOG = [
0x00, 0x00, 0x19, 0x01, 0x32, 0x02, 0x1a, 0xc6,
0x4b, 0xc7, 0x1b, 0x68, 0x33, 0xee, 0xdf, 0x03,
0x64, 0x04, 0xe0, 0x0e, 0x34, 0x8d, 0x81, 0xef,
0x4c, 0x71, 0x08, 0xc8, 0xf8, 0x69, 0x1c, 0xc1,
0x7d, 0xc2, 0x1d, 0xb5, 0xf9, 0xb9, 0x27, 0x6a,
0x4d, 0xe4, 0xa6, 0x72, 0x9a, 0xc9, 0x09, 0x78,
0x65, 0x2f, 0x8a, 0x05, 0x21, 0x0f, 0xe1, 0x24,
0x12, 0xf0, 0x82, 0x45, 0x35, 0x93, 0xda, 0x8e,
0x96, 0x8f, 0xdb, 0xbd, 0x36, 0xd0, 0xce, 0x94,
0x13, 0x5c, 0xd2, 0xf1, 0x40, 0x46, 0x83, 0x38,
0x66, 0xdd, 0xfd, 0x30, 0xbf, 0x06, 0x8b, 0x62,
0xb3, 0x25, 0xe2, 0x98, 0x22, 0x88, 0x91, 0x10,
0x7e, 0x6e, 0x48, 0xc3, 0xa3, 0xb6, 0x1e, 0x42,
0x3a, 0x6b, 0x28, 0x54, 0xfa, 0x85, 0x3d, 0xba,
0x2b, 0x79, 0x0a, 0x15, 0x9b, 0x9f, 0x5e, 0xca,
0x4e, 0xd4, 0xac, 0xe5, 0xf3, 0x73, 0xa7, 0x57,
0xaf, 0x58, 0xa8, 0x50, 0xf4, 0xea, 0xd6, 0x74,
0x4f, 0xae, 0xe9, 0xd5, 0xe7, 0xe6, 0xad, 0xe8,
0x2c, 0xd7, 0x75, 0x7a, 0xeb, 0x16, 0x0b, 0xf5,
0x59, 0xcb, 0x5f, 0xb0, 0x9c, 0xa9, 0x51, 0xa0,
0x7f, 0x0c, 0xf6, 0x6f, 0x17, 0xc4, 0x49, 0xec,
0xd8, 0x43, 0x1f, 0x2d, 0xa4, 0x76, 0x7b, 0xb7,
0xcc, 0xbb, 0x3e, 0x5a, 0xfb, 0x60, 0xb1, 0x86,
0x3b, 0x52, 0xa1, 0x6c, 0xaa, 0x55, 0x29, 0x9d,
0x97, 0xb2, 0x87, 0x90, 0x61, 0xbe, 0xdc, 0xfc,
0xbc, 0x95, 0xcf, 0xcd, 0x37, 0x3f, 0x5b, 0xd1,
0x53, 0x39, 0x84, 0x3c, 0x41, 0xa2, 0x6d, 0x47,
0x14, 0x2a, 0x9e, 0x5d, 0x56, 0xf2, 0xd3, 0xab,
0x44, 0x11, 0x92, 0xd9, 0x23, 0x20, 0x2e, 0x89,
0xb4, 0x7c, 0xb8, 0x26, 0x77, 0x99, 0xe3, 0xa5,
0x67, 0x4a, 0xed, 0xde, 0xc5, 0x31, 0xfe, 0x18,
0x0d, 0x63, 0x8c, 0x80, 0xc0, 0xf7, 0x70, 0x07]
def _gf256_add(a, b)
val = a ^ b
val
end
def _gf256_sub(a,b)
_gf256_add(a,b)
end
def _gf256_mul(a,b)
a = a.to_i
b = b.to_i
if a == 0 || b == 0
return 0
else
GF256_EXP[(GF256_LOG[a] + GF256_LOG[b]) % 255]
end
end
def _gf256_div(a,b)
if a == 0
return 0
elsif b == 0
raise ZeroDivisionError
else
GF256_EXP[(GF256_LOG[a] - GF256_LOG[b]) % 255]
end
end
end