Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add all remaining general economy impacts #43

Merged
merged 1 commit into from
Nov 25, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
432 changes: 341 additions & 91 deletions docs/schema.ipynb

Large diffs are not rendered by default.

41 changes: 41 additions & 0 deletions policyengine/outputs/macro/comparison/decile/income.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,41 @@
from policyengine import Simulation
from microdf import MicroSeries


def income(simulation: Simulation):
baseline = simulation.calculate("macro/baseline")
reform = simulation.calculate("macro/reform")

baseline_income = MicroSeries(
baseline["household"]["finance"]["household_net_income"],
weights=baseline["household"]["demographics"]["household_weight"],
)
reform_income = MicroSeries(
reform["household"]["finance"]["household_net_income"],
weights=baseline_income.weights,
)

# Filter out negative decile values
decile = MicroSeries(
baseline["household"]["finance"]["household_income_decile"]
)
baseline_income_filtered = baseline_income[decile >= 0]
reform_income_filtered = reform_income[decile >= 0]

income_change = reform_income_filtered - baseline_income_filtered
rel_income_change_by_decile = (
income_change.groupby(decile).sum()
/ baseline_income_filtered.groupby(decile).sum()
)

avg_income_change_by_decile = (
income_change.groupby(decile).sum()
/ baseline_income_filtered.groupby(decile).count()
)
rel_decile_dict = rel_income_change_by_decile.to_dict()
avg_decile_dict = avg_income_change_by_decile.to_dict()
result = dict(
relative={int(k): v for k, v in rel_decile_dict.items()},
average={int(k): v for k, v in avg_decile_dict.items()},
)
return result
42 changes: 42 additions & 0 deletions policyengine/outputs/macro/comparison/decile/wealth.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
from policyengine import Simulation
from microdf import MicroSeries


def wealth(simulation: Simulation):
if simulation.country != "uk":
return {}

baseline = simulation.calculate("macro/baseline")
reform = simulation.calculate("macro/reform")

baseline_income = MicroSeries(
baseline["household"]["finance"]["household_net_income"],
weights=baseline["household"]["demographics"]["household_weight"],
)
reform_income = MicroSeries(
reform["household"]["finance"]["household_net_income"],
weights=baseline_income.weights,
)

# Filter out negative decile values
decile = MicroSeries(baseline["household"]["finance"]["wealth_decile"])
baseline_income_filtered = baseline_income[decile >= 0]
reform_income_filtered = reform_income[decile >= 0]

income_change = reform_income_filtered - baseline_income_filtered
rel_income_change_by_decile = (
income_change.groupby(decile).sum()
/ baseline_income_filtered.groupby(decile).sum()
)

avg_income_change_by_decile = (
income_change.groupby(decile).sum()
/ baseline_income_filtered.groupby(decile).count()
)
rel_decile_dict = rel_income_change_by_decile.to_dict()
avg_decile_dict = avg_income_change_by_decile.to_dict()
result = dict(
relative={int(k): v for k, v in rel_decile_dict.items()},
average={int(k): v for k, v in avg_decile_dict.items()},
)
return result
17 changes: 17 additions & 0 deletions policyengine/outputs/macro/comparison/detailed_budget.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
from policyengine import Simulation


def detailed_budget(simulation: Simulation):
baseline = simulation.calculate("macro/baseline")
reform = simulation.calculate("macro/reform")
result = {}
if simulation.country == "uk":
for program in baseline["gov"]["programs"]:
# baseline[programs][program] = total budgetary impact of program
result[program] = dict(
baseline=baseline["gov"]["programs"][program],
reform=reform["gov"]["programs"][program],
difference=reform["gov"]["programs"][program]
- baseline["gov"]["programs"][program],
)
return result
23 changes: 23 additions & 0 deletions policyengine/outputs/macro/comparison/inequality.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
from policyengine import Simulation


def inequality(simulation: Simulation):
baseline = simulation.calculate("macro/baseline")["household"][
"inequality"
]
reform = simulation.calculate("macro/reform")["household"]["inequality"]

return dict(
gini=dict(
baseline=baseline["gini"],
reform=reform["gini"],
),
top_10_pct_share=dict(
baseline=baseline["top_10_percent_share"],
reform=reform["top_10_percent_share"],
),
top_1_pct_share=dict(
baseline=baseline["top_1_percent_share"],
reform=reform["top_1_percent_share"],
),
)
109 changes: 109 additions & 0 deletions policyengine/outputs/macro/comparison/labor_supply_response.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,109 @@
from policyengine import Simulation
from microdf import MicroSeries
import numpy as np


def labor_supply_response(simulation: Simulation) -> dict:
baseline = simulation.calculate("macro/baseline")
reform = simulation.calculate("macro/reform")

substitution_lsr = (
reform["household"]["labor_supply"]["substitution_lsr"]
- baseline["household"]["labor_supply"]["substitution_lsr"]
)
income_lsr = (
reform["household"]["labor_supply"]["income_lsr"]
- baseline["household"]["labor_supply"]["income_lsr"]
)
total_change = substitution_lsr + income_lsr
revenue_change = (
reform["household"]["labor_supply"]["budgetary_impact_lsr"]
- baseline["household"]["labor_supply"]["budgetary_impact_lsr"]
)

substitution_lsr_hh = np.array(
reform["household"]["labor_supply"]["substitution_lsr_hh"]
) - np.array(baseline["household"]["labor_supply"]["substitution_lsr_hh"])
income_lsr_hh = np.array(
reform["household"]["labor_supply"]["income_lsr_hh"]
) - np.array(baseline["household"]["labor_supply"]["income_lsr_hh"])
decile = np.array(
baseline["household"]["finance"]["household_income_decile"]
)
household_weight = baseline["household"]["demographics"][
"household_weight"
]

total_lsr_hh = substitution_lsr_hh + income_lsr_hh

emp_income = MicroSeries(
baseline["household"]["finance"]["employment_income_hh"],
weights=household_weight,
)
self_emp_income = MicroSeries(
baseline["household"]["finance"]["self_employment_income_hh"],
weights=household_weight,
)
earnings = emp_income + self_emp_income
original_earnings = earnings - total_lsr_hh
substitution_lsr_hh = MicroSeries(
substitution_lsr_hh, weights=household_weight
)
income_lsr_hh = MicroSeries(income_lsr_hh, weights=household_weight)

decile_avg = dict(
income=income_lsr_hh.groupby(decile).mean().to_dict(),
substitution=substitution_lsr_hh.groupby(decile).mean().to_dict(),
)
decile_rel = dict(
income=(
income_lsr_hh.groupby(decile).sum()
/ original_earnings.groupby(decile).sum()
).to_dict(),
substitution=(
substitution_lsr_hh.groupby(decile).sum()
/ original_earnings.groupby(decile).sum()
).to_dict(),
)

relative_lsr = dict(
income=(income_lsr_hh.sum() / original_earnings.sum()),
substitution=(substitution_lsr_hh.sum() / original_earnings.sum()),
)

decile_rel["income"] = {
int(k): v for k, v in decile_rel["income"].items() if k > 0
}
decile_rel["substitution"] = {
int(k): v for k, v in decile_rel["substitution"].items() if k > 0
}

hours = dict(
baseline=baseline["household"]["labor_supply"]["weekly_hours"],
reform=reform["household"]["labor_supply"]["weekly_hours"],
change=reform["household"]["labor_supply"]["weekly_hours"]
- baseline["household"]["labor_supply"]["weekly_hours"],
income_effect=reform["household"]["labor_supply"][
"weekly_hours_income_effect"
]
- baseline["household"]["labor_supply"]["weekly_hours_income_effect"],
substitution_effect=reform["household"]["labor_supply"][
"weekly_hours_substitution_effect"
]
- baseline["household"]["labor_supply"][
"weekly_hours_substitution_effect"
],
)

return dict(
substitution_lsr=substitution_lsr,
income_lsr=income_lsr,
relative_lsr=relative_lsr,
total_change=total_change,
revenue_change=revenue_change,
decile=dict(
average=decile_avg,
relative=decile_rel,
),
hours=hours,
)
71 changes: 71 additions & 0 deletions policyengine/outputs/macro/comparison/poverty/age.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,71 @@
from policyengine import Simulation
from microdf import MicroSeries


def age(simulation: Simulation):
baseline = simulation.calculate("macro/baseline")["household"]["finance"]
reform = simulation.calculate("macro/reform")["household"]["finance"]
baseline_demographics = simulation.calculate("macro/baseline")[
"household"
]["demographics"]

baseline_poverty = MicroSeries(
baseline["person_in_poverty"],
weights=baseline_demographics["person_weight"],
)
baseline_deep_poverty = MicroSeries(
baseline["person_in_deep_poverty"],
weights=baseline_demographics["person_weight"],
)
reform_poverty = MicroSeries(
reform["person_in_poverty"], weights=baseline_poverty.weights
)
reform_deep_poverty = MicroSeries(
reform["person_in_deep_poverty"], weights=baseline_poverty.weights
)
age = MicroSeries(baseline_demographics["age"])

poverty = dict(
child=dict(
baseline=float(baseline_poverty[age < 18].mean()),
reform=float(reform_poverty[age < 18].mean()),
),
adult=dict(
baseline=float(baseline_poverty[(age >= 18) & (age < 65)].mean()),
reform=float(reform_poverty[(age >= 18) & (age < 65)].mean()),
),
senior=dict(
baseline=float(baseline_poverty[age >= 65].mean()),
reform=float(reform_poverty[age >= 65].mean()),
),
all=dict(
baseline=float(baseline_poverty.mean()),
reform=float(reform_poverty.mean()),
),
)

deep_poverty = dict(
child=dict(
baseline=float(baseline_deep_poverty[age < 18].mean()),
reform=float(reform_deep_poverty[age < 18].mean()),
),
adult=dict(
baseline=float(
baseline_deep_poverty[(age >= 18) & (age < 65)].mean()
),
reform=float(reform_deep_poverty[(age >= 18) & (age < 65)].mean()),
),
senior=dict(
baseline=float(baseline_deep_poverty[age >= 65].mean()),
reform=float(reform_deep_poverty[age >= 65].mean()),
),
all=dict(
baseline=float(baseline_deep_poverty.mean()),
reform=float(reform_deep_poverty.mean()),
),
)

return dict(
poverty=poverty,
deep_poverty=deep_poverty,
)
55 changes: 55 additions & 0 deletions policyengine/outputs/macro/comparison/poverty/gender.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
from policyengine import Simulation
from microdf import MicroSeries


def gender(simulation: Simulation):
baseline = simulation.calculate("macro/baseline")["household"]["finance"]
reform = simulation.calculate("macro/reform")["household"]["finance"]
baseline_demographics = simulation.calculate("macro/baseline")[
"household"
]["demographics"]

if baseline_demographics["is_male"] is None:
return {}
baseline_poverty = MicroSeries(
baseline["person_in_poverty"],
weights=baseline_demographics["person_weight"],
)
baseline_deep_poverty = MicroSeries(
baseline["person_in_deep_poverty"],
weights=baseline_demographics["person_weight"],
)
reform_poverty = MicroSeries(
reform["person_in_poverty"], weights=baseline_poverty.weights
)
reform_deep_poverty = MicroSeries(
reform["person_in_deep_poverty"], weights=baseline_poverty.weights
)
is_male = MicroSeries(baseline_demographics["is_male"])

poverty = dict(
male=dict(
baseline=float(baseline_poverty[is_male].mean()),
reform=float(reform_poverty[is_male].mean()),
),
female=dict(
baseline=float(baseline_poverty[~is_male].mean()),
reform=float(reform_poverty[~is_male].mean()),
),
)

deep_poverty = dict(
male=dict(
baseline=float(baseline_deep_poverty[is_male].mean()),
reform=float(reform_deep_poverty[is_male].mean()),
),
female=dict(
baseline=float(baseline_deep_poverty[~is_male].mean()),
reform=float(reform_deep_poverty[~is_male].mean()),
),
)

return dict(
poverty=poverty,
deep_poverty=deep_poverty,
)
Loading
Loading