-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRandLANet.py
407 lines (354 loc) · 21.3 KB
/
RandLANet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
from os.path import exists, join
from os import makedirs
from sklearn.metrics import confusion_matrix
from helper_tool import DataProcessing as DP
import tensorflow as tf
import numpy as np
import helper_tf_util
import time
def log_out(out_str, f_out):
f_out.write(out_str + '\n')
f_out.flush()
print(out_str)
class Network:
"""RandLA-Net class w/o inheriting any TensorFlow built-in classes, but the logic herein is similar-yc
- __init__(): set the config, flat_inputs(all those batched data), inputs, logits, loss, optimizer, results and log using TF summarywriter.
- inference(): implement the network logic with encoder-decoder structure, need the follow function as core components:
- dilated_res_block(): the dilated residual block
- building_block(): build 1 simple block
- relative_pos_encoding(): relative position encoding for the LocSE
- random_sample(): RS
- nearest_interpolation(): nearest interpolation with inverse weighted distance
- gather neighbour(): gather nearest neighbours
-att_pooling(): attentive pooling
- train(): training with an optimizer by running session for ops (following tensorflow 1.x pattern)
- evaluate(): evaluate on the val/test set.
"""
def __init__(self, dataset, config):
flat_inputs = dataset.flat_inputs
self.config = config
# Path of the result folder
if self.config.saving:
if self.config.saving_path is None:
self.saving_path = time.strftime('results/Log_%Y-%m-%d_%H-%M-%S', time.gmtime())
else:
self.saving_path = self.config.saving_path
makedirs(self.saving_path) if not exists(self.saving_path) else None
# use inputs(a dict) variable to map the flat_inputs
with tf.variable_scope('inputs'):
self.inputs = dict()
num_layers = self.config.num_layers
self.inputs['xyz'] = flat_inputs[:num_layers] # xyz(points) of sub_pc at all the sub_sampling stages, containing num_layers items
self.inputs['neigh_idx'] = flat_inputs[num_layers: 2 * num_layers] # neighbour id, containing num_layers items
self.inputs['sub_idx'] = flat_inputs[2 * num_layers:3 * num_layers] # sub_sampled idx, containing num_layers items
self.inputs['interp_idx'] = flat_inputs[3 * num_layers:4 * num_layers] # interpolation idx (nearest idx in the sub_pc for all raw pts), containing num_layers items
self.inputs['features'] = flat_inputs[4 * num_layers] # features containing xyz and feature, (B,N,3+C)
self.inputs['labels'] = flat_inputs[4 * num_layers + 1]
self.inputs['input_inds'] = flat_inputs[4 * num_layers + 2] # input_inds for each batch 's point in the sub_pc
self.inputs['cloud_inds'] = flat_inputs[4 * num_layers + 3] # cloud_inds for each batch
# Note: different from SqnNet class
self.inputs['weak_label_masks'] = flat_inputs[4 * num_layers + 4]
self.labels = self.inputs['labels']
if self.inputs['weak_label_masks']:
self.weak_label_masks = self.inputs['weak_label_masks'] # weak label mask for weakly semseg, (B,N)
self.is_training = tf.placeholder(tf.bool, shape=())
self.training_step = 1
self.training_epoch = 0
self.correct_prediction = 0
self.accuracy = 0
self.mIou_list = [0]
self.class_weights = DP.get_class_weights(dataset.name)
self.Log_file = open('log_train_' + dataset.name + str(dataset.val_split) + '.txt', 'a')
with tf.variable_scope('layers'):
self.logits = self.inference(self.inputs, self.is_training)
#####################################################################
# Ignore the invalid point (unlabeled) when calculating the loss #
#####################################################################
with tf.variable_scope('loss'):
self.logits = tf.reshape(self.logits, [-1, config.num_classes])
self.labels = tf.reshape(self.labels, [-1])
self.weak_label_masks = tf.reshape(self.weak_label_masks, [-1]) # (B,N)
# Boolean mask of points that should be ignored
ignored_bool = tf.zeros_like(self.labels, dtype=tf.bool) # (B,N)
for ign_label in self.config.ignored_label_inds: # e.g., ignore 12, [12]
ignored_bool = tf.logical_or(ignored_bool, tf.equal(self.labels, ign_label)) # bool tensor, (B,N)
# Collect logits and labels that are not ignored
valid_idx = tf.squeeze(tf.where(tf.logical_not(ignored_bool)))
valid_logits = tf.gather(self.logits, valid_idx, axis=0)
valid_labels_init = tf.gather(self.labels, valid_idx, axis=0)
# Reduce label values in the range of logit shape
reducing_list = tf.range(self.config.num_classes, dtype=tf.int32)
inserted_value = tf.zeros((1,), dtype=tf.int32)
for ign_label in self.config.ignored_label_inds:
reducing_list = tf.concat([reducing_list[:ign_label], inserted_value, reducing_list[ign_label:]], 0)
valid_labels = tf.gather(reducing_list, valid_labels_init)
# KEY: add the weak mask for computing losses
if self.weak_label_masks:
self.loss = self.get_loss(valid_logits, valid_labels, self.class_weights, self.weak_label_masks)
else:
self.loss = self.get_loss(valid_logits, valid_labels, self.class_weights)
with tf.variable_scope('optimizer'):
self.learning_rate = tf.Variable(config.learning_rate, trainable=False, name='learning_rate')
self.train_op = tf.train.AdamOptimizer(self.learning_rate).minimize(self.loss)
self.extra_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.variable_scope('results'):
self.correct_prediction = tf.nn.in_top_k(valid_logits, valid_labels, 1)
self.accuracy = tf.reduce_mean(tf.cast(self.correct_prediction, tf.float32))
self.prob_logits = tf.nn.softmax(self.logits)
tf.summary.scalar('learning_rate', self.learning_rate)
tf.summary.scalar('loss', self.loss)
tf.summary.scalar('accuracy', self.accuracy)
my_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
self.saver = tf.train.Saver(my_vars, max_to_keep=100)
c_proto = tf.ConfigProto()
c_proto.gpu_options.allow_growth = True
self.sess = tf.Session(config=c_proto)
self.merged = tf.summary.merge_all()
self.train_writer = tf.summary.FileWriter(config.train_sum_dir, self.sess.graph)
self.sess.run(tf.global_variables_initializer())
def inference(self, inputs, is_training):
"""similar to pytorch's forward() function where the RandLA-Net architecture is implemented by an encoder-decoder structure-yc
In the encoder, LocSE block and RandomSampling is used where LocSE consists of gather_neighbors, relative_pos_encoding, att_pooling()
In the decoder, nearest interpolation is used w. short-cut connections
Args:
inputs ([type]): a dict containing all kinds of required inputs
is_training (bool): training or not
Returns:
tensor: logits for segmentation scores
"""
d_out = self.config.d_out
feature = inputs['features'] # (B,N,6)
feature = tf.layers.dense(feature, 8, activation=None, name='fc0') # (B,N,8)
feature = tf.nn.leaky_relu(tf.layers.batch_normalization(feature, -1, 0.99, 1e-6, training=is_training))
feature = tf.expand_dims(feature, axis=2) # expand 1 more dim to use Conv2D ops, (B,N,1,8)
# ###########################Encoder############################
f_encoder_list = [] # in the end, collect num_layers + 1 items for a group of hierarchical point feature embeddings
for i in range(self.config.num_layers):
f_encoder_i = self.dilated_res_block(feature, inputs['xyz'][i], inputs['neigh_idx'][i], d_out[i],
'Encoder_layer_' + str(i), is_training) # similar to LAO for local feature learning
f_sampled_i = self.random_sample(f_encoder_i, inputs['sub_idx'][i]) # down-sampled the input using the idx
feature = f_sampled_i
if i == 0:
f_encoder_list.append(f_encoder_i)
f_encoder_list.append(f_sampled_i) # (B,N,1,32), (B,N/4,1,32), (B,N/16,1,128), (B,N/64,1,256), (B,N/256,1,512), (B,N/512,1,1024)
# ###########################Encoder############################
# transition using a MLP/pointwise Conv2D, e.g., (N/512,1024)-> (N/512,1024)
feature = helper_tf_util.conv2d(f_encoder_list[-1], f_encoder_list[-1].get_shape()[3].value, [1, 1],
'decoder_0',
[1, 1], 'VALID', True, is_training)
# ###########################Decoder############################
f_decoder_list = []
for j in range(self.config.num_layers):
f_interp_i = self.nearest_interpolation(feature, inputs['interp_idx'][-j - 1]) # interpolate w. the idx, (B,N/512,1024)-> (B,N/256,1,1024)
f_decoder_i = helper_tf_util.conv2d_transpose(tf.concat([f_encoder_list[-j - 2], f_interp_i], axis=3),
f_encoder_list[-j - 2].get_shape()[-1].value, [1, 1],
'Decoder_layer_' + str(j), [1, 1], 'VALID', bn=True,
is_training=is_training) # shortcut connection
feature = f_decoder_i
f_decoder_list.append(f_decoder_i) # upsampled point embeddings-yc
# ###########################Decoder############################
# obtain classification scores using FCs (8->64,32(w. dropouts),num_classes)
f_layer_fc1 = helper_tf_util.conv2d(f_decoder_list[-1], 64, [1, 1], 'fc1', [1, 1], 'VALID', True, is_training)
f_layer_fc2 = helper_tf_util.conv2d(f_layer_fc1, 32, [1, 1], 'fc2', [1, 1], 'VALID', True, is_training)
f_layer_drop = helper_tf_util.dropout(f_layer_fc2, keep_prob=0.5, is_training=is_training, scope='dp1')
f_layer_fc3 = helper_tf_util.conv2d(f_layer_drop, self.config.num_classes, [1, 1], 'fc', [1, 1], 'VALID', False,
is_training, activation_fn=None) # (B,N,1,num_classes)
f_out = tf.squeeze(f_layer_fc3, [2]) # (B,N,num_classes)
return f_out
def train(self, dataset):
log_out('****EPOCH {}****'.format(self.training_epoch), self.Log_file)
self.sess.run(dataset.train_init_op)
while self.training_epoch < self.config.max_epoch:
t_start = time.time()
try:
ops = [self.train_op,
self.extra_update_ops,
self.merged,
self.loss,
self.logits,
self.labels,
self.accuracy]
_, _, summary, l_out, probs, labels, acc = self.sess.run(ops, {self.is_training: True})
self.train_writer.add_summary(summary, self.training_step)
t_end = time.time()
if self.training_step % 50 == 0:
message = 'Step {:08d} L_out={:5.3f} Acc={:4.2f} ''---{:8.2f} ms/batch'
log_out(message.format(self.training_step, l_out, acc, 1000 * (t_end - t_start)), self.Log_file)
self.training_step += 1
except tf.errors.OutOfRangeError:
m_iou = self.evaluate(dataset)
if m_iou > np.max(self.mIou_list):
# Save the best model
snapshot_directory = join(self.saving_path, 'snapshots')
makedirs(snapshot_directory) if not exists(snapshot_directory) else None
self.saver.save(self.sess, snapshot_directory + '/snap', global_step=self.training_step)
self.mIou_list.append(m_iou)
log_out('Best m_IoU is: {:5.3f}'.format(max(self.mIou_list)), self.Log_file)
self.training_epoch += 1
self.sess.run(dataset.train_init_op)
# Update learning rate
op = self.learning_rate.assign(tf.multiply(self.learning_rate,
self.config.lr_decays[self.training_epoch]))
self.sess.run(op)
log_out('****EPOCH {}****'.format(self.training_epoch), self.Log_file)
except tf.errors.InvalidArgumentError as e:
print('Caught a NaN error :')
print(e.error_code)
print(e.message)
print(e.op)
print(e.op.name)
print([t.name for t in e.op.inputs])
print([t.name for t in e.op.outputs])
a = 1 / 0
print('finished')
self.sess.close()
def evaluate(self, dataset):
# Initialise iterator with validation data
self.sess.run(dataset.val_init_op)
gt_classes = [0 for _ in range(self.config.num_classes)]
positive_classes = [0 for _ in range(self.config.num_classes)]
true_positive_classes = [0 for _ in range(self.config.num_classes)]
val_total_correct = 0
val_total_seen = 0
for step_id in range(self.config.val_steps):
if step_id % 50 == 0:
print(str(step_id) + ' / ' + str(self.config.val_steps))
try:
ops = (self.prob_logits, self.labels, self.accuracy)
stacked_prob, labels, acc = self.sess.run(ops, {self.is_training: False})
pred = np.argmax(stacked_prob, 1)
if not self.config.ignored_label_inds:
pred_valid = pred
labels_valid = labels
else:
invalid_idx = np.where(labels == self.config.ignored_label_inds)[0]
labels_valid = np.delete(labels, invalid_idx)
labels_valid = labels_valid - 1
pred_valid = np.delete(pred, invalid_idx)
correct = np.sum(pred_valid == labels_valid)
val_total_correct += correct
val_total_seen += len(labels_valid)
conf_matrix = confusion_matrix(labels_valid, pred_valid, np.arange(0, self.config.num_classes, 1))
gt_classes += np.sum(conf_matrix, axis=1)
positive_classes += np.sum(conf_matrix, axis=0)
true_positive_classes += np.diagonal(conf_matrix)
except tf.errors.OutOfRangeError:
break
iou_list = []
for n in range(0, self.config.num_classes, 1):
iou = true_positive_classes[n] / float(gt_classes[n] + positive_classes[n] - true_positive_classes[n])
iou_list.append(iou)
mean_iou = sum(iou_list) / float(self.config.num_classes)
log_out('eval accuracy: {}'.format(val_total_correct / float(val_total_seen)), self.Log_file)
log_out('mean IOU:{}'.format(mean_iou), self.Log_file)
mean_iou = 100 * mean_iou
log_out('Mean IoU = {:.1f}%'.format(mean_iou), self.Log_file)
s = '{:5.2f} | '.format(mean_iou)
for IoU in iou_list:
s += '{:5.2f} '.format(100 * IoU)
log_out('-' * len(s), self.Log_file)
log_out(s, self.Log_file)
log_out('-' * len(s) + '\n', self.Log_file)
return mean_iou
def get_loss(self, logits, labels, pre_cal_weights, masks=None):
"""weighted CE loss
Args:
logits ([type]): logits, shape like: (B,N,K)
labels ([type]): labels, shape like: (B,N) where each value is in [0,1,...,K-1]
pre_cal_weights ([type]): class weight, a list
masks: mask, (B,N)
Returns:
[type]: the loss
"""
# calculate the weighted cross entropy according to the inverse frequency
class_weights = tf.convert_to_tensor(pre_cal_weights, dtype=tf.float32) # (K,)
one_hot_labels = tf.one_hot(labels, depth=self.config.num_classes) # (B,N,K)
weights = tf.reduce_sum(class_weights * one_hot_labels, axis=1) # (B,K)
unweighted_losses = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=one_hot_labels) # (B,N)
weighted_losses = unweighted_losses * weights # (B,N)
# filter using masks
if masks is not None:
weighted_losses *= masks
output_loss = tf.reduce_mean(weighted_losses)
return output_loss
def dilated_res_block(self, feature, xyz, neigh_idx, d_out, name, is_training):
f_pc = helper_tf_util.conv2d(feature, d_out // 2, [1, 1], name + 'mlp1', [1, 1], 'VALID', True, is_training)
f_pc = self.building_block(xyz, f_pc, neigh_idx, d_out, name + 'LFA', is_training)
f_pc = helper_tf_util.conv2d(f_pc, d_out * 2, [1, 1], name + 'mlp2', [1, 1], 'VALID', True, is_training,
activation_fn=None)
shortcut = helper_tf_util.conv2d(feature, d_out * 2, [1, 1], name + 'shortcut', [1, 1], 'VALID',
activation_fn=None, bn=True, is_training=is_training)
return tf.nn.leaky_relu(f_pc + shortcut)
def building_block(self, xyz, feature, neigh_idx, d_out, name, is_training):
d_in = feature.get_shape()[-1].value
f_xyz = self.relative_pos_encoding(xyz, neigh_idx)
f_xyz = helper_tf_util.conv2d(f_xyz, d_in, [1, 1], name + 'mlp1', [1, 1], 'VALID', True, is_training)
f_neighbours = self.gather_neighbour(tf.squeeze(feature, axis=2), neigh_idx)
f_concat = tf.concat([f_neighbours, f_xyz], axis=-1)
f_pc_agg = self.att_pooling(f_concat, d_out // 2, name + 'att_pooling_1', is_training)
f_xyz = helper_tf_util.conv2d(f_xyz, d_out // 2, [1, 1], name + 'mlp2', [1, 1], 'VALID', True, is_training)
f_neighbours = self.gather_neighbour(tf.squeeze(f_pc_agg, axis=2), neigh_idx)
f_concat = tf.concat([f_neighbours, f_xyz], axis=-1)
f_pc_agg = self.att_pooling(f_concat, d_out, name + 'att_pooling_2', is_training)
return f_pc_agg
def relative_pos_encoding(self, xyz, neigh_idx):
neighbor_xyz = self.gather_neighbour(xyz, neigh_idx)
xyz_tile = tf.tile(tf.expand_dims(xyz, axis=2), [1, 1, tf.shape(neigh_idx)[-1], 1])
relative_xyz = xyz_tile - neighbor_xyz
relative_dis = tf.sqrt(tf.reduce_sum(tf.square(relative_xyz), axis=-1, keepdims=True))
relative_feature = tf.concat([relative_dis, relative_xyz, xyz_tile, neighbor_xyz], axis=-1)
return relative_feature
@staticmethod
def random_sample(feature, pool_idx):
"""
:param feature: [B, N, d] input features matrix
:param pool_idx: [B, N', max_num] N' < N, N' is the selected position after pooling
:return: pool_features = [B, N', d] pooled features matrix
"""
feature = tf.squeeze(feature, axis=2)
num_neigh = tf.shape(pool_idx)[-1]
d = feature.get_shape()[-1]
batch_size = tf.shape(pool_idx)[0]
pool_idx = tf.reshape(pool_idx, [batch_size, -1])
pool_features = tf.batch_gather(feature, pool_idx)
pool_features = tf.reshape(pool_features, [batch_size, -1, num_neigh, d])
pool_features = tf.reduce_max(pool_features, axis=2, keepdims=True)
return pool_features
@staticmethod
def nearest_interpolation(feature, interp_idx):
"""
:param feature: [B, N, d] input features matrix
:param interp_idx: [B, up_num_points, 1] nearest neighbour index
:return: [B, up_num_points, d] interpolated features matrix
"""
feature = tf.squeeze(feature, axis=2)
batch_size = tf.shape(interp_idx)[0]
up_num_points = tf.shape(interp_idx)[1]
interp_idx = tf.reshape(interp_idx, [batch_size, up_num_points])
interpolated_features = tf.batch_gather(feature, interp_idx)
interpolated_features = tf.expand_dims(interpolated_features, axis=2)
return interpolated_features
@staticmethod
def gather_neighbour(pc, neighbor_idx):
# gather the coordinates or features of neighboring points
batch_size = tf.shape(pc)[0]
num_points = tf.shape(pc)[1]
d = pc.get_shape()[2].value
index_input = tf.reshape(neighbor_idx, shape=[batch_size, -1])
features = tf.batch_gather(pc, index_input)
features = tf.reshape(features, [batch_size, num_points, tf.shape(neighbor_idx)[-1], d])
return features
@staticmethod
def att_pooling(feature_set, d_out, name, is_training):
batch_size = tf.shape(feature_set)[0]
num_points = tf.shape(feature_set)[1]
num_neigh = tf.shape(feature_set)[2]
d = feature_set.get_shape()[3].value
f_reshaped = tf.reshape(feature_set, shape=[-1, num_neigh, d])
att_activation = tf.layers.dense(f_reshaped, d, activation=None, use_bias=False, name=name + 'fc')
att_scores = tf.nn.softmax(att_activation, axis=1)
f_agg = f_reshaped * att_scores
f_agg = tf.reduce_sum(f_agg, axis=1)
f_agg = tf.reshape(f_agg, [batch_size, num_points, 1, d])
f_agg = helper_tf_util.conv2d(f_agg, d_out, [1, 1], name + 'mlp', [1, 1], 'VALID', True, is_training)
return f_agg