forked from yingweima2022/MulCS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil_ir.py
842 lines (710 loc) · 33.9 KB
/
util_ir.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
import numpy as np
import configs
import argparse
from collections import Counter
import json
from utils import PAD_ID, UNK_ID
Opcode1 = ['ret', 'add', 'sub', 'mul', 'div', 'rem', 'fneg', 'getelementptr', 'select', 'shl', 'lshr', 'ashr',
'and', 'or', 'xor', 'cmp_gt', 'cmp_ge', 'cmp_lt', 'cmp_le', 'cmp_eq', 'cmp_ne', 'cmp_no']
Opcode2 = ['add', 'sub', 'mul', 'div', 'rem', 'fneg', 'getelementptr', 'select', 'shl', 'lshr', 'ashr',
'and', 'or', 'xor', 'cmp_gt', 'cmp_ge', 'cmp_lt', 'cmp_le', 'cmp_eq', 'cmp_ne', 'cmp_no']
# 输入单个ir图对应的json_dict,从dataloader输出对应anno,adjmat,node_mask
def get_one_ir_npy_info(json_graph_dict, n_node, n_edge_types, max_word_num, pooling_type, annotation_dim, is_partial_attn):
node_num = min(len(json_graph_dict), n_node)
save_edge_digit_list = []
word_num = []
anno = np.zeros([n_node, max_word_num])
word_mask = np.zeros([n_node, max_word_num, annotation_dim])
#print(json_graph_dict)
for i in range(0, node_num):#what happened???
word_list = json_graph_dict[str(i)]['wordid']
word_num_this_node = len(word_list)
if pooling_type == 'max_pooling':
for j in range(word_num_this_node, max_word_num):
word_mask[i][j] = -10000
else: # avg_pooling
for j in range(0, word_num_this_node):
word_mask[i][j] = 8.0 / word_num_this_node
for j in range(0, word_num_this_node):
anno[i][j] = word_list[j]
if 'snode' in json_graph_dict[str(i)].keys():
snode_list = json_graph_dict[str(i)]['snode']
edgetype_list = json_graph_dict[str(i)]['edgetype']
for j in range(0, len(snode_list)):
snode = snode_list[j]
edgetype = edgetype_list[j]
if snode < n_node: # 超出设定的最大节点数的节点舍弃
is_control_edge = int(edgetype)
if is_control_edge == 1:
save_edge_digit_list.append([i, snode, 1]) # 1代表控制边,0代表数据边
else:
save_edge_digit_list.append([i, snode, 0])
# adjmat: [n_node x (n_node * n_edge_types * 2)]
adjmat = create_adjacency_matrix(save_edge_digit_list, n_node, n_edge_types)
# node_mask: [n_node]
node_mask = [1 if k < node_num else 0 for k in range(0, n_node)]
if is_partial_attn:
for i in range(0, node_num):
if json_graph_dict[str(i)]['mask'] == 0:
node_mask[i] = 0
return anno, adjmat, node_mask, word_mask
def create_adjacency_matrix(save_edge_digit_list, n_node, n_edge_types):
a = np.zeros([n_node, n_node * n_edge_types * 2])
for edge in save_edge_digit_list:
src_idx = edge[0]
tgt_idx = edge[1]
e_type = edge[2]
a[tgt_idx][(e_type) * n_node + src_idx] = 1
a[src_idx][(e_type + n_edge_types) * n_node + tgt_idx] = 1
return a
def construct_shuffle_data(args):
index = np.load(args.shuffle_index_file)
dir_path = args.data_path + args.dataset
all_ir_file_path = dir_path + args.all_ir_file
shuffle_all_ir_file_path = dir_path + args.shuffle_all_ir_file
mark_list = []
start_index, end_index = [0, 0]
with open(all_ir_file_path, 'r') as all_ir_file, open(shuffle_all_ir_file_path, 'w') as shuffle_all_ir_file:
lines = all_ir_file.readlines()
for i in range(0, len(lines)):
line = lines[i]
if line[0:10] == 'BeginFunc:' and i != 0:
end_index = i
mark_list.append([start_index, end_index])
start_index = i
mark_list.append([start_index, len(lines)])
print('all_num of ir:\n', len(mark_list))
for i in range(0, 41100):
ind = index[i]
for j in range(mark_list[ind][0], mark_list[ind][1]):
shuffle_all_ir_file.write(lines[j])
# 把数据集按shuffle_index.npy分成训练集和测试集,保持和desc一样的顺序
def split_data(args):
index = np.load(args.shuffle_index_file)
dir_path = args.data_path + args.dataset
all_ir_file_path = dir_path + args.all_ir_file
train_ir_file_path = dir_path + args.train_ir_file
test_ir_file_path = dir_path + args.test_ir_file
mark_list = []
start_index, end_index = [0, 0]
with open(all_ir_file_path, 'r') as all_ir_file:
lines = all_ir_file.readlines()
for i in range(0, len(lines)):
line = lines[i]
if line[0:10] == 'BeginFunc:' and i != 0:
end_index = i
mark_list.append([start_index, end_index])
start_index = i
mark_list.append([start_index, len(lines)])
print('all_num of ir:\n', len(mark_list))
with open(train_ir_file_path, 'w') as train_ir_file, open(test_ir_file_path, 'w') as test_ir_file:
for i in range(0, args.trainset_num):
ind = index[i]
for j in range(mark_list[ind][0], mark_list[ind][1]):
train_ir_file.write(lines[j])
for i in range(args.testset_start_ind, args.testset_start_ind+args.testset_num):
ind = index[i]
for j in range(mark_list[ind][0], mark_list[ind][1]):
test_ir_file.write(lines[j])
def generate_test_data(args):
index = np.load(args.shuffle_index_file)
dir_path = args.data_path + args.dataset
all_ir_file_path = dir_path + args.all_ir_file
test_ir_file_path = dir_path + args.test_ir_file
mark_list = []
start_index, end_index = [0, 0]
with open(all_ir_file_path, 'r') as all_ir_file:
lines = all_ir_file.readlines()
for i in range(0, len(lines)):
line = lines[i]
if line[0:10] == 'BeginFunc:' and i != 0:
end_index = i
mark_list.append([start_index, end_index])
start_index = i
mark_list.append([start_index, len(lines)])
print('all_num of ir:\n', len(mark_list))
with open(test_ir_file_path, 'w') as test_ir_file:
for i in range(args.testset_start_ind, args.testset_start_ind+args.testset_num):
ind = index[i]
for j in range(mark_list[ind][0], mark_list[ind][1]):
test_ir_file.write(lines[j])
def split_mask_data(args):
index = np.load(args.shuffle_index_file)
dir_path = args.data_path + args.dataset
all_ir_file_path = dir_path + args.all_mask_ir_file
train_ir_file_path = dir_path + args.train_mask_ir_file
test_ir_file_path = dir_path + args.test_mask_ir_file
mark_list = []
start_index, end_index = [0, 0]
with open(all_ir_file_path, 'r') as all_ir_file:
lines = all_ir_file.readlines()
for i in range(0, len(lines)):
line = lines[i]
if line[0:6] == 'E:\\tmp' and i != 0:
end_index = i
mark_list.append([start_index, end_index])
start_index = i
mark_list.append([start_index, len(lines)])
print('all_num of ir:\n', len(mark_list))
with open(train_ir_file_path, 'w') as train_ir_file, open(test_ir_file_path, 'w') as test_ir_file:
for i in range(0, args.trainset_num):
ind = index[i]
for j in range(mark_list[ind][0], mark_list[ind][1]):
train_ir_file.write(lines[j])
for i in range(args.testset_start_ind, args.testset_start_ind+args.testset_num):
ind = index[i]
for j in range(mark_list[ind][0], mark_list[ind][1]):
test_ir_file.write(lines[j])
def transform_edge_to_node(args):
dir_path = args.data_path + args.dataset
origin_ir_file_path = dir_path + args.origin_ir_file
all_ir_file_path = dir_path + args.all_ir_file
mark_list = []
start_index, end_index = [0, 0]
with open(origin_ir_file_path, 'r') as origin_ir_file:
ir_lines = origin_ir_file.readlines()
for i in range(0, len(ir_lines)):
line = ir_lines[i]
if line[0:10] == 'BeginFunc:' and i != 0:
end_index = i
mark_list.append([start_index, end_index])
start_index = i
mark_list.append([start_index, len(ir_lines)])
with open(all_ir_file_path, 'w') as all_ir_file:
for i in range(0, len(mark_list)):
s_ind = mark_list[i][0]
e_ind = mark_list[i][1]
all_ir_file.write(ir_lines[s_ind])
ir_graph_info_list = ir_lines[s_ind+1].split()
node_num = int(ir_graph_info_list[0])
edge_num = int(ir_graph_info_list[1])
all_ir_file.write(str(node_num+edge_num) + ' ' + ir_graph_info_list[1] + '\n')
for j in range(s_ind+2, e_ind):
line = ir_lines[j]
edge_info_list = line.split()
if len(edge_info_list) == 2:
all_ir_file.write(line)
else:
all_ir_file.write(edge_info_list[0] + ' ' + str(node_num) + ':' + edge_info_list[2] + '\n')
all_ir_file.write(str(node_num) + ':' + edge_info_list[2] + ' ' + edge_info_list[1] + '\n')
node_num += 1
# 辅助函数,用来观察数据特征
def observe_data(args):
dir_path = args.data_path + args.dataset
all_ir_file_path = dir_path + args.all_ir_file
mark_list = []
start_index, end_index = [0, 0]
with open(all_ir_file_path, 'r') as all_ir_file:
ir_lines = all_ir_file.readlines()
for i in range(0, len(ir_lines)):
line = ir_lines[i]
if line[0:10] == 'BeginFunc:' and i != 0:
end_index = i
mark_list.append([start_index, end_index])
start_index = i
mark_list.append([start_index, len(ir_lines)])
max_word_num = 0
for i in range(0, len(mark_list)):
s_ind = mark_list[i][0]
e_ind = mark_list[i][1]
for j in range(s_ind+2, e_ind):
line = ir_lines[j]
edge_info_list = line.split()
start_node_list = edge_info_list[0].split(':')
end_node_list = edge_info_list[1].split(':')
s_word = start_node_list[1]
len1 = len(s_word.split('_'))
e_word = end_node_list[1]
len2 = len(e_word.split('_'))
if len1 > max_word_num:
max_word_num = len1
print(s_word)
if len2 > max_word_num:
max_word_num = len2
print(e_word)
print(max_word_num)
# 对ir二元组中的节点内容进行清洗
from tqdm import tqdm
def preprocess_origin_ir(args):
dir_path = args.data_path + args.dataset
origin_ir_file_path = dir_path + args.origin_ir_file
all_ir_file_path = dir_path + args.all_ir_file
mark_list = []
start_index, end_index = [0, 0]
with open(origin_ir_file_path, 'r') as origin_ir_file:
ir_lines = origin_ir_file.readlines()
for i in tqdm(range(0, len(ir_lines))):
line = ir_lines[i]
if line[0:10] == 'BeginFunc:' and i != 0:
end_index = i
mark_list.append([start_index, end_index])
start_index = i
mark_list.append([start_index, len(ir_lines)])
with open(all_ir_file_path, 'w') as all_ir_file:
for i in tqdm(range(0, len(mark_list))):
s_ind = mark_list[i][0]
e_ind = mark_list[i][1]
all_ir_file.write(ir_lines[s_ind])
all_ir_file.write(ir_lines[s_ind+1])
for j in range(s_ind+2, e_ind):
line = ir_lines[j]
edge_info_list = line.split()
start_node_list = edge_info_list[0].split(':')
s_node = start_node_list[1]
end_node_list = edge_info_list[1].split(':')
e_node = end_node_list[1]
all_ir_file.write(start_node_list[0]+':'+clean_node(s_node)+' '+
end_node_list[0]+':'+clean_node(e_node)+' '+
edge_info_list[2]+'\n')
# 对节点内容做清洗,主要针对带下划线的词,包括变量和函数名
def clean_node(node_str):
# 如果是数字节点,直接返回
if node_str.isdigit():
return 'ID'
# 改掉一些特殊情况
if node_str[0:9] == '__func__.':
node_str = 'func_' + node_str[9:]
if node_str[0:13] == '__FUNCTION__.':
node_str = 'function_' + node_str[13:]
if node_str[0:6] == 'FLAC__':
node_str = 'flac_' + node_str[6:]
#print(node_str)
# 去掉一些特殊字符,包括'.',数字,大写字母
new_node_str = ''
for i in range(0, len(node_str)):
if node_str[i] == '.':
new_node_str += '_'
elif node_str[i] >= '0' and node_str[i] <= '9':
continue
elif node_str[i] >= 'A' and node_str[i] <= 'Z':
new_node_str += node_str[i].lower()
else:
new_node_str += node_str[i]
#print(new_node_str)
'''
new_node_str = new_node_str.strip('_') # 得先去一次,防止出现'i_'这种情况,不过可能还是会有'a_b'这种情况没法处理,会变成空字符串
# 处理'a_b'以及单字符字符串情况
if len(new_node_str) == 3:
if new_node_str[1] == '_':
return new_node_str
'''
if len(new_node_str) == 1:
return new_node_str
# 去掉下滑线间的所有单字母字符,但是可能会出现去掉单字符后字符串为空的情况
new2_node_str = ''
for i in range(0, len(new_node_str)):
if i == 0:
if new_node_str[i+1] == '_':
new2_node_str += '_'
else:
new2_node_str += new_node_str[i]
elif i == len(new_node_str)-1:
if new_node_str[i-1] == '_':
new2_node_str += '_'
else:
new2_node_str += new_node_str[i]
else:
if new_node_str[i-1] == '_' and new_node_str[i+1] == '_':
new2_node_str += '_'
else:
new2_node_str += new_node_str[i]
# 如果字符串变成全'_'了,就不做这步处理
flag = 0
for i in range(0, len(new2_node_str)):
if new2_node_str[i] != '_':
flag = 1
if flag == 0:
new2_node_str = new_node_str
#print(new2_node_str)
# 去掉字符串的头尾'_'以及连续'_'
new2_node_str = new2_node_str.strip('_')
new3_node_str = ''
for i in range(0, len(new2_node_str)):
if i == len(new2_node_str)-1:
new3_node_str += new2_node_str[i]
elif new2_node_str[i] == '_' and new2_node_str[i+1] == '_':
continue
else:
new3_node_str += new2_node_str[i]
#print(new3_node_str)
# 超出5个词的部分删除
cnt_num = 0
for i in range(0, len(new3_node_str)):
if new3_node_str[i] == '_':
cnt_num += 1
if cnt_num == 5:
new3_node_str = new3_node_str[0:i]
break
#print(new3_node_str)
return new3_node_str
# 词汇中有'_'的 先/不 拆开再统计,只根据训练集中的词汇建词表
def create_dict_file(args):
dir_path = args.data_path + args.dataset
train_ir_file_path = dir_path + args.train_ir_file
with open(train_ir_file_path, 'r') as train_ir_file:
ir_lines = train_ir_file.readlines()
mark_list = []
start_index, end_index = [0, 0]
with open(train_ir_file_path, 'r') as train_ir_file:
ir_lines = train_ir_file.readlines()
for i in range(0, len(ir_lines)):
line = ir_lines[i]
if line[0:10] == 'BeginFunc:' and i != 0:
end_index = i
mark_list.append([start_index, end_index])
start_index = i
mark_list.append([start_index, len(ir_lines)])
ir_words = []
for i in range(0, len(mark_list)):
s_ind = mark_list[i][0]
e_ind = mark_list[i][1]
for j in range(s_ind+2, e_ind):
edge_info_list = ir_lines[j].split()
s_node_list = edge_info_list[0].split(':')
e_node_list = edge_info_list[1].split(':')
# 拆开下划线
if args.word_split_type == 'split':
if s_node_list[1] == 'control_label' or s_node_list[1] == 'label_true' or s_node_list[1] == 'label_false':
ir_words.append(s_node_list[1])
else:
s_node = s_node_list[1].split('_')
for i in range(0, len(s_node)):
ir_words.append(s_node[i])
if e_node_list[1] == 'control_label' or e_node_list[1] == 'label_true' or e_node_list[1] == 'label_false':
ir_words.append(e_node_list[1])
else:
e_node = e_node_list[1].split('_')
for i in range(0, len(e_node)):
ir_words.append(e_node[i])
# 不拆开下划线,对应type:'no_split'
else:
ir_words.append(s_node_list[1])
ir_words.append(e_node_list[1])
vocab_ir_info = Counter(ir_words)
print("vocab_len:",len(vocab_ir_info))
# print(vocab_ir_info)
tmp = vocab_ir_info.most_common()
#print(tmp[25000])
for i in range(0, len(tmp)):
t = tmp[i]
if (t[1] == 4):
print(i)
break
vocab_ir = [item[0] for item in vocab_ir_info.most_common()[:args.ir_word_num-2]]
vocab_ir_index = {'<pad>':0, '<unk>':1}
vocab_ir_index.update(zip(vocab_ir, [item+2 for item in range(len(vocab_ir))]))
# 保存字典json文件
vocab_ir_file_path = dir_path + args.vocab_ir_file
ir_dic_str = json.dumps(vocab_ir_index)
with open(vocab_ir_file_path, 'w') as vocab_ir_file:
vocab_ir_file.write(ir_dic_str)
class multidict(dict):
def __getitem__(self, item):
try:
return dict.__getitem__(self, item)
except KeyError:
value = self[item] = type(self)()
return value
# 把txt格式的IR转成json输入,这样dataloader中按索引就可以遍历每张图
def txt2json(args, ir_txt_file_path):
mark_list = []
start_index, end_index = [0, 0]
ir_cnt = 1
with open(ir_txt_file_path, 'r') as ir_txt_file:
ir_lines = ir_txt_file.readlines()
for i in range(0, len(ir_lines)):
if ir_lines[i][0:10] == 'BeginFunc:' and i != 0:
end_index = i
mark_list.append([start_index, end_index])
start_index = i
ir_cnt += 1
print('ir_cnt:\n', ir_cnt)
mark_list.append([start_index, len(ir_lines)])
dir_path = args.data_path + args.dataset
vocab_ir_file_path = dir_path + args.vocab_ir_file
vocab = json.loads(open(vocab_ir_file_path, 'r').readline())
graph_dict = multidict()
for i in range(0, ir_cnt):
s_ind, e_ind = mark_list[i]
#print("Graph Index: ", i)
for j in range(s_ind+2, e_ind):
edge_info_list = ir_lines[j].split()
s_node_list = edge_info_list[0].split(':')
e_node_list = edge_info_list[1].split(':')
edge_type = edge_info_list[2]
#根据edge_type改成数字
if edge_type == "data":
edge_type = 0
elif edge_type == "control":
edge_type = 1
#print(edge_info_list)
# 根据word_split_type的不同,选择是否要拆开词,区别在于wordid的存法不同
if (args.word_split_type == 'split'):
# 分别考虑起终节点,'control_label'和'return_point'不做拆分,其他存成list,这里没区分边的类型
s_node_index = int(s_node_list[0])
if graph_dict[i][s_node_index]['wordid'] == {}:
if s_node_list[1] == 'control_label' or s_node_list[1] == 'label_true' or s_node_list[1] == 'label_false':
graph_dict[i][s_node_index]['wordid'] = [vocab.get(s_node_list[1], UNK_ID)]
else:
graph_dict[i][s_node_index]['wordid'] = []
s_node_word_list = s_node_list[1].split('_')
for k in range(0, len(s_node_word_list)):
graph_dict[i][s_node_index]['wordid'].append(vocab.get(s_node_word_list[k], UNK_ID))
if s_node_list[1] in Opcode2:
graph_dict[i][s_node_index]['mask'] = 0
else:
graph_dict[i][s_node_index]['mask'] = 1
#print("snode: %s index: %d" %(s_node_list[1], s_node_index))
#print(graph_dict[i][s_node_index]['wordid'])
e_node_index = int(e_node_list[0])
if graph_dict[i][e_node_index]['wordid'] == {}:
if e_node_list[1] == 'control_label' or e_node_list[1] == 'label_true' or e_node_list[1] == 'label_false':
graph_dict[i][e_node_index]['wordid'] = [vocab.get(e_node_list[1], UNK_ID)]
else:
graph_dict[i][e_node_index]['wordid'] = []
e_node_word_list = e_node_list[1].split('_')
for k in range(0, len(e_node_word_list)):
graph_dict[i][e_node_index]['wordid'].append(vocab.get(e_node_word_list[k], UNK_ID))
if e_node_list[1] in Opcode2:
graph_dict[i][e_node_index]['mask'] = 0
else:
graph_dict[i][e_node_index]['mask'] = 1
#print("enode: %s index: %d" %(e_node_list[1], e_node_index))
#print(graph_dict[i][e_node_index]['wordid'])
else:
graph_dict[i][int(s_node_list[0])]['wordid'] = vocab.get(s_node_list[1], UNK_ID)
graph_dict[i][int(e_node_list[0])]['wordid'] = vocab.get(e_node_list[1], UNK_ID)
if graph_dict[i][int(s_node_list[0])]['snode'] == {}: # 该节点当前还无子节点
graph_dict[i][int(s_node_list[0])]['snode'] = [int(e_node_list[0])]
graph_dict[i][int(s_node_list[0])]['edgetype'] = [int(edge_type)]
#print('if \{None\}', graph_dict[i][int(s_node_list[0])]['node'])
else: # 该节点含多个子节点
graph_dict[i][int(s_node_list[0])]['snode'].append(int(e_node_list[0]))
graph_dict[i][int(s_node_list[0])]['edgetype'].append(int(edge_type))
#print('multiple sons exist in line={}, i={}, s={}, node={}'.format(j, i, s_node_list[0], graph_dict[i][int(s_node_list[0])]['node']))
graph_dict_str = json.dumps(graph_dict)
ir_json_file_path = ir_txt_file_path[0:-3] + 'json'
with open(ir_json_file_path, 'w') as ir_json_file:
ir_json_file.write(graph_dict_str)
# 根据ir_mask_file中的内容判断对哪些节点做mask
def txt2json_mask(args, ir_txt_file_path, ir_mask_file_path):
mark_list = []
start_index, end_index = [0, 0]
ir_cnt = 1
with open(ir_txt_file_path, 'r') as ir_txt_file:
ir_lines = ir_txt_file.readlines()
for i in range(0, len(ir_lines)):
if ir_lines[i][0:10] == 'BeginFunc:' and i != 0:
end_index = i
mark_list.append([start_index, end_index])
start_index = i
ir_cnt += 1
print('ir_cnt:\n', ir_cnt)
mark_list.append([start_index, len(ir_lines)])
with open(ir_mask_file_path, 'r') as ir_mask_file:
ir_mask_lines = ir_mask_file.readlines()
all_mask = []
one_mask = []
for i in range(0, len(ir_mask_lines)):
if ir_mask_lines[i][0:6] == 'E:\\tmp' and i != 0:
all_mask.append(one_mask)
one_mask = []
elif ir_mask_lines[i][0:6] != 'E:\\tmp':
word_list = ir_mask_lines[i].split(':')
word_id = int(word_list[0])
word = word_list[1].strip()
if args.with_opcode == 1:
one_mask.append(word_id)
else:
if word not in Opcode2:
one_mask.append(word_id)
all_mask.append(one_mask)
dir_path = args.data_path + args.dataset
vocab_ir_file_path = dir_path + args.vocab_ir_file
vocab = json.loads(open(vocab_ir_file_path, 'r').readline())
graph_dict = multidict()
for i in range(0, ir_cnt):
s_ind, e_ind = mark_list[i]
#print("Graph Index: ", i)
for j in range(s_ind+2, e_ind):
edge_info_list = ir_lines[j].split()
s_node_list = edge_info_list[0].split(':')
e_node_list = edge_info_list[1].split(':')
edge_type = edge_info_list[2]
#print(edge_info_list)
# 根据word_split_type的不同,选择是否要拆开词,区别在于wordid的存法不同
if (args.word_split_type == 'split'):
# 分别考虑起终节点,'control_label'和'return_point'不做拆分,其他存成list,这里没区分边的类型
s_node_index = int(s_node_list[0])
if graph_dict[i][s_node_index]['wordid'] == {}:
if s_node_list[1] == 'control_label' or s_node_list[1] == 'label_true' or s_node_list[1] == 'label_false':
graph_dict[i][s_node_index]['wordid'] = [vocab.get(s_node_list[1], UNK_ID)]
else:
graph_dict[i][s_node_index]['wordid'] = []
s_node_word_list = s_node_list[1].split('_')
for k in range(0, len(s_node_word_list)):
graph_dict[i][s_node_index]['wordid'].append(vocab.get(s_node_word_list[k], UNK_ID))
if s_node_index in all_mask[i]:
graph_dict[i][s_node_index]['mask'] = 1
else:
graph_dict[i][s_node_index]['mask'] = 0
'''
if s_node_list[1] in Opcode:
graph_dict[i][s_node_index]['mask'] = 0
else:
graph_dict[i][s_node_index]['mask'] = 1
'''
#print("snode: %s index: %d" %(s_node_list[1], s_node_index))
#print(graph_dict[i][s_node_index]['wordid'])
e_node_index = int(e_node_list[0])
if graph_dict[i][e_node_index]['wordid'] == {}:
if e_node_list[1] == 'control_label' or e_node_list[1] == 'label_true' or e_node_list[1] == 'label_false':
graph_dict[i][e_node_index]['wordid'] = [vocab.get(e_node_list[1], UNK_ID)]
else:
graph_dict[i][e_node_index]['wordid'] = []
e_node_word_list = e_node_list[1].split('_')
for k in range(0, len(e_node_word_list)):
graph_dict[i][e_node_index]['wordid'].append(vocab.get(e_node_word_list[k], UNK_ID))
if e_node_index in all_mask[i]:
graph_dict[i][e_node_index]['mask'] = 1
else:
graph_dict[i][e_node_index]['mask'] = 0
'''
if e_node_list[1] in Opcode:
graph_dict[i][e_node_index]['mask'] = 0
else:
graph_dict[i][e_node_index]['mask'] = 1
'''
#print("enode: %s index: %d" %(e_node_list[1], e_node_index))
#print(graph_dict[i][e_node_index]['wordid'])
else:
graph_dict[i][int(s_node_list[0])]['wordid'] = vocab.get(s_node_list[1], UNK_ID)
graph_dict[i][int(e_node_list[0])]['wordid'] = vocab.get(e_node_list[1], UNK_ID)
if graph_dict[i][int(s_node_list[0])]['snode'] == {}: # 该节点当前还无子节点
graph_dict[i][int(s_node_list[0])]['snode'] = [int(e_node_list[0])]
graph_dict[i][int(s_node_list[0])]['edgetype'] = [int(edge_type)]
#print('if \{None\}', graph_dict[i][int(s_node_list[0])]['node'])
else: # 该节点含多个子节点
graph_dict[i][int(s_node_list[0])]['snode'].append(int(e_node_list[0]))
graph_dict[i][int(s_node_list[0])]['edgetype'].append(int(edge_type))
#print('multiple sons exist in line={}, i={}, s={}, node={}'.format(j, i, s_node_list[0], graph_dict[i][int(s_node_list[0])]['node']))
graph_dict_str = json.dumps(graph_dict)
ir_json_file_path = ir_txt_file_path[0:-3] + 'json'
with open(ir_json_file_path, 'w') as ir_json_file:
ir_json_file.write(graph_dict_str)
def cnt_node_num(args):
dir_path = args.data_path + args.dataset
train_ir_file_path = dir_path + args.train_ir_file
with open(train_ir_file_path, 'r') as train_ir_file:
ir_lines = train_ir_file.readlines()
mark_list = []
start_index, end_index = [0, 0]
with open(train_ir_file_path, 'r') as train_ir_file:
ir_lines = train_ir_file.readlines()
for i in range(0, len(ir_lines)):
line = ir_lines[i]
if line[0:10] == 'BeginFunc:' and i != 0:
end_index = i
mark_list.append([start_index, end_index])
start_index = i
mark_list.append([start_index, len(ir_lines)])
node_num = []
for i in range(0, len(mark_list)):
s_ind = mark_list[i][0]+1
line = ir_lines[s_ind]
n_num = int(line.split()[0])
node_num.append(n_num)
cnt = 0
for i in range(0, len(node_num)):
if node_num[i] > 1024:
cnt += 1
print('cnt = ', cnt)
def parse_args():
parser = argparse.ArgumentParser("Prepare IR data for IREmbeder")
parser.add_argument('--data_path', type=str, default='./data/')
parser.add_argument('--dataset', type=str, default='c_python/')
parser.add_argument('--origin_ir_file', type=str, default='origin.ir.txt')
parser.add_argument('--all_ir_file', type=str, default='all.ir.txt')
parser.add_argument('--shuffle_all_ir_file', type=str, default='shuffle.all.ir.txt')
parser.add_argument('--all_mask_ir_file', type=str, default='all.mask.ir.txt')
parser.add_argument('--train_ir_file', type=str, default='train.ir.txt')
parser.add_argument('--test_ir_file', type=str, default='test.ir.txt')
parser.add_argument('--train_mask_ir_file', type=str, default='train.mask.ir.txt')
parser.add_argument('--test_mask_ir_file', type=str, default='test.mask.ir.txt')
parser.add_argument('--train_ir_json_file', type=str, default='train.ir.json')
parser.add_argument('--test_ir_json_file', type=str, default='test.ir.json')
parser.add_argument('--vocab_ir_file', type=str, default='vocab.ir.json')
parser.add_argument('--n_node', type=int, default=150)
parser.add_argument('--n_edge_types', type=int, default=2)
parser.add_argument('--state_dim', type=int, default=512)
parser.add_argument('--annotation_dim', type=int, default=300)
parser.add_argument('--ir_word_num', type=int, default=15000)
parser.add_argument('--trainset_num', type=int, default=39000)
parser.add_argument('--testset_num', type=int, default=2000)
parser.add_argument('--testset_start_ind', type=int, default=39000)
parser.add_argument('--word_split_type', type=str, default='split') # no_split
parser.add_argument('--with_opcode', type=int, default=0)
parser.add_argument('--shuffle_index_file', type=str, default='data/shuffle_index.npy')
return parser.parse_args()
def process_all():
#observe_data(args)
# print('1, preprocess_origin_ir')
# preprocess_origin_ir(args)
# print('2, construct_shuffle_data')
# construct_shuffle_data(args)
# print('3, split_data')
# split_data(args)
# print('4, create_dict_file')
# create_dict_file(args)
#split_mask_data(args)
# dir_path = args.data_path + args.dataset
# ir_txt_all_file_path = dir_path + args.all_ir_file
# txt2json(args, ir_txt_all_file_path)
dir_path = args.data_path + args.dataset
ir_txt_train_file_path = dir_path + args.train_ir_file
ir_txt_test_file_path = dir_path + args.test_ir_file
# txt2json(args, ir_txt_train_file_path)
txt2json(args, ir_txt_test_file_path)
def generate_test():
args = parse_args()
generate_test_data(args)
dir_path = args.data_path + args.dataset
dir_path = args.data_path + args.dataset
ir_txt_test_file_path = dir_path + args.test_ir_file
txt2json(args, ir_txt_test_file_path)
if __name__ == '__main__':
args = parse_args()
process_all()
#generate_test()
'''
dir_path = args.data_path + args.dataset
ir_txt_train_file_path = dir_path + args.train_ir_file
ir_train_mask_file_path = dir_path + args.train_mask_ir_file
ir_txt_test_file_path = dir_path + args.test_ir_file
ir_test_mask_file_path = dir_path + args.test_mask_ir_file
txt2json_mask(args, ir_txt_train_file_path, ir_train_mask_file_path)
txt2json_mask(args, ir_txt_test_file_path, ir_test_mask_file_path)
'''
'''
dir_path = args.data_path + args.dataset
train_ir_file_path = dir_path + args.train_ir_file
mark_list = []
start_index, end_index = [0, 0]
with open(train_ir_file_path, 'r') as train_ir_file:
lines = train_ir_file.readlines()
for i in range(0, len(lines)):
line = lines[i]
if line[0:10] == 'BeginFunc:' and i != 0:
end_index = i
mark_list.append([start_index, end_index])
start_index = i
mark_list.append([start_index, len(lines)])
max_node_num = 0
for i in range(0, len(mark_list)):
line = lines[mark_list[i][0]+1]
node_num = int(line.split()[0])
if node_num > max_node_num:
max_node_num = node_num
print(max_node_num)
print('i', i)
'''