forked from VincentTatan/ValueInvesting
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
125 lines (105 loc) · 4.54 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import dash
from dash.dependencies import Input, Output
import dash_core_components as dcc
import dash_html_components as html
import numpy as np
from financialreportingdfformatted import getfinancialreportingdf,getfinancialreportingdfformatted,save_sp500_stocks_info,save_russell_info,save_self_stocks_info
from eligibilitycheck import eligibilitycheck
from futurepricing import generate_price_df
from pandas_datareader import data as web
from datetime import datetime as dt
# Set up global variables
stockpricedf = 0
financialreportingdf =0
discountrate=0.2
margin = 0.15
# Set up the app
app = dash.Dash(__name__)
server = app.server
app.layout = html.Div([
html.Div([
html.H1('Value Investing'),
# First let users choose stocks
html.H2('Choose a stock ticker'),
dcc.Dropdown(
id='my-dropdown',
options=save_sp500_stocks_info()+save_self_stocks_info(),
value='coke'
),
html.H2('5 years stocks price graph'),
dcc.Graph(id='my-graph'),
html.P('')
],style={'width': '40%', 'display': 'inline-block'}),
html.Div([
html.H2('Critical Variables and Ratios'),
html.Table(id='my-table'),
html.P(''),
html.H2('Warning Flags'),
html.Table(id='reason-list'),
html.P('')
], style={'width': '55%', 'float': 'right', 'display': 'inline-block'}),
html.H4('Discount Calculation Rate'),
dcc.Slider(
id='discountrate-slider',
min=0,
max=1,
value=0.15,
step=0.05,
marks={i: '{}'.format(round(i,2)) for i in np.arange(0, 1, 0.05)}
),
html.H4('Margin Calculation Rate'),
dcc.Slider(
id='marginrate-slider',
min=0,
max=1,
value=0.15,
step=0.05,
marks={i: '{}'.format(round(i,2)) for i in np.arange(0, 1, 0.05)}
),
html.Table(id='expected-future-price-table')
])
# For the stocks graph
@app.callback(Output('my-graph', 'figure'), [Input('my-dropdown', 'value')])
def update_graph(selected_dropdown_value):
global stockpricedf # Needed to modify global copy of stockpricedf
stockpricedf = web.DataReader(
selected_dropdown_value.strip(), data_source='yahoo',
start=dt(2013, 1, 1), end=dt.now())
return {
'data': [{
'x': stockpricedf.index,
'y': stockpricedf.Close
}]
}
# for the table
@app.callback(Output('my-table', 'children'), [Input('my-dropdown', 'value')])
def generate_table(selected_dropdown_value,max_rows=10):
global financialreportingdf # Needed to modify global copy of financialreportingdf
financialreportingdf = getfinancialreportingdfformatted(selected_dropdown_value.strip().lower()).reset_index()
financialreportingwritten = getfinancialreportingdf(selected_dropdown_value.strip()).reset_index()
financialreportingwritten[['roe','interestcoverageratio']] = np.round(financialreportingdf[['roe','interestcoverageratio']],2)
# Header
return [html.Tr([html.Th(col) for col in financialreportingwritten.columns])] + [html.Tr([
html.Td(financialreportingwritten.iloc[i][col]) for col in financialreportingwritten.columns
]) for i in range(min(len(financialreportingwritten), max_rows))]
# for the reason-list
@app.callback(Output('reason-list', 'children'), [Input('my-dropdown', 'value')])
def generate_reason_list(selected_dropdown_value):
global financialreportingdf # Needed to modify global copy of financialreportingdf
reasonlist = eligibilitycheck(selected_dropdown_value.strip().lower(),financialreportingdf)
# Header
return [html.Tr(html.Th('reasonlist'))] + [html.Tr(html.Td(reason)) for reason in reasonlist]
# for the expected-future-price-table
@app.callback(Output('expected-future-price-table', 'children'),
[Input('my-dropdown', 'value'), Input('discountrate-slider', 'value'),Input('marginrate-slider', 'value')])
def generate_future_price_table(selected_dropdown_value,discountrate,marginrate,max_rows=10):
global financialreportingdf # Needed to modify global copy of financialreportingdf
global stockpricedf
pricedf = generate_price_df(selected_dropdown_value.strip(),financialreportingdf,stockpricedf,discountrate,marginrate)
# Header
return [html.Tr([html.Th(col) for col in pricedf.columns])] + [html.Tr([
html.Td(html.B(pricedf.iloc[i][col])) if col == 'decision' else html.Td(round(pricedf.iloc[i][col],2))
for col in pricedf.columns
]) for i in range(min(len(pricedf), max_rows))]
if __name__ == '__main__':
app.run_server(debug=True)