-
Notifications
You must be signed in to change notification settings - Fork 17
/
analyze-ablation-hnn.py
314 lines (249 loc) · 11 KB
/
analyze-ablation-hnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
# Symplectic ODE-Net | 2019
# Yaofeng Desmond Zhong, Biswadip Dey, Amit Chakraborty
# code structure follows the style of HNN by Sam Greydanus
# https://github.com/greydanus/hamiltonian-nn
# This file is a script version of 'analyze-ablation-hnn.ipynb'
# Cells are seperated by the vscode convention '#%%'
#%%
import torch, time, sys
import autograd
import autograd.numpy as np
import matplotlib.pyplot as plt
import scipy.integrate
solve_ivp = scipy.integrate.solve_ivp
EXPERIMENT_DIR = './experiment-single-force/'
sys.path.append(EXPERIMENT_DIR)
from data import get_dataset, get_trajectory, dynamics_fn, hamiltonian_fn, arrange_data, get_field
from nn_models import MLP, PSD
from symoden import SymODEN_R
from hnn import HNN
from utils import L2_loss, from_pickle
from torchdiffeq import odeint
device = torch.device('cuda:' + str(args.gpu) if torch.cuda.is_available() else 'cpu')
#%%
DPI = 600
FORMAT = 'pdf'
LINE_SEGMENTS = 10
ARROW_SCALE = 40
ARROW_WIDTH = 6e-3
LINE_WIDTH = 1
#%% [markdown]
# ## Load models
#%%
# the symoden model
def get_model(args, baseline, structure, damping, num_points, gym=False):
if structure == False and baseline == True:
nn_model = MLP(args.input_dim, 600, args.input_dim, args.nonlinearity).to(device)
model = SymODEN_R(args.input_dim, H_net=nn_model, device=device, baseline=True)
elif structure == False and baseline == False:
H_net = MLP(args.input_dim, 400, 1, args.nonlinearity).to(device)
g_net = MLP(int(args.input_dim/2), 200, int(args.input_dim/2)).to(device)
model = SymODEN_R(args.input_dim, H_net=H_net, g_net=g_net, device=device, baseline=False)
elif structure == True and baseline ==False:
M_net = MLP(int(args.input_dim/2), 300, int(args.input_dim/2))
V_net = MLP(int(args.input_dim/2), 50, 1).to(device)
g_net = MLP(int(args.input_dim/2), 200, int(args.input_dim/2)).to(device)
model = SymODEN_R(args.input_dim, M_net=M_net, V_net=V_net, g_net=g_net, device=device, baseline=False, structure=True).to(device)
else:
raise RuntimeError('argument *baseline* and *structure* cannot both be true')
model_name = 'baseline_ode' if baseline else 'hnn_ode'
struct = '-struct' if structure else ''
rad = '-rad' if args.rad else ''
path = '{}pend-{}{}-{}-p{}{}.tar'.format(args.save_dir, model_name, struct, args.solver, num_points, rad)
model.load_state_dict(torch.load(path, map_location=device))
path = '{}/pend-{}{}-{}-p{}-stats{}.pkl'.format(args.save_dir, model_name, struct, args.solver, num_points, rad)
stats = from_pickle(path)
return model, stats
# the hnn model
def get_hnn_model(args, baseline):
output_dim = args.input_dim if args.baseline else 2
nn_model = MLP(args.input_dim, 400, output_dim, args.nonlinearity)
model = HNN(args.input_dim, differentiable_model=nn_model,
field_type=args.field_type, baseline=args.baseline)
label = '-baseline' if args.baseline else '-hnn'
label = label + '-rad' if args.rad else label
path = '{}/{}{}.tar'.format(args.save_dir, args.name, label)
return model
#%%
def get_args():
return {'input_dim': 2,
'learn_rate': 1e-3,
'nonlinearity': 'tanh',
'baseline': False,
'field_type': 'solenoidal',
'name': 'pend',
'gridsize': 10,
'seed': 0,
'save_dir': './{}'.format(EXPERIMENT_DIR),
'fig_dir': './figures',
'num_points': 2,
'gpu': 0,
'solver': 'rk4',
'rad': False,
'gym': False}
class ObjectView(object):
def __init__(self, d): self.__dict__ = d
args = ObjectView(get_args())
symoden_ode_model, symoden_ode_stats = get_model(args, baseline=False, structure=False, damping=False, num_points=args.num_points, gym=args.gym)
hnn_model = get_hnn_model(args, baseline=False)
def get_args():
return {'input_dim': 2,
'learn_rate': 1e-3,
'nonlinearity': 'tanh',
'baseline': False,
'field_type': 'solenoidal',
'name': 'pend',
'gridsize': 10,
'seed': 0,
'save_dir': './{}'.format(EXPERIMENT_DIR),
'fig_dir': './figures',
'num_points': 2,
'gpu': 0,
'solver': 'rk4',
'rad': True,
'gym': False}
class ObjectView(object):
def __init__(self, d): self.__dict__ = d
args = ObjectView(get_args())
symoden_ode_rad_model, symoden_ode_rad_stats = get_model(args, baseline=False, structure=False, damping=False, num_points=args.num_points, gym=args.gym)
hnn_rad_model = get_hnn_model(args, baseline=False)
#%% [markdown]
# ## Functions to get train and prediction error
#%%
def get_loss(pred_x, pred_t_eval, model):
pred_x = torch.tensor(pred_x, requires_grad=True, dtype=torch.float32).to(device)
pred_t_eval = torch.tensor(pred_t_eval, requires_grad=True, dtype=torch.float32).to(device)
pred_loss = []
for i in range(pred_x.shape[0]):
pred_x_hat = odeint(model, pred_x[i, 0, :, :], pred_t_eval, method='rk4')
pred_loss.append((pred_x[i,:,:,:] - pred_x_hat)**2)
pred_loss = torch.cat(pred_loss, dim=1)
pred_loss_per_traj = torch.sum(pred_loss, dim=(0, 2))
return pred_loss_per_traj.detach().cpu().numpy()
def get_hnn_loss(pred_x, pred_t_eval, model):
pred_x = torch.tensor(pred_x, requires_grad=True, dtype=torch.float32).to(device)
pred_t_eval = torch.tensor(pred_t_eval, requires_grad=True, dtype=torch.float32).to(device)
pred_loss = []
for i in range(pred_x.shape[0]):
pred_x_hat = odeint(model.int_wrapper, pred_x[i, 0, :, 0:2], pred_t_eval, method='rk4')
pred_loss.append((pred_x[i,:,:,0:2] - pred_x_hat)**2)
pred_loss = torch.cat(pred_loss, dim=1)
pred_loss_per_traj = torch.sum(pred_loss, dim=(0, 2))
return pred_loss_per_traj.detach().cpu().numpy()
#%%
# get train loss
us = [0.0]
data = get_dataset(seed=args.seed, timesteps=45, rad=True,
save_dir=args.save_dir, us=us, samples=50) #us=np.linspace(-2.0, 2.0, 20)
train_rad_x, train_rad_t_eval = data['x'], data['t']
us = [0.0]
data = get_dataset(seed=args.seed, timesteps=45, rad=False,
save_dir=args.save_dir, us=us, samples=50) #us=np.linspace(-2.0, 2.0, 20)
train_x, train_t_eval = data['x'], data['t']
symoden_train_loss = get_loss(train_x, train_t_eval, symoden_ode_model)
symoden_rad_train_loss = get_loss(train_rad_x, train_rad_t_eval, symoden_ode_rad_model)
hnn_train_loss = get_hnn_loss(train_x, train_t_eval, hnn_model)
hnn_rad_train_loss = get_hnn_loss(train_rad_x, train_rad_t_eval, hnn_rad_model)
#%%
# get prediction loss
us = [0.0]
data = get_dataset(seed=args.seed, timesteps=90, rad=True,
save_dir=args.save_dir, us=us, samples=50) #us=np.linspace(-2.0, 2.0, 20)
pred_rad_x, pred_rad_t_eval = data['x'], data['t']
us = [0.0]
data = get_dataset(seed=args.seed, timesteps=90, rad=False,
save_dir=args.save_dir, us=us, samples=50) #us=np.linspace(-2.0, 2.0, 20)
pred_x, pred_t_eval = data['x'], data['t']
symoden_pred_loss = get_loss(pred_x, pred_t_eval, symoden_ode_model)
symoden_rad_pred_loss = get_loss(pred_rad_x, pred_rad_t_eval, symoden_ode_rad_model)
hnn_pred_loss = get_hnn_loss(pred_x, pred_t_eval, hnn_model)
hnn_rad_pred_loss = get_hnn_loss(pred_rad_x, pred_rad_t_eval, hnn_rad_model)
#%%
print('SymODEN train loss per trajectory: {}'.format(symoden_train_loss.mean(-1)))
print('HNN train loss per trajectory: {}'.format(hnn_train_loss.mean(-1)))
print('')
print('SymODEN prediction loss per trajectory: {}'.format(symoden_pred_loss.mean(-1)))
print('HNN prediction loss per trajectory: {}'.format(hnn_pred_loss.mean(-1)))
print('')
print('SymODEN train loss per trajectory w/ rad: {}'.format(symoden_rad_train_loss.mean(-1)))
print('HNN train loss per trajectory w/rad: {}'.format(hnn_rad_train_loss.mean(-1)))
print('')
print('SymODEN prediction loss per trajectory w/ rad: {}'.format(symoden_rad_pred_loss.mean(-1)))
print('HNN prediction loss per trajectory w/ rad: {}'.format(hnn_rad_pred_loss.mean(-1)))
print('')
#%% [markdown]
# ## Integrate to get trajectories
#%%
def integrate_model(model, t_span, y0, **kwargs):
def fun(t, np_x):
x = torch.tensor( np_x, requires_grad=True, dtype=torch.float32).view(1,3).to(device)
dx = model(0, x).detach().cpu().numpy().reshape(-1)
return dx
return solve_ivp(fun=fun, t_span=t_span, y0=y0, **kwargs)
def integrate_hnn_model(model, t_span, y0, **kwargs):
def fun(t, np_x):
x = torch.tensor( np_x, requires_grad=True, dtype=torch.float32).view(1,2).to(device)
dx = model(0, x).detach().cpu().numpy().reshape(-1)
return dx
return solve_ivp(fun=fun, t_span=t_span, y0=y0, **kwargs)
time_step = 100
t_span = [0,10]
t_eval = np.linspace(t_span[0], t_span[1], time_step)
init_angle = 2.1
y0 = np.asarray([init_angle, 0])
u0 = 0.0
kwargs = {'t_eval': t_eval, 'rtol': 1e-12}
y0_u = np.concatenate((y0, np.array([u0])))
true_path = solve_ivp(fun=dynamics_fn, t_span=t_span, y0=y0, **kwargs)
true_ivp = np.concatenate((true_path['y'], u0 * np.ones((1, time_step))), axis=0)
true_x = true_ivp.T
symoden_path = integrate_model(symoden_ode_model, t_span, y0_u, **kwargs)
symoden_x = symoden_path['y'].T
symoden_rad_path = integrate_model(symoden_ode_rad_model, t_span, y0_u, **kwargs)
symoden_rad_x = symoden_rad_path['y'].T
hnn_path = integrate_hnn_model(hnn_model.int_wrapper, t_span, y0, **kwargs)
hnn_x = hnn_path['y'].T
hnn_rad_path = integrate_hnn_model(hnn_rad_model.int_wrapper, t_span, y0, **kwargs)
hnn_rad_x = hnn_rad_path['y'].T
#%%
def get_energy(x):
return 1.5 * x[:, 1]**2 + 5 * (1 - np.cos(x[:, 0]))
E_true = get_energy(true_x)
E_symoden = get_energy(symoden_x)
E_hnn = get_energy(hnn_x)
E_symoden_rad = get_energy(symoden_rad_x)
E_hnn_rad = get_energy(hnn_rad_x)
#%%
fig = plt.figure(figsize=(14, 3.0), dpi=DPI)
plt.subplot(1, 4, 1)
plt.plot(t_eval, ((true_x-symoden_rad_x)**2).mean(-1), 'b', linewidth=2)
plt.plot(t_eval, ((true_x[:,0:2]-hnn_rad_x)**2).mean(-1), 'c--', linewidth=2)
plt.ylim(-0.5, 10)
plt.xlabel('t')
# plt.ylabel('MSE')
plt.title('MSE w/ annulus training data')
plt.subplot(1, 4, 2)
plt.plot(t_eval, E_true, 'k', label='Ground Truth', linewidth=2)
plt.plot(t_eval, E_symoden_rad, 'b', label='Unstructured SymODEN', linewidth=2)
plt.plot(t_eval, E_hnn_rad, 'c--', label='HNN', linewidth=2)
plt.ylim(0, 9)
plt.xlabel('t')
plt.title('Total Energy w/ annulus training data')
plt.legend(fontsize=10)
plt.subplot(1, 4, 3)
plt.plot(t_eval, ((true_x-symoden_x)**2).mean(-1), 'b', linewidth=2)
plt.plot(t_eval, ((true_x[:,0:2]-hnn_x)**2).mean(-1), 'c--', linewidth=2)
plt.ylim(-0.5, 10)
plt.xlabel('t')
# plt.ylabel('MSE')
plt.title('MSE w/ rectangle training data')
plt.subplot(1, 4, 4)
plt.plot(t_eval, E_true, 'k', label='Ground Truth', linewidth=2)
plt.plot(t_eval, E_symoden, 'b', label='Unstructured SymODEN', linewidth=2)
plt.plot(t_eval, E_hnn, 'c--', label='HNN', linewidth=2)
plt.ylim(0, 9)
plt.xlabel('t')
plt.title('Total Energy w/ rectangle training data')
plt.tight_layout()
# fig.savefig('{}/fig-ablation-hnn.{}'.format(args.fig_dir, FORMAT))
# %%