forked from ShrohanMohapatra/matrix_multiply_quadratic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
monteCarloMatrixMultiply.py
61 lines (61 loc) · 2.17 KB
/
monteCarloMatrixMultiply.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
from random import randint
import matplotlib.pyplot as plt
from time import time
def monteCarloMatrixMultiply(A,B):
n = len(A)
C = [[{k:False for k in range(n)} for j in range(n)] for i in range(n)]
D = [[{k:False for k in range(n)} for j in range(n)] for i in range(n)]
AB = [[0 for j in range(n)] for i in range(n)]
for i in range(n):
for j in range(n):
C[i][j]['size'] = 0
D[i][j]['size'] = 0
while True:
for i in range(n):
for j in range(n):
k = randint(0,n-1)
if C[i][k][j] and D[k][j][i]: pass
else:
C[i][k][j] = True
C[i][k]['size'] = C[i][k]['size'] + 1
D[k][j][i] = True
D[k][j]['size'] = D[k][j]['size'] + 1
AB[i][j] = AB[i][j] + A[i][k]*B[k][j]
flag = True
for i in range(n):
for j in range(n):
flag = flag and C[i][j]['size'] == n and D[i][j]['size'] == n
if flag: break
return AB
def actualMatrixMultiply(A,B):
n = len(A)
C = [[0 for j in range(n)] for i in range(n)]
for i in range(n):
for j in range(n):
for k in range(n):
C[i][j] = C[i][j] + A[i][k]*B[k][j]
return C
print(monteCarloMatrixMultiply([[5,0],[0,7]],[[6,0],[0,10]]))
print(monteCarloMatrixMultiply(
[[1,0,0],[0,1,0],[0,0,1]],[[6,0,4],[0,10,10],[1,2,3]]))
setparams = [5,45,5]
actualTime = [k for k in range(setparams[0],setparams[1],setparams[2])]
experiTime = [k for k in range(setparams[0],setparams[1],setparams[2])]
xaxis = [k for k in range(setparams[0],setparams[1],setparams[2])]
for k in range(len(xaxis)):
n1 = xaxis[k]
A = [[randint(5,10) for i in range(n1)] for j in range(n1)]
B = [[randint(5,10) for i in range(n1)] for j in range(n1)]
start = time()
actualMatrixMultiply(A,B)
end = time()
actualTime[k] = end - start
start = time()
monteCarloMatrixMultiply(A,B)
end = time()
experiTime[k] = end - start
fig, ax = plt.subplots()
ax.plot(xaxis,actualTime,label='Schoolbook algo')
ax.plot(xaxis,experiTime,label='My algo')
legend = ax.legend()
plt.show()