forked from ShrohanMohapatra/ChaosInBH
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ChaosAdSplot.nb
4343 lines (4038 loc) · 188 KB
/
ChaosAdSplot.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 192206, 4335]
NotebookOptionsPosition[ 190353, 4297]
NotebookOutlinePosition[ 190715, 4313]
CellTagsIndexPosition[ 190672, 4310]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[
RowBox[{"Needs", "[", "\"\<VariationalMethods`\>\"", "]"}]], "Input",
CellChangeTimes->{{3.767270639664074*^9,
3.767270649417906*^9}},ExpressionUUID->"8e7fdc9b-1608-4b12-9107-\
8739835e3eef"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Block", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{"f", ",", "r", ",", "l"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"f", "[",
RowBox[{"r_", ",", "l_"}], "]"}], ":=",
RowBox[{"1", "+",
RowBox[{
RowBox[{"r", "^", "2"}], "/",
RowBox[{"l", "^", "2"}]}]}]}], ";", "\[IndentingNewLine]",
RowBox[{"EulerEquations", "[",
RowBox[{
RowBox[{"-",
RowBox[{"Sqrt", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"r", "'"}], "[", "t", "]"}], "^", "2"}], "/",
RowBox[{"f", "[",
RowBox[{
RowBox[{"r", "[", "t", "]"}], ",", "l"}], "]"}]}], "-",
RowBox[{"f", "[",
RowBox[{
RowBox[{"r", "[", "t", "]"}], ",", "l"}], "]"}]}], "]"}]}], ",",
RowBox[{"r", "[", "t", "]"}], ",", "t"}], "]"}]}]}],
"\[IndentingNewLine]", "]"}]], "Input",
CellChangeTimes->{{3.767270650705728*^9,
3.7672707829372272`*^9}},ExpressionUUID->"6eba3bb4-734b-4eab-b244-\
0a46969d859d"],
Cell[BoxData[
RowBox[{
FractionBox[
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ",
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "3"]}], "-",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "5"], "+",
RowBox[{
SuperscriptBox["l", "4"], " ",
RowBox[{"r", "[", "t", "]"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
RowBox[{"3", " ",
SuperscriptBox[
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}]}], ")"}]}], "-",
RowBox[{
SuperscriptBox["l", "6"], " ",
RowBox[{
SuperscriptBox["r", "\[Prime]\[Prime]",
MultilineFunction->None], "[", "t", "]"}]}], "-",
RowBox[{
SuperscriptBox["l", "4"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"], " ",
RowBox[{
SuperscriptBox["r", "\[Prime]\[Prime]",
MultilineFunction->None], "[", "t", "]"}]}]}],
RowBox[{
SuperscriptBox["l", "2"], " ",
SqrtBox[
RowBox[{
RowBox[{"-", "1"}], "-",
FractionBox[
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"],
SuperscriptBox["l", "2"]], "+",
FractionBox[
RowBox[{
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}],
RowBox[{
SuperscriptBox["l", "2"], "+",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}]]}]], " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ",
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}], "-",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "4"], "+",
RowBox[{
SuperscriptBox["l", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox[
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}], ")"}]}]}],
")"}]}]], "\[Equal]", "0"}]], "Output",
CellChangeTimes->{
3.767270801723257*^9},ExpressionUUID->"d1705f67-924b-4819-81a1-\
72f1cd6eef32"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Block", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{
"dr", ",", "f", ",", "fr", ",", "r", ",", "l", ",", "rm", ",", "pr", ",",
"t"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"f", "[",
RowBox[{"r_", ",", "l_"}], "]"}], ":=",
RowBox[{"1", "+",
RowBox[{
RowBox[{"r", "^", "2"}], "/",
RowBox[{"l", "^", "2"}]}]}]}], ";", "\[IndentingNewLine]",
RowBox[{
RowBox[{"rm", "[",
RowBox[{"l1_", ",", "r1_"}], "]"}], ":=",
RowBox[{"NDSolveValue", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
FractionBox[
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ",
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "3"]}], "-",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "5"], "+",
RowBox[{
SuperscriptBox["l", "4"], " ",
RowBox[{"r", "[", "t", "]"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
RowBox[{"3", " ",
SuperscriptBox[
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}]}],
")"}]}], "-",
RowBox[{
SuperscriptBox["l", "6"], " ",
RowBox[{
SuperscriptBox["r", "\[Prime]\[Prime]",
MultilineFunction->None], "[", "t", "]"}]}], "-",
RowBox[{
SuperscriptBox["l", "4"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"], " ",
RowBox[{
SuperscriptBox["r", "\[Prime]\[Prime]",
MultilineFunction->None], "[", "t", "]"}]}]}],
RowBox[{
SuperscriptBox["l", "2"], " ",
SqrtBox[
RowBox[{
RowBox[{"-", "1"}], "-",
FractionBox[
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"],
SuperscriptBox["l", "2"]], "+",
FractionBox[
RowBox[{
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}],
RowBox[{
SuperscriptBox["l", "2"], "+",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}]]}]], " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ",
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}], "-",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "4"], "+",
RowBox[{
SuperscriptBox["l", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox[
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}],
")"}]}]}], ")"}]}]], "\[Equal]", "0"}], "/.",
RowBox[{"{",
RowBox[{"l", "\[Rule]", "l1"}], "}"}]}], ",",
RowBox[{
RowBox[{"r", "[", "0", "]"}], "\[Equal]", "r1"}], ",",
RowBox[{
RowBox[{
RowBox[{"r", "'"}], "[", "0", "]"}], "\[Equal]", "0"}]}], "}"}],
",", "r", ",",
RowBox[{"{",
RowBox[{"t", ",", "0.01", ",", "20"}], "}"}]}], "]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"fr", "[",
RowBox[{"l1_", ",", "r1_", ",", "t1_"}], "]"}], ":=",
RowBox[{
RowBox[{"rm", "[",
RowBox[{"l1", ",", "r1"}], "]"}], "[", "t1", "]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"dr", "[",
RowBox[{"l1_", ",", "r1_", ",", "t1_"}], "]"}], ":=",
RowBox[{
RowBox[{"D", "[",
RowBox[{
RowBox[{
RowBox[{"rm", "[",
RowBox[{"l1", ",", "r1"}], "]"}], "[", "t", "]"}], ",", "t"}],
"]"}], "/.",
RowBox[{"{",
RowBox[{"t", "\[Rule]", "t1"}], "}"}]}]}], ";", "\[IndentingNewLine]",
RowBox[{
RowBox[{"pr", "[",
RowBox[{"l1_", ",", "r1_", ",", "t1_"}], "]"}], ":=",
RowBox[{
RowBox[{"dr", "[",
RowBox[{"l1", ",", "r1", ",", "t1"}], "]"}], "/",
RowBox[{"Sqrt", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"dr", "[",
RowBox[{"l1", ",", "r1", ",", "t1"}], "]"}], "^", "2"}],
RowBox[{"f", "[",
RowBox[{
RowBox[{"fr", "[",
RowBox[{"l1", ",", "r1", ",", "t1"}], "]"}], ",", "l1"}], "]"}]}],
"-",
RowBox[{
RowBox[{"f", "[",
RowBox[{
RowBox[{"fr", "[",
RowBox[{"l1", ",", "r1", ",", "t1"}], "]"}], ",", "l1"}], "]"}],
"^", "3"}]}], "]"}]}]}], ";", "\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{"Show", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"Abs", "[",
RowBox[{"fr", "[",
RowBox[{"1", ",", "0.1", ",", "i"}], "]"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"i", ",", "0.01", ",", "20", ",", "0.05"}], "}"}]}],
"]"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Blue"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"AxesOrigin", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}]}]}], "\[IndentingNewLine]", "]"}],
"]"}], ";", "\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{"Show", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"Abs", "[",
RowBox[{"fr", "[",
RowBox[{"1", ",", "0.1", ",", "i"}], "]"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"i", ",", "0.01", ",", "20", ",", "0.05"}], "}"}]}],
"]"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Blue"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"Abs", "[",
RowBox[{"fr", "[",
RowBox[{"2", ",", "0.1", ",", "i"}], "]"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"i", ",", "0.01", ",", "20", ",", "0.05"}], "}"}]}],
"]"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Red"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"Abs", "[",
RowBox[{"fr", "[",
RowBox[{"3", ",", "0.1", ",", "i"}], "]"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"i", ",", "0.01", ",", "20", ",", "0.05"}], "}"}]}],
"]"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Green"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"AxesOrigin", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}]}]}], "\[IndentingNewLine]", "]"}],
"]"}], ";", "\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{"Show", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"Abs", "[",
RowBox[{"pr", "[",
RowBox[{"1", ",", "0.1", ",", "i"}], "]"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"i", ",", "0.01", ",", "20", ",", "0.05"}], "}"}]}],
"]"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Blue"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"AxesOrigin", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}]}]}], "\[IndentingNewLine]", "]"}],
"]"}], ";", "\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{"Show", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"Abs", "[",
RowBox[{"pr", "[",
RowBox[{"1", ",", "0.1", ",", "i"}], "]"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"i", ",", "0.01", ",", "20", ",", "0.05"}], "}"}]}],
"]"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Blue"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"Abs", "[",
RowBox[{"pr", "[",
RowBox[{"2", ",", "0.1", ",", "i"}], "]"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"i", ",", "0.01", ",", "20", ",", "0.05"}], "}"}]}],
"]"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Red"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"Abs", "[",
RowBox[{"pr", "[",
RowBox[{"3", ",", "0.1", ",", "i"}], "]"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"i", ",", "0.01", ",", "20", ",", "0.05"}], "}"}]}],
"]"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Green"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"AxesOrigin", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}]}]}], "\[IndentingNewLine]", "]"}],
"]"}], ";", "\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{"Show", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"fr", "[",
RowBox[{"1", ",", "0.1", ",", "i"}], "]"}], "]"}], ",",
RowBox[{"Abs", "[",
RowBox[{"pr", "[",
RowBox[{"1", ",", "0.1", ",", "i"}], "]"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"i", ",", "0.01", ",", "20", ",", "0.05"}], "}"}]}],
"]"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Blue"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"fr", "[",
RowBox[{"2", ",", "0.1", ",", "i"}], "]"}], "]"}], ",",
RowBox[{"Abs", "[",
RowBox[{"pr", "[",
RowBox[{"2", ",", "0.1", ",", "i"}], "]"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"i", ",", "0.01", ",", "20", ",", "0.05"}], "}"}]}],
"]"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Red"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"fr", "[",
RowBox[{"3", ",", "0.1", ",", "i"}], "]"}], "]"}], ",",
RowBox[{"Abs", "[",
RowBox[{"pr", "[",
RowBox[{"3", ",", "0.1", ",", "i"}], "]"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"i", ",", "0.01", ",", "20", ",", "0.05"}], "}"}]}],
"]"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Green"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"AxesOrigin", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}]}]}], "\[IndentingNewLine]", "]"}],
"]"}], ";"}]}], "\[IndentingNewLine]", "]"}]], "Input",
CellChangeTimes->{{3.7672713007659063`*^9, 3.767271492884807*^9}, {
3.7672715294737167`*^9, 3.767271593551236*^9}, {3.767271896616106*^9,
3.767272097097237*^9}, {3.7672721653100452`*^9, 3.767272190336553*^9}, {
3.7672722244179153`*^9, 3.76727224884177*^9}, {3.767272280138405*^9,
3.767272339979396*^9}, {3.7672723834436007`*^9, 3.7672724172838297`*^9}, {
3.767272453632448*^9, 3.767272472319846*^9}, {3.767272525178865*^9,
3.767272551630615*^9}, {3.7672728587456007`*^9, 3.767273140340994*^9}, {
3.767273170837874*^9, 3.7672731795313387`*^9}, {3.767273288194695*^9,
3.7672733055962143`*^9}, {3.767273550221088*^9, 3.767273561705564*^9}, {
3.767273917124295*^9, 3.767273934088559*^9}, {3.767274437266563*^9,
3.76727446433996*^9}},ExpressionUUID->"9bf03842-6127-4533-ae7c-\
80a4633df334"],
Cell[CellGroupData[{
Cell[BoxData[
GraphicsBox[{{}, {{}, {},
{RGBColor[0, 0, 1], PointSize[0.011111111111111112`], AbsoluteThickness[
1.6], LineBox[CompressedData["
1:eJw1mHk81HkYxyckZ8aRco9jmHHOUW0l/R4qlS7a2lq5SwcqLJEOyZVsOZPc
9517zIy2VtKlU3eWSofskiOJQm3M8/vLy5d5v96/z/d5nt93vroeBzZ5ilEo
lPgZFMrUz8Mqlau6QiII72MLX684LySE2pG9DoJKgmr9KLT6tJBgOsU1jzD+
IoqtVPTP+wmJI9P/30J4PnJxVlopJN6ETC20Eu1Z3w0tpYREga+VzLP8B8SO
PY9arS4KiOf5UwuPiJcfPDI3uggI2WfTC0SsZEZX9RCfWCYztdBOXFK38KgI
5BN+Ux/37SQ2Rn9Yce6/BmKTYEroNZFu8m/iA/sGos9haqGLiP07Y6iphEdE
9U4tvCUsFw8at3+qJ3Sm9LXfExH0vpspFvX4PN2Eoe/8nEOudcjrIaTlf/OQ
D69F3r/EsMn1Oe/SapDXSzz4rSA9pbgaeR+JGZL3y0/+WoW8fqL0R6gkfcUF
zGeQmMx527pVr5z4wphaGCS6Dee7HR8oIa6OTC0MEUWZG9bOulBExDdPLXwi
EkqfWTg7FRDOUx93GiauJ6p9/fo9F3mfiTfPS/r5ptnI+0w4LapRmb06DXkj
RIaZfuGsX88i7wsxrNjfdMk+HnmjRI5zLi/7ZBTyxgh1CY1XJ68GI2+MoAQ4
DFw774C8r8TJ1LDu5k8HkPeNSND6drDA6ATyxgmp0t4Eh1V/Im+CYK47Y9Jg
nIS8CaJ+98v85/RU5E0S3Jxi88+Kmcj7TtBo50a/juQg7wdBOxX2r+e2fGK6
nFQokGGup3mpspAQ1SMF3txrvBUxWkx0TdcXBfJ+OTR7DbuMWDW9MAOk1HKu
ZzpWENMfr5wBOSMBoTr+lcgTA4nbKcwlltXIEwPZm04HDLk1yBODcUF8NodW
S6yeXhCHmL4DI80z6pAnDvqPTV1tntUhTwKCbFeP6uXUI08CFEIifF9u5yFP
AiLcTfO+SDcgbyZ4jO4fHiltQN5MyExOFRyw5CNPEgZPefEol/nIk4THYcUh
G9kC5ElChL1avdxZAfJmQfeLzbHDPQLkzYIUvZL+W6ZC5EnBpJjkTTc3IfKk
wPHSzV+Sw4XIk4L3KSBYmyJEnjRYBS8kQlKFyJMGv03CNdqnSJ4MiBvSHlt7
kzwZUHAVd/9mSfJk4NG73PY9E6SfLPyzrsNRWEH6ycKq6L65+usFyJMDqTPR
ej2d5PPKwcAWpvgWVz7y5OBIVn1MUxuZnzyIF3D/iF1A5icPB/562aMTy0Pe
bJBs3jB/6CG5H7PhpUrGlsPy9cibDU039wbaWNYhTwGUf/wd9tCpFnkKIPFP
ReNl/xpievzIUEG+W5aRe7SamB4/VlTIgPIN8ycqcR5R4a30k3fZ/1bgfKNC
RNqcNR0tZYRonFHhtsTyKLu4EuQpQoz6khOb7YqQpwiHtniZ+4zmI08Rlsl2
5sqk5iJPEUzPyy112Z6FPEXI8KU3/fXHeeQpgWyJf+byI8nIU4L4r2ul1QfP
IE8JNNYvzfN/HIE8JVimeHRJw9ZA5CkBxYq69Q7DAnnK8HW2qneL5x84f5Vh
1L5M4N4RjjxlsH/lqhv79TTylIE2UfFdWiwZecrg0w/zO7+lIk8F2lPllhu8
y0SeCqyO5//j6ZyLPBXwkHsa/+5SPvJUwPzG+x2zlYqQpwJmIUoFe7eR+c2B
D43xVeFxZcibA31nxluHeBXImwORuwfFNrVWIm8O+FNPzyvyrEbeHDippuB1
azu5v6ogEx86PmRbizxVCJ7cyYg0rEOeKqTF9sgPfK1DniqkLs76ltdUjzxV
UEoVE9MM4SFvLthJnNnZSW9A3lz4GJv22f9qA/LmgqH65my/TXzkzYVjnvK3
gx7ykTcXLMG93Gy5AHnz4LjPnaqVBQLkzYMzWcb3j4wIkDcPAt3HrqctJN+v
P3/vtPDw3y1E3jzgSekXd0ULkacGbxz9f7SdEyJPDdY3tWxc9PN3EU8Ncvtn
fFeJInlq4F/lRwnYSfLUwPCM4LoPh+SpA31xjpLeIOmnDq/ER/quZJJ+6iD7
RG13pKUAeergdLxuVfUt8nnVwVxx4m38aj7yNCDmb8lroQIyPw344CFgv1Ij
89OAxN9j+tT38ZCnAX0DwTeKa8n90IBd6o/VxXvrkKcJlBS6V61qHfI0ofCk
xIDNwlrkaYKcx3P5NXY1yNOEtuGVPa6/kvWiCZtXm99wKKhEnhZUzb6wKeVM
BfK0wHH7GbfuXWXI0wLGkcywAvMS5GmB7+rP1KUfCpGnBa1zpWxpifnI04a7
LxuX3mblIk8bYhJaToTEZCJPG5Ku1L4ZzUpFnja8WW4Xq1eYhDxtoBYvfGWy
7DTydOA3h+L2bp1w5OmAY5kcP6zXD3k6UJ2ozN6WvRx5OvD9kF1SW9tB5OlA
mk+SzfX4SGL6eDOTBt9nrNu3rDwOzzs0sN2xt0/8RTIxfVxaRIPLS5gOfvfP
4/mJBjz3gMy7vCzR+cmbBgeKAraHt+SKeJE0CCi4NyStXyDiZdFg7/7IqvGA
IhFPQINNOTDrtaBExGujQSNT89zKj2V4HqNB//7PUlepF9BPF67uypUb061C
P12wVslRvRFXjX668NvgnZeaETXopwsOrVeCnPfh+c5bFxjjeb8O2NWhny6o
MSZqCU08L2bpwvbn5365+roe/XTB2HTU7ss5Hvrpwiy3vFPO1uT5UxdaGa5b
ojoa0E8P7j3JZs7ay0c/PWhk98w43s1HPz14ahx/J22zAP30QPie1yhbJ0A/
PXhw9Vx0wgwh+unBws5rt0cIIfr9/PsGZa78fiH66YEnW6yCHytEPz1wGVL9
8/XP97nITw8cd3zKO3YWeTP1QX9VtH1yGPK09WGZztcgC2c87y/Sh7KjcXv2
MpDnoA9i/uMvdr0l/fThjP+Suq1nBOinD2aTl28cZArQTx/SPcWE0jw+no/1
wd/2RIYbm49++tAxc27SkywyP30wbjgWd2eSh34G8GxEq6d2Aw/9DGA559CT
7wl4fl9kAD43F+lY3CTP7wawv9OsoHWI3F8DGNOOeuCqUIt+BqDyo2NBhG4N
+hnAq1Eq9TGjGv0MYKmuceTbtZXoZwBPswOuy3Ar0M8ARpfWHw2WKkM/OlCK
XO7H3y1GPzrEGswObgovRD86WBULnh02zUc/OiR8c12w7FYO+tGhyUijVJGf
gX50uCgWM6vl1jn0o4OM6uHJkruJ6EcHBa3XWxpjY9GPDo1e1O8S3mHoRwfH
JpmWsUkf9DOEPX88iloRsRX9DOH4igeWwVYh6GcIlyd8h2+tiEY/Q/B6IDzL
roxHP0No+jI+mV11Fv0Mwb7mT2ZCfhr6GcLZjyv390Vlo58hGGRXpNmb5KGf
IWjMjSIeRxegnyGsX9S9IvxZEfoZASM9jeieV4p+RhApeUL1tF05+hmBC9f0
k4L3BfQzglrKIJV6qAr9jGCv8Q/HDGE1+hlBkM4CDVoFub9GQL3A9AxIqkU/
Iwh9sLqJcgDrpe0nr+TPKu6yevQzgpSo56rhFLL+GFD8KqXSh0fWHwOMD1xN
POjUgH4M8Ghfl2sxQn4fZcBV1QWvLEL56MeAw11uo/O+8dGPActn/ohN8ST7
gwGSXYIolysC9GPA758XB7Hlyf5lgHVR1P321WT/MoDZtV+DHUD2LxNWxlA4
qnFk/zIh6sGFX4PI7+uLmHDuYOKq9Ulk/zKBkyTumHEEed5MeHEvenPAFnK+
MOGQ9LXjg1rkfGFCVZxY0C9PST8mVPwj2RdyDOdVGxNu5lWeH1XFedDLhA2O
oR8+Z+PzzjSG4nTVhBY1cv4Zw+ElLgHNEWR+xnDDoU13cxfOUwdjGAny8Oyx
4KGfMXgb08a/+NajnzHYeQ8rUwrr0M8YAjZRHsTeIffXGPpsOzuYPTjv24xB
97eKUd+xavT76dPW2jYxXoV+JjC/LMag99MF9DMBA+mF778/JevPBI52HnVJ
Li1FPxNQaqfNV/QpRj8ToD5a6/tWpxD9TMB+oPmv49fz0M8EApslfT3dc9DP
BJLXM8HoXTr6mcC72ooJg88p6GcClIdB79pHEtDPFJySS67eeR6DfqZgFz6y
r9Q7FP1M4XGVn5ePwS70M4WAi3XDizM80M8U1DsGmaUlR9HPFFT2yXTvHDuJ
fqZwZOyv/4KjEtDPFCS8qYHtkSnoZwrB2mb9i4LS0c8U9t2LDb1skoN+ZuAR
NHb9dgI+r7YZOBxZXWndV4B+ZtClM+SYv7gY/czgrZfN6ZDgUvQzg/r+6Kht
xeXoZwYtW8c6nrbgfmSZgX3SJa/U++T9ihlcy+8wor+tRj8z+HBx1O3hoxr0
M4Pt25gSC4U472eag/Us91uCRKwXbXNoPtTn3upKvj/MIbT59acuHbL+zOFK
XnH+sYdk/ZmDs23MhFEQvs8jzUHhTcPm/fJYz1nmcPTe1S29yeT7zRxq8r5s
sJEn+8McAqPF4mgHyf4wB/+1q+5Y3cf35UwLsHg7f5fTPLJ/LSBVLq5wjQPZ
vxawp+rut85DZP9agIF1GH0ygexfC0hLlP095TzZvxYQlLp4dUE82b8WYPqt
ytgsiLy/+8nXNr1us56cLxbwfu4PWzFlcr5YgKzPHO3kmwLRfY0YC6jXEgdM
9gtE9zUKLPCsdgIpCYHovkaTBRJVcab+p/iE8fT9DwtsH+ksvTSDL7r/WcCC
RWP0YVuvBhHPhgW0b7t2H2zhiXgbWbCq5sr4RSoP739Y0HX2RVf8xnoRbw8L
Zr9wSz8YVifiBbLgMONg1peiWhHvBAvCVfUf5zbV4H0SC9puvVKh3q8W8TJY
YG+tHfh3YZWIV8KCF537VnidvyDi8VhQsUp+R0BIOd5PsaBxpf1FS7tSEe8+
C+R3cHYayRSLeB0ssMmauFd0sUDE62HB3j71+yy3PLzvYsHOsTT3yE/ZmB8b
dp+1mvs3NR3zY4P+CZVCbe0UzI8Nhh+N31zUSsD82KD6pfq1F/0k5scGH1+l
TxcpRzA/NrC8BRpjyS6YHxvyNp13/R64F/NjQwrxDMpijmN+bAgxiU+PKz+F
+bHhWSax388lEfNjg1c392DV9nOYHxuGXyx+v9MuA/Njg5K0XtulpBzMjw0B
QzGyw6P4vDw2zI6M2W9vX4j5saGd6DZ1TC/G/Niw2WPAKv1ZKebHhga1VnaR
eAXmx4ZtH3O0VLUrMT823Nmnf+uGUjXmx4HCZacb3ORwfxU4kEtL6eWM12B+
HDjhtKc092Ut5scBn03fmlUbsF4WcGD80hYt8bB6zI8DxzPLLV8tI+uPA3ED
R7NMBsj640CWvtsSv4QGzI8Dpzklk9Z0rOdADmRsi6EvLuNjfj99wp/kjutg
f8RxoPXRq4hFUdgfGRxocaGsKe0QYH4cGH1+Ul1JX4j5cWCpBFPP5nch5seB
6NaxOuVQIebHgeeG7kd8koWYHwcaLf3OW/3sd1F+HNjeTakIP428EQ6Yqe76
YOuHPDEuJFRPjqStQJ4CF+zeLO3OmoU8TS7c1ajQPtqIfgwuSHUpKns7C4jR
6fy4sMeZKls6iM9rw4V1MlITYQF8zI8LWdtyNNb+24D5cUGzNyR8x0YyPy7k
hq77xC3miXiBXJjQCF5rPoT7cYILaYP1unfN6jE/Lihaa7gnOddhflyQ/a/h
lmwY7m8JFzQoxIGbqTUiHo8LIRviN3oUYr00c8HdcUve0IYqzI8Lm15e/9OD
uID5cUG5dW+/j1Y55seF/o+K9r7/lYh4I1wwOrRwxZPiIuJ/2Op/mw==
"]]}}, {}, {}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 19.960000000000004`}, {0, 0.09999980615573137}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{3.7672725704300528`*^9, 3.76727319267063*^9,
3.767273318776181*^9, 3.767273574853244*^9, 3.767273951700781*^9,
3.767274478934293*^9},ExpressionUUID->"a7a3d213-f795-47e0-81fa-\
e6fb9305a29d"],
Cell[BoxData[
GraphicsBox[{{{}, {{}, {},
{RGBColor[0, 0, 1], PointSize[0.011111111111111112`], AbsoluteThickness[
1.6], LineBox[CompressedData["
1:eJw1mHk81HkYxyckZ8aRco9jmHHOUW0l/R4qlS7a2lq5SwcqLJEOyZVsOZPc
9517zIy2VtKlU3eWSofskiOJQm3M8/vLy5d5v96/z/d5nt93vroeBzZ5ilEo
lPgZFMrUz8Mqlau6QiII72MLX684LySE2pG9DoJKgmr9KLT6tJBgOsU1jzD+
IoqtVPTP+wmJI9P/30J4PnJxVlopJN6ETC20Eu1Z3w0tpYREga+VzLP8B8SO
PY9arS4KiOf5UwuPiJcfPDI3uggI2WfTC0SsZEZX9RCfWCYztdBOXFK38KgI
5BN+Ux/37SQ2Rn9Yce6/BmKTYEroNZFu8m/iA/sGos9haqGLiP07Y6iphEdE
9U4tvCUsFw8at3+qJ3Sm9LXfExH0vpspFvX4PN2Eoe/8nEOudcjrIaTlf/OQ
D69F3r/EsMn1Oe/SapDXSzz4rSA9pbgaeR+JGZL3y0/+WoW8fqL0R6gkfcUF
zGeQmMx527pVr5z4wphaGCS6Dee7HR8oIa6OTC0MEUWZG9bOulBExDdPLXwi
EkqfWTg7FRDOUx93GiauJ6p9/fo9F3mfiTfPS/r5ptnI+0w4LapRmb06DXkj
RIaZfuGsX88i7wsxrNjfdMk+HnmjRI5zLi/7ZBTyxgh1CY1XJ68GI2+MoAQ4
DFw774C8r8TJ1LDu5k8HkPeNSND6drDA6ATyxgmp0t4Eh1V/Im+CYK47Y9Jg
nIS8CaJ+98v85/RU5E0S3Jxi88+Kmcj7TtBo50a/juQg7wdBOxX2r+e2fGK6
nFQokGGup3mpspAQ1SMF3txrvBUxWkx0TdcXBfJ+OTR7DbuMWDW9MAOk1HKu
ZzpWENMfr5wBOSMBoTr+lcgTA4nbKcwlltXIEwPZm04HDLk1yBODcUF8NodW
S6yeXhCHmL4DI80z6pAnDvqPTV1tntUhTwKCbFeP6uXUI08CFEIifF9u5yFP
AiLcTfO+SDcgbyZ4jO4fHiltQN5MyExOFRyw5CNPEgZPefEol/nIk4THYcUh
G9kC5ElChL1avdxZAfJmQfeLzbHDPQLkzYIUvZL+W6ZC5EnBpJjkTTc3IfKk
wPHSzV+Sw4XIk4L3KSBYmyJEnjRYBS8kQlKFyJMGv03CNdqnSJ4MiBvSHlt7
kzwZUHAVd/9mSfJk4NG73PY9E6SfLPyzrsNRWEH6ycKq6L65+usFyJMDqTPR
ej2d5PPKwcAWpvgWVz7y5OBIVn1MUxuZnzyIF3D/iF1A5icPB/562aMTy0Pe
bJBs3jB/6CG5H7PhpUrGlsPy9cibDU039wbaWNYhTwGUf/wd9tCpFnkKIPFP
ReNl/xpievzIUEG+W5aRe7SamB4/VlTIgPIN8ycqcR5R4a30k3fZ/1bgfKNC
RNqcNR0tZYRonFHhtsTyKLu4EuQpQoz6khOb7YqQpwiHtniZ+4zmI08Rlsl2
5sqk5iJPEUzPyy112Z6FPEXI8KU3/fXHeeQpgWyJf+byI8nIU4L4r2ul1QfP
IE8JNNYvzfN/HIE8JVimeHRJw9ZA5CkBxYq69Q7DAnnK8HW2qneL5x84f5Vh
1L5M4N4RjjxlsH/lqhv79TTylIE2UfFdWiwZecrg0w/zO7+lIk8F2lPllhu8
y0SeCqyO5//j6ZyLPBXwkHsa/+5SPvJUwPzG+x2zlYqQpwJmIUoFe7eR+c2B
D43xVeFxZcibA31nxluHeBXImwORuwfFNrVWIm8O+FNPzyvyrEbeHDippuB1
azu5v6ogEx86PmRbizxVCJ7cyYg0rEOeKqTF9sgPfK1DniqkLs76ltdUjzxV
UEoVE9MM4SFvLthJnNnZSW9A3lz4GJv22f9qA/LmgqH65my/TXzkzYVjnvK3
gx7ykTcXLMG93Gy5AHnz4LjPnaqVBQLkzYMzWcb3j4wIkDcPAt3HrqctJN+v
P3/vtPDw3y1E3jzgSekXd0ULkacGbxz9f7SdEyJPDdY3tWxc9PN3EU8Ncvtn
fFeJInlq4F/lRwnYSfLUwPCM4LoPh+SpA31xjpLeIOmnDq/ER/quZJJ+6iD7
RG13pKUAeergdLxuVfUt8nnVwVxx4m38aj7yNCDmb8lroQIyPw344CFgv1Ij
89OAxN9j+tT38ZCnAX0DwTeKa8n90IBd6o/VxXvrkKcJlBS6V61qHfI0ofCk
xIDNwlrkaYKcx3P5NXY1yNOEtuGVPa6/kvWiCZtXm99wKKhEnhZUzb6wKeVM
BfK0wHH7GbfuXWXI0wLGkcywAvMS5GmB7+rP1KUfCpGnBa1zpWxpifnI04a7
LxuX3mblIk8bYhJaToTEZCJPG5Ku1L4ZzUpFnja8WW4Xq1eYhDxtoBYvfGWy
7DTydOA3h+L2bp1w5OmAY5kcP6zXD3k6UJ2ozN6WvRx5OvD9kF1SW9tB5OlA
mk+SzfX4SGL6eDOTBt9nrNu3rDwOzzs0sN2xt0/8RTIxfVxaRIPLS5gOfvfP
4/mJBjz3gMy7vCzR+cmbBgeKAraHt+SKeJE0CCi4NyStXyDiZdFg7/7IqvGA
IhFPQINNOTDrtaBExGujQSNT89zKj2V4HqNB//7PUlepF9BPF67uypUb061C
P12wVslRvRFXjX668NvgnZeaETXopwsOrVeCnPfh+c5bFxjjeb8O2NWhny6o
MSZqCU08L2bpwvbn5365+roe/XTB2HTU7ss5Hvrpwiy3vFPO1uT5UxdaGa5b
ojoa0E8P7j3JZs7ay0c/PWhk98w43s1HPz14ahx/J22zAP30QPie1yhbJ0A/
PXhw9Vx0wgwh+unBws5rt0cIIfr9/PsGZa78fiH66YEnW6yCHytEPz1wGVL9
8/XP97nITw8cd3zKO3YWeTP1QX9VtH1yGPK09WGZztcgC2c87y/Sh7KjcXv2
MpDnoA9i/uMvdr0l/fThjP+Suq1nBOinD2aTl28cZArQTx/SPcWE0jw+no/1
wd/2RIYbm49++tAxc27SkywyP30wbjgWd2eSh34G8GxEq6d2Aw/9DGA559CT
7wl4fl9kAD43F+lY3CTP7wawv9OsoHWI3F8DGNOOeuCqUIt+BqDyo2NBhG4N
+hnAq1Eq9TGjGv0MYKmuceTbtZXoZwBPswOuy3Ar0M8ARpfWHw2WKkM/OlCK
XO7H3y1GPzrEGswObgovRD86WBULnh02zUc/OiR8c12w7FYO+tGhyUijVJGf
gX50uCgWM6vl1jn0o4OM6uHJkruJ6EcHBa3XWxpjY9GPDo1e1O8S3mHoRwfH
JpmWsUkf9DOEPX88iloRsRX9DOH4igeWwVYh6GcIlyd8h2+tiEY/Q/B6IDzL
roxHP0No+jI+mV11Fv0Mwb7mT2ZCfhr6GcLZjyv390Vlo58hGGRXpNmb5KGf
IWjMjSIeRxegnyGsX9S9IvxZEfoZASM9jeieV4p+RhApeUL1tF05+hmBC9f0
k4L3BfQzglrKIJV6qAr9jGCv8Q/HDGE1+hlBkM4CDVoFub9GQL3A9AxIqkU/
Iwh9sLqJcgDrpe0nr+TPKu6yevQzgpSo56rhFLL+GFD8KqXSh0fWHwOMD1xN
POjUgH4M8Ghfl2sxQn4fZcBV1QWvLEL56MeAw11uo/O+8dGPActn/ohN8ST7
gwGSXYIolysC9GPA758XB7Hlyf5lgHVR1P321WT/MoDZtV+DHUD2LxNWxlA4
qnFk/zIh6sGFX4PI7+uLmHDuYOKq9Ulk/zKBkyTumHEEed5MeHEvenPAFnK+
MOGQ9LXjg1rkfGFCVZxY0C9PST8mVPwj2RdyDOdVGxNu5lWeH1XFedDLhA2O
oR8+Z+PzzjSG4nTVhBY1cv4Zw+ElLgHNEWR+xnDDoU13cxfOUwdjGAny8Oyx
4KGfMXgb08a/+NajnzHYeQ8rUwrr0M8YAjZRHsTeIffXGPpsOzuYPTjv24xB
97eKUd+xavT76dPW2jYxXoV+JjC/LMag99MF9DMBA+mF778/JevPBI52HnVJ
Li1FPxNQaqfNV/QpRj8ToD5a6/tWpxD9TMB+oPmv49fz0M8EApslfT3dc9DP
BJLXM8HoXTr6mcC72ooJg88p6GcClIdB79pHEtDPFJySS67eeR6DfqZgFz6y
r9Q7FP1M4XGVn5ePwS70M4WAi3XDizM80M8U1DsGmaUlR9HPFFT2yXTvHDuJ
fqZwZOyv/4KjEtDPFCS8qYHtkSnoZwrB2mb9i4LS0c8U9t2LDb1skoN+ZuAR
NHb9dgI+r7YZOBxZXWndV4B+ZtClM+SYv7gY/czgrZfN6ZDgUvQzg/r+6Kht
xeXoZwYtW8c6nrbgfmSZgX3SJa/U++T9ihlcy+8wor+tRj8z+HBx1O3hoxr0
M4Pt25gSC4U472eag/Us91uCRKwXbXNoPtTn3upKvj/MIbT59acuHbL+zOFK
XnH+sYdk/ZmDs23MhFEQvs8jzUHhTcPm/fJYz1nmcPTe1S29yeT7zRxq8r5s
sJEn+8McAqPF4mgHyf4wB/+1q+5Y3cf35UwLsHg7f5fTPLJ/LSBVLq5wjQPZ
vxawp+rut85DZP9agIF1GH0ygexfC0hLlP095TzZvxYQlLp4dUE82b8WYPqt
ytgsiLy/+8nXNr1us56cLxbwfu4PWzFlcr5YgKzPHO3kmwLRfY0YC6jXEgdM
9gtE9zUKLPCsdgIpCYHovkaTBRJVcab+p/iE8fT9DwtsH+ksvTSDL7r/WcCC
RWP0YVuvBhHPhgW0b7t2H2zhiXgbWbCq5sr4RSoP739Y0HX2RVf8xnoRbw8L
Zr9wSz8YVifiBbLgMONg1peiWhHvBAvCVfUf5zbV4H0SC9puvVKh3q8W8TJY
YG+tHfh3YZWIV8KCF537VnidvyDi8VhQsUp+R0BIOd5PsaBxpf1FS7tSEe8+
C+R3cHYayRSLeB0ssMmauFd0sUDE62HB3j71+yy3PLzvYsHOsTT3yE/ZmB8b
dp+1mvs3NR3zY4P+CZVCbe0UzI8Nhh+N31zUSsD82KD6pfq1F/0k5scGH1+l
TxcpRzA/NrC8BRpjyS6YHxvyNp13/R64F/NjQwrxDMpijmN+bAgxiU+PKz+F
+bHhWSax388lEfNjg1c392DV9nOYHxuGXyx+v9MuA/Njg5K0XtulpBzMjw0B
QzGyw6P4vDw2zI6M2W9vX4j5saGd6DZ1TC/G/Niw2WPAKv1ZKebHhga1VnaR
eAXmx4ZtH3O0VLUrMT823Nmnf+uGUjXmx4HCZacb3ORwfxU4kEtL6eWM12B+
HDjhtKc092Ut5scBn03fmlUbsF4WcGD80hYt8bB6zI8DxzPLLV8tI+uPA3ED
R7NMBsj640CWvtsSv4QGzI8Dpzklk9Z0rOdADmRsi6EvLuNjfj99wp/kjutg
f8RxoPXRq4hFUdgfGRxocaGsKe0QYH4cGH1+Ul1JX4j5cWCpBFPP5nch5seB
6NaxOuVQIebHgeeG7kd8koWYHwcaLf3OW/3sd1F+HNjeTakIP428EQ6Yqe76
YOuHPDEuJFRPjqStQJ4CF+zeLO3OmoU8TS7c1ajQPtqIfgwuSHUpKns7C4jR
6fy4sMeZKls6iM9rw4V1MlITYQF8zI8LWdtyNNb+24D5cUGzNyR8x0YyPy7k
hq77xC3miXiBXJjQCF5rPoT7cYILaYP1unfN6jE/Lihaa7gnOddhflyQ/a/h
lmwY7m8JFzQoxIGbqTUiHo8LIRviN3oUYr00c8HdcUve0IYqzI8Lm15e/9OD
uID5cUG5dW+/j1Y55seF/o+K9r7/lYh4I1wwOrRwxZPiIuJ/2Op/mw==
"]]}}, {}, {}, {}, {}}, {{}, {{}, {},
{RGBColor[1, 0, 0], PointSize[0.011111111111111112`], AbsoluteThickness[
1.6], LineBox[CompressedData["
1:eJw1mHk4lekbx3XKXvYtWY/9WM4m+bXMe0eW1ERMhmjfkRSawmjDEFmzZc++
b8dxTooZqmHUSBM1hYpMRNJCtP5w7vevc13Pdd7P+3m/z/2s2nuPOR+gCAkJ
xS8SEpr/DVaosnseFEa0Lg5OCkvnE3yN8LGtvCrCRbSlsyCFTxh5xrVOGV4n
jpqleJTF8YmQhf/fJG6PrjmUEsYnBoPmG/4idndFNHsF8okCv3USD/PvEZF6
pX1Ge/nEo/z5hn+ITPrVl70OfELy4UIDIXU0rzqQzid+kJhveEw8pu2skpDh
E8fnH/frJwb19EUyxnmEM29e6BnhLf7trMktHjG+db7hOXEtxSvuVjqPiBib
bxgiZn52tTvqxSM05/U1hokBney9xqt4+D3/EanCouvEhEjeCFHQktW99FYj
8kaJt3F6zVYRjcgbIwrcRgiOdSPyXhMvYrvNfL5ykTdBvHwtPRtYz8V8Jgmx
UIPC/gNcYtpwvmGS2BVypKtagUu0Tc03vCX8Cf/C2ZYGIr51vuEdkWfiPdx+
qIHYMf+453uiUsy533hpA/I+EGnfPY4wKznI+0Cw/zV4PeLAQd4UISYW6bh3
uB5504Rz3tBsZUg98j4SWUtvPOyTqUfeDKG42Hab0NU65M0Qn8wT3GiMOuTN
Esea/1x7tKkWeZ+IQ7Qj955Y1yLvM6FzPc4lqqMGeV8IETfJk1Gba5D3hUge
yy58ll6NvK+E/kj1g4LkKuR9IxLZPURUTCXyvhN30jb58kIriIVyUhACtrVK
/g6fckJQj0KgJ0LvLdhWRjxfqC8heBk4WXJtdSlht9CwCMpqU3beWVFCLDxe
tQhEtAd7RWeLkEcB8ZNdkRn3C5FHAQV3nxBuSQHyKHCvY5yIDM4n7BcaFkN0
QMwAbLqKvMVw4VXWYxmVPOQtAc87wY7ON3OQtwS+ibAdTrpkIW8J7G7ZQnvb
fwV5wrChbou2wf405AlD6Nfn30L+S0aeCKQoL9d3O5CEPBG4EJ5+XuN5PPJE
YH/m6s8+nBjkiYKecVXvsqu/IU8UoqyTBl9Hn0eeGEQqpTxrHA5CnhhERWeH
bKn2Q54YvJa3mv70yB154pDb90y9WWML8sQhsyH6YNknb+RJgESs35N081PI
k4A8qbZVi83PIU8CWuLfa35ziECeJNwcz+L67oxGniRssBu1bbOIR95S+OBg
8qqpKRF5S+FXlmjLtXXJyFsKVky7BvfrqchbBrHeHsBedQV5y4C+493+wcpM
5EnB0KXU2xQtsj+kYOW/JdvTbuciTwqWdVzKDvuUhzxpCKok1JON85EnDSeG
6SvT3QuIhelHQgZmpAKadocVEgvTzzoZ+B/FknK9vAjnIxl4H0x/GtxVjPOb
DNQM7Ks7/qaEEExnMuCqQ/c7JlmGPFmQUN1YZqdTjjxZ4E6/TL5rUYE8WRBK
qZbtsalEniwoteaWs5yqkCcL9498K2raVo08Obh02o2iY1yDPDl4uIll96Ck
BnlysNvfxrdfpxZ5cnClPauSllmLvLn/x14sLpGtQ5486CVIHt0QVofzrzxE
mWqcG3tfhzx52JP/fCB6dz3y5OGnncJf5f+qR548cNdkdJ1gcJCnADz+UEdq
Egd5CpCct/zZifcc5ClA7vriqA+ODchTgG7l8dvLShuQpwB7Vv6hV/OtAXmK
8Espv/WuExd5ivCwgu7gnsNFniKE3906a/OKizxFeOninvMbsxF5iuB4eDBP
LrAReUrAm/2V0sdpRJ4SmIbc2PXvZCPylKBd88KUkBEPeUqQLuSctXEHD3lK
cLuw+O+ySzzkKQOLvytP7RoPecrwZ4/nP6mDPOQpw5kNTzsURcn1UBmkaaYJ
8QZ85ClDc7VFH2UDH3kqIPH36iWHPcn1UAV6bx4Wv+5HrocqwG6ySv18luSp
gJWxs4juJZKnAmsa3TzYySRvOdw74GNrmE7ylkP8gDyVkk7yloPR3YZ3v18m
ecthhOg7fCCG5C2HCLeKwckzJE8V7gX/4XXgGMlThYC9r7i3tpM8VaCx/9NX
tCJ5quAXw2r7WY/kqcJEoNO6xCUkbwWEX5ab7HhK5rcCKu687V/SSOa3Ahx/
jK3eeJHsjxXw6X8r63Lcyf5YAVG2h3ql9Mj+UIO6ow+qcsbJ/lWDeh3hYx41
ZP+qwfeTpSOb/BqRpwarhKeigk3IelGDWC1Nz6kXXOSpwx7noUW30sn6Uwfa
j1caph3I+lMHq/Rsm9QZsp7VYbIzWpZzlaxndZBp2ifmsZGsZw14NckvujJO
jg8NsP9t6MO5GHJ8aIDCOuswLSMO8jRggKrlFdFKjjcNkG9uXnvTrR55mnD1
YKLs2Bg5fjWh87Nf8NIQcvxqgjEtKXK1eB3yNGFf8eiN35LI+UATxmy4sqIr
aomF7Y2wFsSxxEY7c2pwv6MFzKp0xVfaNcTCdslSCyZiPYrHrKpx/6QFPUpC
caLrqgT7J28teNgr8mYrq1LAC9cC7eTQ2ClqhYCXrQWWOzij6tLlAh5PC5Qz
Kkw/TpcKeN1aYP5fKrvqcQnux7Sg1vbDab9rxeinDcsYB5V9UorQTxto3sfq
unwL0U8bAjVZIX9ZF6CfNnwWBeMYxXz004b2SZfpDS/y0E8bcu92ROvV5KKf
Nmx6JC/R/C4b/bRhwDWz2eZsJvppgxp1csxG/Ar6zb3/165Zamwq+lHhh5Gu
D+ulk9GPCkBxOi12KRH9qHCN8SWnTzQe/aiQ2RP9fKNQNPpR4ZR3Sln8eDj6
UWGm4KSSZ89Z9KNC/baSbdMnf0E/KojFDf4wFeqFflQYkfQZpdLt0Y8KtpHL
rerveaKfDmSqL2MsP3oc/XRgskjeYH1+sGA/a6kDyr5dbedfnUc/HdAtHR7d
JxSJfjpQIGq/JlDuEvrpgOqD1cQH6QT00wGFC+3yM0lJuD/WgZ+NRpueKqSg
nw5otyhstUlMQz8d+MjtD2iTzEA/XXjaOLhz6mwW+unCEuaNVyff5qCfLuxd
vNnlhFke+umC/6Xod0f3XEU/XXBxvn/w14R89NMFp9MGK/2aC9BPF4ZUb25X
GilEP11QSn3nAlLF6KcLQXtHdVoYZP3pgpT15I79jqXopwdRFq4mFK8y9NMD
z5a7rt5ny9FPD0r/+tPeP7EC/fQgbtxJZSKnEv30YMLuRFxNSRX66cFasTvs
+Ipq9Jvj+9KLarfVoJ8eBLDy/c/er0E/PRD799yx3M216Df3/vOqb7+2keNX
H4i0Ky3hlnXopw8a+c0KemV16KcPKq/HsztU6tFPH8z1nC7sCatHP33oC5nc
9WS8Hv304U6NqKO+Mwf99OGs6MHXTA4H/fTh0OT5HRNyDeinD/9zGbPf7NuA
fvqwglX+fO3tBvQzgIB33KFaVS76GcAXlc6ULG88T1kagJP+ygfveFz0M4BN
T10kCyl4PvM2AG/nE1Yl9o3oZwD/yB1UfnsRz2fZBuDnb/p7QEcj+hlAj3mN
pNESPO91G4C5WMKBJWvI86MBDF7uffL1KA/9DOGe/m3NZVnk+dEQVsZ0hNPa
8fxoaQg23J+EHd+Q50dDyDHvsgyQ46Pf3PNWirsuM/noZwjy/s27yzbz0c8Q
FBMvd9fuI8/XhvDYY+RN0Uk++hnCm7C+/Ihw5I0ZQltbTeiWeOQJG8HG/QnX
vqQgT8MIfvjYty6ePK9bGsG5GxJZYmnI22oEs8Elyw8mkn5GMCLDyiuNJP2M
YLX4aOeDINJvjvf65pPRw6SfEbx/73pjzJn0M4LJQxLiA5aknxFobO9YdEuV
9KPB9v5LSYUzZH402D0xtTX8PpkfDVL3PzrpVULmR4N3Vy4+9wjC/vCmwVRe
otIee+yPcBocYLuuOy+HvGwaiHSf1mh/RPYvDcJ6DlDXZjSiHw3Wx3U6jriT
53kaWPpZOzxUwHoRNoZneV8cFe6Q9WcMF4IPW5SfIevPGEplnA+X0Mn6M4YS
OdMXKn1Yz97GwKrbv1oiHOs53BgKM2qjL9Ia0M8Y2oXuhpfcIceHMTQd89/p
781BP2MI5Bl2fxLhoJ8xvMoPV3fMwfEmbALmFeHC58zr0c8E0t7xOvNuk+PX
BP7+9tWsbVsd+pmAnPip/R+f43zgbQKR194rbPXG+SDcBByivm0feovrebYJ
WK799vsfgeT8YgL2IT6hQhO4nnebwNr1I74Hx3A9HzOBgbjVfQNDuJ4LmwJF
VEnq8kNczzVM4ZL9e5Ha2+T8ZwoXmW/P7KktQz9T0PBNf9GdWop+phB0cJ0D
PagE/UzB55bvnmK3YvQzhb2hw76H2UXoZwqnrrTa5kkUop8pNCT22J0bwPV8
zBTqj/W6WlZfRT8zEKn06p0OyUM/M3CznEx7bZeLfmYQbj5Vk6GVjX5mcHRa
aF9iRQb6mcFiD7U1Oubp6GcGRUVPn9Q1pqCfGYibOUUUrbqMfmaw6K38ov2c
BPSbe35QSiXfMxb9zKD+HKegfFMU+tGhz8KWV20Rhn508JPuE/qyNhT96NBa
eNepUzQA/eiwefpZy6PsfehHB4h8cdEtVxX96MCNMY2/bn8A/ehAC1VOv9gX
gH50kKmcenBQ9gz60eHLiDClLDcM/eggVSY0494QJbivoTDg9pPHVR9uxQru
a6QZcMJoSLZ3JEFwX6PGgEy3t+H/el8maAv3PwxgqnwPyh5LEdz/rGQAx2rR
qpZD6QKeFQOub6mN6X2aIeA5MqBx1Y+jZ1yy8f6HAa39FrXGe3IFvMOMuf2W
6tCX5DwBL5ABH3q4rpT2qwLeeQY0r1eykfyYj/dJDFiq17P9JbVQwMuce9+w
TMvBTUUCXsnc92jsV93uVyzgNTCg2D0rJzGhBO+nGBDkz1AYrCoV8LoYkN1d
06vaXibg9TFgn4jesHR/uYA3woBFN/YMXX5dgfddDOiLHaaGzlZifkxwplhW
5ApVY35MSJCqpR5ZVIP5McGrqbfpw5kazI8JY/er/hr4jPdnK5lQY3trl3xg
LebHBJsEyZnQMbyPc2RCt/XMWalddZgfE9gyfduru+owPybsS6F6OK6rx/yY
wClI+ruvuB7zY4LZ6jMhttIczI8Js2s2VAT7czA/JryJ3Wfo84CD+TFhTfUa
EGM1YH5M0FJq6YCYBsyPCRsHGDqiQ3if2cWEF5PHLX604GJ+c+87vi9UOIKL
+THBaPizmM598n6UCY8SXE6lqzZifiygFlcv3rGrEfNjQadTzam9uY2YHwus
KNM/5PQ3Yn4s+PSpylNcmYf5seA4NfmX1M08zI8FYU2uPRDKw/xYsGvZd4+v
5TzMjwXqTH7irR4e5seC2i2RhYmfkRfIgupk98M71fmYHwvG/lP+WWcNH/Ob
438KTe77iY/5sUD44cREuBcf82PB1ZTR3hUhfMyPBYufbfDJiEJeKwuWrv4l
iJKEvC4WEH9+PeWYhrw+FrhL1148l468ERY8LVf7NS0FeVMscC6/3X45DnkU
NnyKlk76JQx50mxYETFUaRWIPDU2PC6tSJnZgzxDNrRZ2QZmOvCJjwv5sSHv
+Kwqi448KzbUX9hJaZZGniMbqsS2ONqMk/mxwbcz4O7dm2R+c+/f/XliRzpP
wAtkA2Ups/PLEeyP82xw7d+gXmeB/RHHBpdNdtYR37F/M9kwMK6w9vxN7N8S
NvR+PFFYHd4o4DWwoUTryjUVa6yXVjb4G7c6t3/hYn5sOPbP5qcddWT9scHW
qv6w0QGy/tigm7U85r08V8CbYsNsuP/plS0NxP8BKl+Kew==
"]]}}, {}, {}, {}, {}}, {{}, {{}, {},
{RGBColor[0, 1, 0], PointSize[0.011111111111111112`], AbsoluteThickness[
1.6], LineBox[CompressedData["
1:eJw12Hk4lOsbwHFkiRzb2JJ9MGPMMEuE0ntHeyhOdRzLT/spSpSWi5ZJkVJC
ZU/2fRszw0ydjko5UaHTwqlIkhalVXGIX7jfv7rmqflcX8+79LjNNuz03iwn
IyOTICsjM/FnpHblkucRxwh+8ZOFCWlSQmoc3e8lqST2pIsEy1KlhLX/meuD
9D+JhQ9cy9nnpcSByX9/g0h5ELFjUYKU6ImYWGgmZt+6vTL2hJTID3VRac9r
I0afG7QO86VER97Ewn3C8XhdbPpeKTGjfXKB6K5YOTc4SErMV5lYeEzsqXre
uN1fSoRNfD20k1BSLWVmu0sJb8lEUDexTKBxRnGulHjnNbHwnHjPSOTk0KRE
TP/EwgvCQj1vf5iWlDCZyDd+SXwyv/Bm/4gEf54+YobpNoa0R4Lea+JVsY7s
7FsS9N4Qdi4tq/vLJOj1Ey/+KmE9Py1B7z0RNstcpBdCegNE+Nc4dqK7BPfn
I8FfGq+yylpCfKNPLHwkIhPDb62VlxANgxMLn4gARYZ6cWcdkXB9YuEzEVe8
O3+xuI4ImPi6/xfizonkEPu4OvS+EkU9zrv3Bdah95VYqbbykTq3Dr1BIivm
bYfsNNL7RnjcXtGx6p9a9L4TuqmfPWWya9EbIoxVPjyibK9Fb4hYnOdkfcah
Fr1h4vCKA4Z7x8Xo/Uc4OzzJu9MoRm+E+OfvK3eTT4nRGyWamILrHavE6I0S
BwvXNyZTxOj9IHQXP3N6+ECE3hjR+P57euo5EXrjxFYn2aMvvUXE5O2kLQN3
PXILrqqLiKn7UQZmFF9otb0tJJ5P3l8yEEuteDk7WkgsmVyQBTU3m5ftLkJi
8uuVsnBR3abPcLAGPTkIvNljoFxWg54ceD090pITWIOeHPiOKW56p1VDLJ1c
mAb0HzprBm4I0JsGvAcd7Io9AvTkoWuNV6atpQA9eXjO5a3ef78aPXn4VbiZ
mcCvRk8BTvu9VjvArEZPAQT1IYNHK6vQUwRd9jqFNtkq9BThs9p46mvvSvQU
gckQmT3OqUBPCaJoPk6CgXL0lGCE8S07wqkcvenwNnEp4RZVht50oEnnmeg3
laI3HZY07A1RVCtFTxka/vcwcpZXCXrK4HxqULwpqRg9FYjfZ1H24V4Reiqg
5rNQtVm9CD0V8EyvLZR1L0RvBoyMxG3IjylAbwZcrUt1vVqfj54qhAhjN238
noeeKthWfpHJZOWhpwqXQ8KC92/IRe8X2FmcraWUnIPeL8BsLTi49lY2emow
O1nrzNvPF9FTgy3Xil16vbPQU4OWOI+TddWZ6KnDX2tCjaJUM9BTh7vRwob1
W9KIydePigb4pX/YHv5XCjH5+nHRgBVzHWw6tJPxfaQBAyVBnLJt5/D9pgG/
Z47dnXEliZh6nWmAtDloi756InqaUO1+rr+rPh49Tei1ltcLDIxDTxOMFR6e
HRg9jp4maL3qb2pOPYaeJkQwhQs4vCPoaYHe0QbX+tRI9LSgoo/rSWsKR08L
XG9kHWB+DEZPCww/tiuYpPqjpwV8FsPlZac2ehS4s79xesTo7/j+pcAfMbIH
D+YGoUeByIPE+h3m4ehRoNFZKLX9HIEeBdKTrZOndfPR04ZSm01ZVxYdQ08b
vk5PalEqPY6eNvheCMjIV41DTxs0Zgenrt0Rj542PFbucPn4MgE9HXjcsilB
7lwSejrQ5cBobIBz6OnAAkruPp1359HTgTG/1DX/nk9BTwdCKwaYn1zI66sL
7S/Yb+b3pqOnC40bVyXnx2aipwv9ELBB3iYLPV2w3ExchNsX0dOFnCdzei6I
stHTg+FsH8ftUTno6cHnlpfiUc9c9PSAwtj3AAzy0NODNb5WlozePPT0IN84
36u0PB89fUikyhsJdxegpw9enrGbHJwK0dOHP5W2m1r9KERPH/yOV20Kry9C
Tx+6jF6sp/CL0ZsJbUtVtgzOL0FvJlwvnNelOlqC3kzo7Df2ca8rRW8mjP9Z
HlUYWobeTNijNGirRi9HzwBu+zxatbezHD0DyHa4PH4voQI9A9i8d+0+bddK
9AzgekqgPudTJXoGkPB76rZZWVXozYJ8k9unNlpUo/fz8/tX42f3V6M3C8ac
s9XSblejNwuAEt2y3UiA3iw4OBgXpBwiQM8QEroDqduuCNAzhCWBNStjZtSg
Zwj87Zv8/Xxq0DOEZMfOOz15NegZgtyKU/P0BmrQMwJo3Rj4xUGInhHYB2nJ
7TokRM8IMtRdVOJvCNEzgp3tkr2uyiL0jGDt/RuBJ91F6BmDSq/b93XxIvSM
oTH+W+y1FhF6xlD2jyii6BcxesbAGStyV1shRs8YjJdmpH2KEaNnAkWLvPQ9
ronRM4GENW8zDP8To2cCiuJyij+nFj0TuKS8PE7pj1r0TOD3EJrNrIxaYvJ4
o2AKyocLHM/ercXzjim82rxVd/tYLTF5XHI0hchXFxfmsurw/GQKbjtXruf6
1U2dn4JNwdgwmT7zeN2UF20KbXe+hf8qqJvyskzh6b1souvfuilPYgoyqh3Z
tTJ4HrtnCmUGlLZ/LcnzmClUVbdRFy2TYJ8Z3DNr1vwWRJ7HzGDbMMvu7UkJ
9pnB54THbJMS8nxnBoLC1P6km+gFm4H71zWr3brRizaDjTcD+bbD6GWZwez4
CwXeGlLsMwNW1G2DSks8f94zgzMM8W+EE3n+NIPoA1sH5VdIsc8cNmcqVP7w
Jc+f5pDSF+JP34aeozm0f/QfPbqHPM+ag3Hs4VJ1PnrB5pBUmZXfHItetDmE
pV1eJjqDXpY5jFVyDO6cI/vMYdex9jrNVLLPHF49Mek7lkb2mcPCXOeTlmlk
HxXs3tuXfUkm+6ig4qC/60MSnvcdqdCyKNJ65mmyjwqxvxm6hEWTfVQYYPc7
DUWSfVQYvarYUhlK9lGhs0Ry6/xG8vcHKnQ0hxpUrib7qODcfPXBkBvZRwW3
i78x9nHIPgvQNPwRwjAi+yzgxL7TetpKZJ8FLGv/KrX/QF5fC6A8ZfyS+JC8
vhZQ7zbzDe0SeX0twDNcYfFoJnl9LYDhZThP4xB5freAOwre07YEkPefBWzl
Lv4y7kzefxaQoE8/2q1L3n+WMPB3+jKVT3g/G1tC9/K00cNNddhnCXb3fcMW
ZpPPhyVc6nPI9N1DPh+WoHfqRMLNpeTzYQnu+1L4sQbk82EJEanrrxS+rcU+
SyiNfiWmSmuxzxJWbDn4TS6mFvssQUOQSF/qRT6/VnBFeZ/WdwPy+bWCQCPb
FMoLMfZZQfohu9qcEjH2WcHbI/ZxBSFi7LOC7pmKnlSuGPusIFQ4z9vkqwj7
rICppa2UJRJhnxWcZrK/5+0WYZ8VuLduvGXPEWGfFUT8rTDX570Q+2gg06Bs
rVEsxD4aXCoqj96wXoh9NCg9bRWweqYQ+2iQW+/34G1rDfbR4NXl03Sb6Brs
o8HwbNUqA6ca7KP97Ot78Fe/APtoEBKabmx0QYB9NPiQ20Sb6yHAPho08fpy
jUersY8ObNZLn7sl1dhHhx1DW+kea6uxjw5ly2rk82WrsY8OjDDZd1W/VWEf
HWS3eXC7Siqx7+ffX/vs8my4AvvocPoZP6V+SQX20WFM1v193Nly7KODX+RG
La/OMuyjw+INbWOzLMuwzxpmjVu0DAeVYp81+N47euV7ZQn2WcNmNUUb6qdi
7LOGcQXW+ROcYuyzhpaYX9MdQ4uwzxps3EyGXCoKsc8aLgyXnix6XYB91lC5
Zu7yo+YF2GcNT594LH/mm4991nDJ6p2kKTEP+xhwdIO0c9XfudjHgIAr4/pH
R3KwjwHaHVd6QmxzsO/n5zZRk/m6bOxjwF/O9i99zS5iHwP2G6ax5vIvYB8D
/lPepiDfmYF9DPjces/6/px07GOA6cVLEY0JqdjHAI+tVsMjr5KxzwbeOJ6/
mehyHvtsoIuz1rgw8Sz22QBNMc//t95E7LOBLGrQpwb7BOyzAZmdnxq1VU9j
nw2YaszLSCo9gX024HcrTTp/SQz22cAQLSJzbU8U9tlAAJVXazd0CPtsIML3
0Aq+9X7sYwLz8ke+we9h2McEvrvDly9qm7GPCau0PvnfL/bAvp+flx+Y4/Zu
KfYxoTlsdsjLZxuxjwmlLYyrxddCsY8JrxsaGm2T9mEfE5b+8cBMef0h7GNC
fOIbaldyFPYxwX3wR3DfSDT2saA880lbYCD+vMYsSJkm+0j12insY8GPHfbq
PhoJ2McC/jQLR8X6ROxjQXytk/+u7WexjwUq48mKh/TxemSxwOqfTU9UGpKx
jwXv/utM/y84Fft+fo7sN7ejpGMfC/Tj/ww9KcnAPlsYzvpf7oAf3i/GtvB0
5Zohlx9Z2GcL05zTglme2dhnC81KKb1nDXOwzxbujvXUN7zJwT5bGNLwDK4U
4/2cZQvPor4FL+LnYZ8tKHWsD4xYlo99tnA9f+7ofM0C7LOF2LcUSnR7AfbZ
gWK40Zn5mfi8GdtBNufd3oDAIuyzg4Pnee/vm5LPrx30fjjGOddNPr92wApX
zUnIKsE+O5DItdRd9sX3QZYdrF41gzJdpwz77OC13I5dW++WYZ8dXM3IlbQe
Lcc+O1gQKPuO7VgxNa+RY8Ov86hzDr+tmJrXqLPBUBT9piK9cmpeY8iG+Gv0
/dVLqwjG5PyHDdOvsQ5FfK2amv/Ys6HQ5ErXuGf1lOfKBh2WqkZ6bvWUt5IN
P+6s6FQYrMb5Dxu2d0VtcVksmPK2suFUvPS5c7JgytvDBjExN2OoVzDlRbEh
JbRjMJRbg/MkNljk0YOzDtVMeZnsn///34mLbKqZ8orZsCyhclyOIpzyxGy4
3r0kxs5PiPMpNjgkO3wfyRFOea1sUP22223jK+GU95QNR2qb9qyzEU15r9lA
axuvGdghwnkXG54/U3ZWrhLh/nHgQ+zsTWUDOO9S50DbI++CNibOzww54H2x
Py58mxj3jwMxvVuuJeXj/MyeA1suu6jQunB+5sqBtztSFrN0a3H/OOCzLmR3
jjs53+OAIOB16eEjtbh/HHDbHWpxQ4TzvT0c2HmsbXZwH873ojiwv2u5Z5gu
OS/kAPuOUOb+Qpw/ZnKgxTpu+FRYHe4fB8qHdOQzM3H+KOZARFCk8o+b5PyR
A/M01mhWvEevlQMj5WLXEooE948DmVs29w7MkeD+/ewX9vlH+pLzUQ50akdy
3SNxPirHhUP3aTMC0yW4f1xYJL1ULqhDz5AL1Lstowvuo0fngpraPRm19+jZ
c8HmkUoXRUGK+8cF5lPaY69ZUtw/LkiOKPo32klx/7gQFNzSv9NVivvHheFv
PVyPX6W4f1zoLn844r8BvSgujAt8uFk70TvDhblOnBfqkehl/uwbtJ4nOIZe
MReSTiicOnIKPTEXRr/uc+UnoXedCwF1Zz+WJ6PXyoX046uWKaWh95QL13Yc
NDuTht5rLpi55+1cmIreIBeyj79aQTuPnhwPNKsHPsxJQE+dB+fo9bV7T6Bn
yIM3rXmGvXz06Dy4W6xWz98rJb5P7h8PnOmn/D2CyP3jwV4nt4fL/cn948HH
tc2MCHdy/3jwj3fr4afO5P7xYFBFQX83Db09PDDt0/QhtMj944Gn16GbriN4
fc/woGtenuLhHry+mTzIj0zuGfwbr28xD/oHuqCkTDLliXmwS2OpdcZpcp7O
g3ZRX8PdHei18mB03QsfN3fy/uPB1j8WrBqjk/cfD/gKhRxZefQGefCIb5Lv
2VlH/B9d1Xfl
"]]}}, {}, {}, {}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 19.960000000000004`}, {0, 0.09999980615573137}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{3.7672725704300528`*^9, 3.76727319267063*^9,
3.767273318776181*^9, 3.767273574853244*^9, 3.767273951700781*^9,
3.7672745159097347`*^9},ExpressionUUID->"47410d2b-5c60-44c2-a7c6-\
3905a238d3db"],
Cell[BoxData[
GraphicsBox[{{}, {{}, {},
{RGBColor[0, 0, 1], PointSize[0.011111111111111112`], AbsoluteThickness[
1.6], LineBox[CompressedData["
1:eJw1mHk8lWkbx2XJ0i5kPdn35SxRGfX8KtFYklQzSTStpppoo0abSptEylJj
X6LsB2dplfEaKY1Km1IkUky0aTXzxrmev3zO/XG+vs/vvq77uV1Gy0Pmr5KX
k5OLGyYnN/gzQqPYve33/cwjFbuqdd7zGCknqttXUsx82rypPzF0G2MVEFv9
wfIic71yTsuCoAPMjqHfr2FWL/6f9AeXOObZ74ML9UzcmfggyfQEJid0mtr9
7EYmpLkh+JvgNPMge3DhDtOdr93xVjudGXF/aIHhRFS7uH7IZKarDS40MymL
WyY1z89hNg5+PbSFuXbUKPJy9hlmvmRQqJUxmaG7Nawzn+nxHVxoY0Yt1lt4
UqeAOdA9uNDOHDPfoF74QxEzcVCf08G459a0LvMsoefpZNRNnN2KskuJ18Uc
Gu2ia5FURryXzAOtywf37BYSr5t59+8HQ05AOfH+YeIzbS9tsK0g3mtmtWqH