diff --git a/.github/workflows/Tier1.yml b/.github/workflows/Tier1.yml index d9481f6b..7639b18b 100644 --- a/.github/workflows/Tier1.yml +++ b/.github/workflows/Tier1.yml @@ -30,7 +30,6 @@ jobs: strategy: matrix: version: - - '1.6' - '1.8' - '1' os: diff --git a/docs/src/index.md b/docs/src/index.md index c38faa25..a364593e 100644 --- a/docs/src/index.md +++ b/docs/src/index.md @@ -38,6 +38,10 @@ Implemented covariance structures: Actually Metida can fit datasets with wore than 160k observation and 40k subjects levels on PC with 64 GB RAM. This is not "hard-coded" limitation, but depends on your model and data structure. Fitting of big datasets can take a lot of time. Optimal dataset size is less than 100k observations with maximum length of block less than 400. +!!! note + + Julia v1.8 or higher required. + ## Contents ```@contents diff --git a/src/Metida.jl b/src/Metida.jl index cc1a9127..a86b2143 100644 --- a/src/Metida.jl +++ b/src/Metida.jl @@ -3,7 +3,6 @@ __precompile__() module Metida -using Compat using ProgressMeter, LinearAlgebra, ForwardDiff, DiffResults, Random, Optim, LineSearches, MetidaBase#, SparseArrays#, Polyester#, LoopVectorization import StatsBase, StatsModels, Distributions diff --git a/src/varstruct.jl b/src/varstruct.jl index 8a2c574f..49a426a3 100644 --- a/src/varstruct.jl +++ b/src/varstruct.jl @@ -263,7 +263,7 @@ struct CovStructure{T, T2} <: AbstractCovarianceStructure if isa(random[i].model, ConstantTerm) # if only ConstantTerm in the model - data_ - first is collumn (responce) data_ = data[[first(keys(data))]] else - data_ = data[Tuple(StatsModels.termvars(random[i].model))] # only collumns for model + data_ = data[StatsModels.termvars(random[i].model)] # only collumns for model end if isa(random[i].covtype.s, ZERO) schema[i] = InterceptTerm{false}() @@ -306,7 +306,7 @@ struct CovStructure{T, T2} <: AbstractCovarianceStructure if isa(repeated[i].model, ConstantTerm) # if only ConstantTerm in the model - data_ - first is collumn (responce) data_ = data[[first(keys(data))]] else - data_ = data[Tuple(StatsModels.termvars(repeated[i].model))] # only collumns for model + data_ = data[StatsModels.termvars(repeated[i].model)] # only collumns for model end schema[rn + i] = apply_schema(repeated[i].model, StatsModels.schema(data_, repeated[i].coding))