forked from cvg/nice-slam
-
Notifications
You must be signed in to change notification settings - Fork 0
/
visualizer.py
96 lines (89 loc) · 4.25 KB
/
visualizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import argparse
import os
import time
import numpy as np
import torch
import cv2
from tqdm import tqdm
from torch.utils.data import DataLoader
from src import config
from src.tools.viz import SLAMFrontend
from src.utils.datasets import get_dataset
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Arguments to visualize the SLAM process.'
)
parser.add_argument('config', type=str, help='Path to config file.')
parser.add_argument('--input_folder', type=str,
help='input folder, this have higher priority, can overwrite the one in config file')
parser.add_argument('--output', type=str,
help='output folder, this have higher priority, can overwrite the one inconfig file')
nice_parser = parser.add_mutually_exclusive_group(required=False)
nice_parser.add_argument('--nice', dest='nice', action='store_true')
nice_parser.add_argument('--imap', dest='nice', action='store_false')
parser.set_defaults(nice=True)
parser.add_argument('--save_rendering',
action='store_true', help='save rendering video to `vis.mp4` in output folder ')
parser.add_argument('--vis_input_frame',
action='store_true', help='visualize input frames')
parser.add_argument('--no_gt_traj',
action='store_true', help='not visualize gt trajectory')
args = parser.parse_args()
cfg = config.load_config(
args.config, 'configs/nice_slam.yaml' if args.nice else 'configs/imap.yaml')
scale = cfg['scale']
output = cfg['data']['output'] if args.output is None else args.output
if args.vis_input_frame:
frame_reader = get_dataset(cfg, args, scale, device='cpu')
frame_loader = DataLoader(
frame_reader, batch_size=1, shuffle=False, num_workers=4)
ckptsdir = f'{output}/ckpts'
if os.path.exists(ckptsdir):
ckpts = [os.path.join(ckptsdir, f)
for f in sorted(os.listdir(ckptsdir)) if 'tar' in f]
if len(ckpts) > 0:
ckpt_path = ckpts[-1]
print('Get ckpt :', ckpt_path)
ckpt = torch.load(ckpt_path, map_location=torch.device('cpu'))
estimate_c2w_list = ckpt['estimate_c2w_list']
gt_c2w_list = ckpt['gt_c2w_list']
N = ckpt['idx']
estimate_c2w_list[:, :3, 3] /= scale
gt_c2w_list[:, :3, 3] /= scale
estimate_c2w_list = estimate_c2w_list.cpu().numpy()
gt_c2w_list = gt_c2w_list.cpu().numpy()
frontend = SLAMFrontend(output, init_pose=estimate_c2w_list[0], cam_scale=0.3,
save_rendering=args.save_rendering, near=0,
estimate_c2w_list=estimate_c2w_list, gt_c2w_list=gt_c2w_list).start()
for i in tqdm(range(0, N+1)):
# show every second frame for speed up
if args.vis_input_frame and i % 2 == 0:
idx, gt_color, gt_depth, gt_c2w = frame_reader[i]
depth_np = gt_depth.numpy()
color_np = (gt_color.numpy()*255).astype(np.uint8)
depth_np = depth_np/np.max(depth_np)*255
depth_np = np.clip(depth_np, 0, 255).astype(np.uint8)
depth_np = cv2.applyColorMap(depth_np, cv2.COLORMAP_JET)
color_np = np.clip(color_np, 0, 255)
whole = np.concatenate([color_np, depth_np], axis=0)
H, W, _ = whole.shape
whole = cv2.resize(whole, (W//4, H//4))
cv2.imshow(f'Input RGB-D Sequence', whole[:, :, ::-1])
cv2.waitKey(1)
time.sleep(0.03)
meshfile = f'{output}/mesh/{i:05d}_mesh.ply'
if os.path.isfile(meshfile):
frontend.update_mesh(meshfile)
frontend.update_pose(1, estimate_c2w_list[i], gt=False)
if not args.no_gt_traj:
frontend.update_pose(1, gt_c2w_list[i], gt=True)
# the visualizer might get stucked if update every frame
# with a long sequence (10000+ frames)
if i % 10 == 0:
frontend.update_cam_trajectory(i, gt=False)
if not args.no_gt_traj:
frontend.update_cam_trajectory(i, gt=True)
if args.save_rendering:
time.sleep(1)
os.system(
f"/usr/bin/ffmpeg -f image2 -r 30 -pattern_type glob -i '{output}/tmp_rendering/*.jpg' -y {output}/vis.mp4")