From dc54a73697721fedba15d853609775847ff4acf4 Mon Sep 17 00:00:00 2001 From: dhruvm9 Date: Thu, 14 Sep 2023 17:05:30 -0400 Subject: [PATCH] Fig1G-H --- Analysis/Figure1G.py | 219 +++++++++++++++++++++++++++++++++++++++++++ Analysis/Figure1H.py | 154 ++++++++++++++++++++++++++++++ 2 files changed, 373 insertions(+) create mode 100644 Analysis/Figure1G.py create mode 100644 Analysis/Figure1H.py diff --git a/Analysis/Figure1G.py b/Analysis/Figure1G.py new file mode 100644 index 0000000..9d721be --- /dev/null +++ b/Analysis/Figure1G.py @@ -0,0 +1,219 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Thu Sep 14 10:29:12 2023 + +@author: dhruv +""" + +#import dependencies +import numpy as np +import pandas as pd +import scipy.io +from Dependencies.functions import * +from Dependencies.wrappers import * +import os +from Dependencies import neuroseries as nts +import matplotlib.pyplot as plt +from scipy.stats import kendalltau, wilcoxon, mannwhitneyu +import seaborn as sns + +#%% Data organization + +data_directory = '/media/DataDhruv/Dropbox (Peyrache Lab)/Peyrache Lab Team Folder/Data/AdrianPoSub/###AllPoSub' +datasets = np.genfromtxt(os.path.join(data_directory,'dataset_Hor_DM.list'), delimiter = '\n', dtype = str, comments = '#') + +readpath = '/media/DataDhruv/Dropbox (Peyrache Lab)/Peyrache Lab Team Folder/Projects/PoSub-UPstate/Data' +writepath = '/home/dhruv/Code/MehrotraLevenstein_2023/Analysis/OutputFiles' + +allcoefs_up_ex = [] +allcoefs_dn_ex = [] + +for s in datasets: + + print(s) + name = s.split('/')[-1] + path = os.path.join(data_directory, s) + rawpath = os.path.join(readpath,s) + +###Loading the data + spikes, shank = loadSpikeData(path) + n_channels, fs, shank_to_channel = loadXML(rawpath) + +###Load cell depths + filepath = os.path.join(path, 'Analysis') + listdir = os.listdir(filepath) + file = [f for f in listdir if 'CellDepth' in f] + celldepth = scipy.io.loadmat(os.path.join(filepath,file[0])) + depth = celldepth['cellDep'] + +###Load cell types + file = [f for f in listdir if 'CellTypes' in f] + celltype = scipy.io.loadmat(os.path.join(filepath,file[0])) + + pyr = [] + interneuron = [] + hd = [] + + for i in range(len(spikes)): + if celltype['ex'][i] == 1 and celltype['gd'][i] == 1: + pyr.append(i) + + for i in range(len(spikes)): + if celltype['fs'][i] == 1 and celltype['gd'][i] == 1: + interneuron.append(i) + + for i in range(len(spikes)): + if celltype['hd'][i] == 1 and celltype['gd'][i] == 1: + hd.append(i) + +###Load UP and DOWN states + file = os.path.join(writepath, name +'.evt.py.dow') + if os.path.exists(file): + tmp = np.genfromtxt(file)[:,0] + tmp = tmp.reshape(len(tmp)//2,2)/1000 + down_ep = nts.IntervalSet(start = tmp[:,0], end = tmp[:,1], time_units = 's') + + file = os.path.join(writepath, name +'.evt.py.upp') + if os.path.exists(file): + tmp = np.genfromtxt(file)[:,0] + tmp = tmp.reshape(len(tmp)//2,2)/1000 + up_ep = nts.IntervalSet(start = tmp[:,0], end = tmp[:,1], time_units = 's') + +#%% Compute Peri-event time Histogram (PETH) for UP onset + + binsize = 5 + nbins = 1000 + neurons = list(spikes.keys()) + times = np.arange(0, binsize*(nbins+1), binsize) - (nbins*binsize)/2 + cc = pd.DataFrame(index = times, columns = neurons) + tsd_up = up_ep.as_units('ms').start.values + + rates = [] + + for i in neurons: + spk2 = spikes[i].restrict(up_ep).as_units('ms').index.values + tmp = crossCorr(tsd_up, spk2, binsize, nbins) + + tmp = pd.DataFrame(tmp) + tmp = tmp.rolling(window=8, win_type='gaussian',center=True,min_periods=1).mean(std = 2) + + #Normalize PETH by mean rate + fr = len(spk2)/up_ep.tot_length('s') + rates.append(fr) + cc[i] = tmp.values + cc[i] = tmp.values/fr + dd = cc[0:150] + + #Only EX cells + ee = dd[pyr] + +#%% Compute UP state Onset + + indexplot_ex = [] + depths_keeping_ex = [] + + for i in range(len(ee.columns)): + a = np.where(ee.iloc[:,i] > 0.5) + if len(a[0]) > 0: + depths_keeping_ex.append(depth.flatten()[ee.columns[i]]) + res = ee.iloc[:,i].index[a] + indexplot_ex.append(res[0]) + + #Onset v/s depth correlation + coef_ex, p_ex = kendalltau(indexplot_ex, depths_keeping_ex) + allcoefs_up_ex.append(coef_ex) + +#%% Compute PETH for DOWN onset + + binsize = 5 + nbins = 1000 + neurons = list(spikes.keys()) + times = np.arange(0, binsize*(nbins+1), binsize) - (nbins*binsize)/2 + cc = pd.DataFrame(index = times, columns = neurons) + tsd_dn = down_ep.as_units('ms').start.values + + rates = [] + + for i in neurons: + spk2 = spikes[i].restrict(up_ep).as_units('ms').index.values + tmp = crossCorr(tsd_dn, spk2, binsize, nbins) + tmp = pd.DataFrame(tmp) + tmp = tmp.rolling(window=8, win_type='gaussian',center=True,min_periods=1).mean(std = 2) + + #Normalize PETH by mean rate + fr = len(spk2)/up_ep.tot_length('s') + rates.append(fr) + cc[i] = tmp.values + cc[i] = tmp.values/fr + + dd = cc[-250:250] + + #Only EX cells + ee = dd[pyr] + +#%% Compute DOWN state onset + + tmp_ex = ee.loc[5:] > 0.5 + + tokeep_ex = tmp_ex.columns[tmp_ex.sum(0) > 0] + ends_ex = np.array([tmp_ex.index[np.where(tmp_ex[i])[0][0]] for i in tokeep_ex]) + es_ex = pd.Series(index = tokeep_ex, data = ends_ex) + + tmp2_ex = ee.loc[-150:-5] > 0.5 + + tokeep2_ex = tmp2_ex.columns[tmp2_ex.sum(0) > 0] + start_ex = np.array([tmp2_ex.index[np.where(tmp2_ex[i])[0][-1]] for i in tokeep2_ex]) + st_ex = pd.Series(index = tokeep2_ex, data = start_ex) + + ix_ex = np.intersect1d(tokeep_ex,tokeep2_ex) + ix_ex = [int(i) for i in ix_ex] + + depths_keeping_ex = depth[ix_ex] + + #Onset v/s depth correlation + coef_ex, p_ex = kendalltau(st_ex[ix_ex], depths_keeping_ex) + allcoefs_dn_ex.append(coef_ex) + +#%% Summary data + +DUcorr = pd.DataFrame(allcoefs_up_ex) +UDcorr = pd.DataFrame(allcoefs_dn_ex) +DUtype = pd.DataFrame(['DU' for x in range(len(allcoefs_up_ex))]) +UDtype = pd.DataFrame(['UD' for x in range(len(allcoefs_dn_ex))]) + +summary = pd.DataFrame() +summary['corr'] = pd.concat([DUcorr,UDcorr]) +summary['type'] = pd.concat([DUtype,UDtype]) + +#%% Plotting + +sns.set_style('white') +palette = ['royalblue', 'lightsteelblue'] +ax = sns.violinplot( x = summary['type'], y= summary['corr'] , data = summary, dodge = False, + palette = palette,cut = 2, + scale="width", inner=None) +ax.tick_params(bottom=True, left=True) +xlim = ax.get_xlim() +ylim = ax.get_ylim() +for violin in ax.collections: + x0, y0, width, height = violin.get_paths()[0].get_extents().bounds + violin.set_clip_path(plt.Rectangle((x0, y0), width / 2, height, transform=ax.transData)) +sns.boxplot(x = summary['type'], y = summary['corr'] , data = summary, saturation = 1, showfliers = False, + width = 0.3, boxprops = {'zorder': 3, 'facecolor': 'none'}, ax = ax) +old_len_collections = len(ax.collections) +sns.swarmplot(x = summary['type'], y = summary['corr'], data = summary, color = 'k', dodge = False, ax = ax) + +for dots in ax.collections[old_len_collections:]: + dots.set_offsets(dots.get_offsets()) +ax.set_xlim(xlim) +ax.set_ylim(ylim) +plt.axhline(0, color = 'silver') +plt.ylabel('Delay v/s depth (R)') +ax.set_box_aspect(1) + +#%% Stats + +w_up, p_up = wilcoxon(np.array(allcoefs_up_ex)-0) +w_dn, p_dn = wilcoxon(np.array(allcoefs_dn_ex)-0) +t, p = mannwhitneyu(allcoefs_up_ex, allcoefs_dn_ex) diff --git a/Analysis/Figure1H.py b/Analysis/Figure1H.py new file mode 100644 index 0000000..8163ec9 --- /dev/null +++ b/Analysis/Figure1H.py @@ -0,0 +1,154 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Thu Sep 14 16:45:10 2023 + +@author: dhruv +""" + +#import dependencies +import numpy as np +import pandas as pd +import scipy.io +from Dependencies.functions import * +from Dependencies.wrappers import * +import os +from Dependencies import neuroseries as nts +import matplotlib.pyplot as plt +from scipy.stats import wilcoxon + +#%% Data organization + +data_directory = '/media/DataDhruv/Dropbox (Peyrache Lab)/Peyrache Lab Team Folder/Data/AdrianPoSub/###AllPoSub' +datasets = np.genfromtxt(os.path.join(data_directory,'dataset_Hor_DM.list'), delimiter = '\n', dtype = str, comments = '#') + +readpath = '/media/DataDhruv/Dropbox (Peyrache Lab)/Peyrache Lab Team Folder/Projects/PoSub-UPstate/Data' +writepath = '/home/dhruv/Code/MehrotraLevenstein_2023/Analysis/OutputFiles' + +dur_D = [] +dur_V = [] + +for s in datasets: + + print(s) + name = s.split('/')[-1] + path = os.path.join(data_directory, s) + rawpath = os.path.join(readpath,s) + +###Loading the data + spikes, shank = loadSpikeData(path) + n_channels, fs, shank_to_channel = loadXML(rawpath) + +###Load cell depths + filepath = os.path.join(path, 'Analysis') + listdir = os.listdir(filepath) + file = [f for f in listdir if 'CellDepth' in f] + celldepth = scipy.io.loadmat(os.path.join(filepath,file[0])) + depth = celldepth['cellDep'] + +###Load cell types + file = [f for f in listdir if 'CellTypes' in f] + celltype = scipy.io.loadmat(os.path.join(filepath,file[0])) + +###Load global UP and DOWN states + file = os.path.join(writepath, name +'.evt.py.dow') + if os.path.exists(file): + tmp = np.genfromtxt(file)[:,0] + tmp = tmp.reshape(len(tmp)//2,2)/1000 + down_ep = nts.IntervalSet(start = tmp[:,0], end = tmp[:,1], time_units = 's') + + file = os.path.join(writepath, name +'.evt.py.upp') + if os.path.exists(file): + tmp = np.genfromtxt(file)[:,0] + tmp = tmp.reshape(len(tmp)//2,2)/1000 + up_ep = nts.IntervalSet(start = tmp[:,0], end = tmp[:,1], time_units = 's') + +#%% Determine which units are in dorsal or ventral portion + + data = pd.DataFrame() + data['depth'] = np.reshape(depth,(len(spikes.keys())),) + data['level'] = pd.cut(data['depth'],2, precision=0, labels=[1,0]) #0 is dorsal, 1 is ventral + data['celltype'] = np.nan + data['gd'] = 0 + + for i in range(len(spikes)): + if celltype['gd'][i] == 1: + data.loc[i,'gd'] = 1 + + data = data[data['gd'] == 1] + +#%% Split population activity into dorsal and ventral + + mua = {} + + latency_dorsal = [] + latency_ventral = [] + + # define mua for dorsal and ventral + for i in range(2): + mua[i] = [] + for n in data[data['level'] == i].index: + mua[i].append(spikes[n].index.values) + mua[i] = nts.Ts(t = np.sort(np.hstack(mua[i]))) + +#%% Compute PETH of dorsal and ventral MUA around global DOWN state +### And determine the threshold crossing + + binsize = 5 + nbins = 1000 + neurons = list(mua.keys()) + times = np.arange(0, binsize*(nbins+1), binsize) - (nbins*binsize)/2 + cc = pd.DataFrame(index = times, columns = neurons) + tsd_dn = down_ep.as_units('ms').start.values + + rates = [] + + ddur = [] + vdur = [] + + for i in neurons: + spk2 = mua[i].restrict(up_ep).as_units('ms').index.values + tmp = crossCorr(tsd_dn, spk2, binsize, nbins) + tmp = pd.DataFrame(tmp) + tmp = tmp.rolling(window=8, win_type='gaussian',center=True,min_periods=1).mean(std = 2) + + #Normalize PETH by mean rate + fr = len(spk2)/up_ep.tot_length('s') + rates.append(fr) + cc[i] = tmp.values + cc[i] = tmp.values/fr + + dd = cc[-250:250] + + #Threshold crossing + tmp = dd[i].loc[5:] > 0.2 + ends = tmp.where(tmp == True).first_valid_index() + + tmp2 = dd[i].loc[-150:-5] > 0.2 + start = tmp2.where(tmp2 == True).last_valid_index() + + #Categorize the durations by anatomical position + if i == 0: + ddur.append(ends - start) + else: + vdur.append(ends - start) + + #Compute dorsal and ventral DOWN state durations for all datasets + dur_D.append(ddur[0]) + dur_V.append(vdur[0]) + +#%% Plotting + +plt.scatter(dur_D, dur_V, color = 'k', zorder = 3) +plt.gca().axline((min(min(dur_D),min(dur_V)),min(min(dur_D),min(dur_V)) ), slope=1, color = 'silver', linestyle = '--') +plt.xlabel('Dorsal DOWN duration (ms)') +plt.ylabel('Ventral DOWN duration (ms)') +plt.axis('square') + +#%% Stats + +W,p = wilcoxon(dur_D,dur_V) + + + +