-
Notifications
You must be signed in to change notification settings - Fork 1
/
bert_pretraining.py
39 lines (32 loc) · 1.45 KB
/
bert_pretraining.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# Copyright (c) 2021 Peptone.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytorch_lightning as pl
from omegaconf import DictConfig, OmegaConf
from pytorch_lightning.plugins import DDPPlugin
#from nemo.collections.nlp.models.language_modeling import BERTLMModel
from proteonemo.models.bert_prot_model import BERTPROTModel
from nemo.core.config import hydra_runner
from nemo.utils import logging
from nemo.utils.exp_manager import exp_manager
@hydra_runner(config_path="../conf", config_name="bert_pretrained_from_preprocessed_config")
def main(cfg: DictConfig) -> None:
logging.info(f'Config:\n {OmegaConf.to_yaml(cfg)}')
trainer = pl.Trainer(plugins=[DDPPlugin(find_unused_parameters=True)], **cfg.trainer)
exp_manager(trainer, cfg.get("exp_manager", None))
bert_model = BERTPROTModel(cfg.model, trainer=trainer)
trainer.fit(bert_model)
if cfg.model.nemo_path:
bert_model.save_to(cfg.model.nemo_path)
if __name__ == '__main__':
main()