From ec313d904206c0e275acdd840757b6dbec91bf22 Mon Sep 17 00:00:00 2001
From: Diwakar Gupta <39624018+Diwakar-Gupta@users.noreply.github.com>
Date: Sun, 15 May 2022 00:07:31 +0530
Subject: [PATCH] knn solution
---
22-05-12-KNN/Solution.ipynb | 1365 +++++++++++++++++++++++++++++++++++
1 file changed, 1365 insertions(+)
create mode 100644 22-05-12-KNN/Solution.ipynb
diff --git a/22-05-12-KNN/Solution.ipynb b/22-05-12-KNN/Solution.ipynb
new file mode 100644
index 0000000..e8c122b
--- /dev/null
+++ b/22-05-12-KNN/Solution.ipynb
@@ -0,0 +1,1365 @@
+{
+ "metadata": {
+ "kernelspec": {
+ "language": "python",
+ "display_name": "Python 3",
+ "name": "python3"
+ },
+ "language_info": {
+ "pygments_lexer": "ipython3",
+ "nbconvert_exporter": "python",
+ "version": "3.6.4",
+ "file_extension": ".py",
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "name": "python",
+ "mimetype": "text/x-python"
+ },
+ "colab": {
+ "name": "KNN solution.ipynb",
+ "provenance": [],
+ "collapsed_sections": [],
+ "include_colab_link": true
+ }
+ },
+ "nbformat_minor": 0,
+ "nbformat": 4,
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "view-in-github",
+ "colab_type": "text"
+ },
+ "source": [
+ ""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "\n",
+ "\n",
+ "**KNN is a supervised machine learning algorithm.It can be used to classification of data set.Here The dataset contains the Age,salary and the decision to purchase a particular Car.We will be use kNN to predict if a particular person will buy a car.**"
+ ],
+ "metadata": {
+ "_uuid": "2640c66758a4a570cb5c2d4e9e9ebbbe647d149f",
+ "id": "p37DkS16WzNf"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "\n",
+ "import numpy as np \n",
+ "import pandas as pd \n",
+ "\n"
+ ],
+ "metadata": {
+ "_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5",
+ "_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19",
+ "_kg_hide-input": true,
+ "trusted": true,
+ "id": "rWaGOkYaWzNs"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "**1.Importing the Python Modules**"
+ ],
+ "metadata": {
+ "_cell_guid": "79c7e3d0-c299-4dcb-8224-4455121ee9b0",
+ "_uuid": "d629ff2d2480ee46fbb7e2d37f6b5fab8052498a",
+ "_kg_hide-input": true,
+ "id": "ULc4kdfBWzNv"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "import numpy as np\n",
+ "import matplotlib.pyplot as plt \n",
+ "import pandas as pd \n",
+ "import seaborn as sns\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore') \n",
+ "plt.style.use('fivethirtyeight')"
+ ],
+ "metadata": {
+ "_kg_hide-input": true,
+ "_uuid": "8b6c22aee4d9a0869a4cb78951db5c57b9fbfeb3",
+ "trusted": true,
+ "id": "JnrBKw0eWzNw"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "**2.Exploring the Data**"
+ ],
+ "metadata": {
+ "id": "qlDVYqwrWzNw"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "dataset=pd.read_csv('/content/Social_Network_Ads.csv')\n",
+ "dataset.head()"
+ ],
+ "metadata": {
+ "_uuid": "8c5edff5031cb90fca60650af4c905d049c8bdc8",
+ "_kg_hide-input": true,
+ "trusted": true,
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 206
+ },
+ "id": "AJpS4eHMWzNx",
+ "outputId": "0e8e1503-620c-42ca-f4df-eaab9718605c"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " User ID | \n",
+ " Gender | \n",
+ " Age | \n",
+ " EstimatedSalary | \n",
+ " Purchased | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 15624510 | \n",
+ " Male | \n",
+ " 19 | \n",
+ " 19000 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 15810944 | \n",
+ " Male | \n",
+ " 35 | \n",
+ " 20000 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 15668575 | \n",
+ " Female | \n",
+ " 26 | \n",
+ " 43000 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 15603246 | \n",
+ " Female | \n",
+ " 27 | \n",
+ " 57000 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 15804002 | \n",
+ " Male | \n",
+ " 19 | \n",
+ " 76000 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ "
\n",
+ "
\n",
+ " "
+ ],
+ "text/plain": [
+ " User ID Gender Age EstimatedSalary Purchased\n",
+ "0 15624510 Male 19 19000 0\n",
+ "1 15810944 Male 35 20000 0\n",
+ "2 15668575 Female 26 43000 0\n",
+ "3 15603246 Female 27 57000 0\n",
+ "4 15804002 Male 19 76000 0"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 3
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "So we have the User ID, Gender,Age,Salary and the data if Purchase made by a used."
+ ],
+ "metadata": {
+ "_uuid": "f8548683194855ae2a4804da8bff1832718acec0",
+ "id": "OTvaGywLWzNx"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "**Summary of Dataset**"
+ ],
+ "metadata": {
+ "id": "BDsxZJcYWzNy"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "print('Rows :',dataset.shape[0])\n",
+ "print('Columns :',dataset.shape[1])\n",
+ "print('\\nFeatures :\\n :',dataset.columns.tolist())\n",
+ "print('\\nMissing values :',dataset.isnull().values.sum())\n",
+ "print('\\nUnique values : \\n',dataset.nunique())"
+ ],
+ "metadata": {
+ "_kg_hide-input": true,
+ "trusted": true,
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "7VOw_zT_WzNy",
+ "outputId": "f7d7c93c-2828-4616-b22c-a3638b31e541"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Rows : 400\n",
+ "Columns : 5\n",
+ "\n",
+ "Features :\n",
+ " : ['User ID', 'Gender', 'Age', 'EstimatedSalary', 'Purchased']\n",
+ "\n",
+ "Missing values : 0\n",
+ "\n",
+ "Unique values : \n",
+ " User ID 400\n",
+ "Gender 2\n",
+ "Age 43\n",
+ "EstimatedSalary 117\n",
+ "Purchased 2\n",
+ "dtype: int64\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "dataset.describe().T"
+ ],
+ "metadata": {
+ "trusted": true,
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 175
+ },
+ "id": "BT2WQtjqWzNz",
+ "outputId": "d5587932-4e42-4319-a6c4-54723c008c27"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " count | \n",
+ " mean | \n",
+ " std | \n",
+ " min | \n",
+ " 25% | \n",
+ " 50% | \n",
+ " 75% | \n",
+ " max | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " User ID | \n",
+ " 400.0 | \n",
+ " 1.569154e+07 | \n",
+ " 71658.321581 | \n",
+ " 15566689.0 | \n",
+ " 15626763.75 | \n",
+ " 15694341.5 | \n",
+ " 15750363.0 | \n",
+ " 15815236.0 | \n",
+ "
\n",
+ " \n",
+ " Age | \n",
+ " 400.0 | \n",
+ " 3.765500e+01 | \n",
+ " 10.482877 | \n",
+ " 18.0 | \n",
+ " 29.75 | \n",
+ " 37.0 | \n",
+ " 46.0 | \n",
+ " 60.0 | \n",
+ "
\n",
+ " \n",
+ " EstimatedSalary | \n",
+ " 400.0 | \n",
+ " 6.974250e+04 | \n",
+ " 34096.960282 | \n",
+ " 15000.0 | \n",
+ " 43000.00 | \n",
+ " 70000.0 | \n",
+ " 88000.0 | \n",
+ " 150000.0 | \n",
+ "
\n",
+ " \n",
+ " Purchased | \n",
+ " 400.0 | \n",
+ " 3.575000e-01 | \n",
+ " 0.479864 | \n",
+ " 0.0 | \n",
+ " 0.00 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 1.0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ "
\n",
+ "
\n",
+ " "
+ ],
+ "text/plain": [
+ " count mean ... 75% max\n",
+ "User ID 400.0 1.569154e+07 ... 15750363.0 15815236.0\n",
+ "Age 400.0 3.765500e+01 ... 46.0 60.0\n",
+ "EstimatedSalary 400.0 6.974250e+04 ... 88000.0 150000.0\n",
+ "Purchased 400.0 3.575000e-01 ... 1.0 1.0\n",
+ "\n",
+ "[4 rows x 8 columns]"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 5
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "We can see that mean age is arounf 37 \n",
+ "\n",
+ "Mean estimated salary is 69742 $"
+ ],
+ "metadata": {
+ "id": "0sSZuDuZWzN0"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "**Gender**"
+ ],
+ "metadata": {
+ "id": "3Qei8mhSWzN0"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "f,ax=plt.subplots(1,2,figsize=(18,8))\n",
+ "dataset['Gender'].value_counts().plot.pie(explode=[0,0.05],autopct='%1.1f%%',ax=ax[0],shadow=True)\n",
+ "ax[0].set_title('Purchase by Gender')\n",
+ "ax[0].set_ylabel('Count')\n",
+ "sns.countplot('Gender',data=dataset,ax=ax[1],order=dataset['Gender'].value_counts().index)\n",
+ "ax[1].set_title('Purchase by Gender')\n",
+ "plt.show()"
+ ],
+ "metadata": {
+ "_kg_hide-input": true,
+ "trusted": true,
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 558
+ },
+ "id": "KkrruaNlWzN1",
+ "outputId": "1d48b37b-458a-4a3e-e0de-e6215eceadff"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABHQAAAIdCAYAAABcJyoeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdZ3iUZf728XPSQygBJCEURQUVkCaKgoKAgKCCKCqofxXUZQXXwqooLvtgYQVcBRsIqyIoTZqidBAICKGI1AChhJYQ0id9kmnPi8jomFBCyp2ZfD/HkcPM3eY3E8ZcOe+rmMxms1MAAAAAAADwGD5GFwAAAAAAAICSIdABAAAAAADwMAQ6AAAAAAAAHoZABwAAAAAAwMMQ6AAAAAAAAHgYAh0AAAAAAAAPQ6ADXIZx48YpNDRUs2fPNrqUMteqVSuFhoYaXYZHGjZsmEJDQ3Xy5EmjSwEAoEqhbYbi0DaDt/MzugDgnL/+ojKZTKpZs6aaN2+ugQMH6sknn5Svr69B1aEi5ebmas6cOVq5cqX279+vtLQ0+fn5KTw8XG3btlWfPn3Uv39/BQQEGF0qAABei7YZzqFtBlROBDqodF5//XVJkt1u1/Hjx7V06VJt3bpVGzZs0MyZMw2uDuXt119/1eDBgxUXF6ewsDB17txZjRo1ktPpVFxcnDZv3qzvv/9eH330kbZs2WJ0uQAAeD3aZlUbbTOg8iLQQaUzatQot8fR0dHq0aOHlixZoi1btqhTp04GVYbyFhMTowcffFDZ2dn697//rRdeeKHInR673a5ly5ZpypQpBlUJAEDVQtus6qJtBlRuzKGDSq9ly5a64447JEk7d+6UJM2ePfuC46RbtWqlVq1auW07d864ceO0Y8cOPfTQQ7rqqqsUGhoqs9ksqfAX0owZM9SnTx9deeWVql+/vtq0aaPnnntOBw4cKPa5Nm7cqHvvvVeNGjVS48aN9cgjjygmJqbIcUePHtVbb72lrl276tprr1VYWJhuvPFGvfDCCzp9+nSR451Op+bOnau7775bTZs2VXh4uFq0aKG+ffsWezcsIyND//nPf9SxY0dFRESoUaNG6t27t3744YcLvLvnl5+fr3feeUetWrVSWFiY2rVrp/fff18FBQWuY8xmsyIiItS2bVs5nc5ir/P0008rNDRUGzZsuOhzjhw5UpmZmRoxYoReeeWVYrvt+vr6ql+/flq6dGmx19i4caMGDRqka6+9VvXq1dONN96oV155RYmJiUWOvffee13jqr/++mt16tRJ4eHhatasmV566SVlZGQU+xwbNmxQnz591KBBAzVp0kSPPfaYDh8+fMHXtnv3bj399NO64YYbVK9ePV1//fUaOnSoYmNjixx7brz3pk2bNG/ePHXr1k0NGjRwfQ4AADASbTPaZn9G2wwwDj104BHO9wvpcmzfvl0TJ07U7bffrieffFKJiYny9fVVQUGBBg4cqPXr16thw4YaMGCAatWqpbi4OP38889q3bq1WrRo4XatVatWafny5erRo4eGDBmimJgYrV69Wr/99pu2bdumunXruo796aefNH36dHXu3FkdOnRQQECADh06pFmzZmnlypXasGGDGjZs6Dr+3Xff1cSJE3XllVfq/vvvV61atZSYmKj9+/dr3rx5euqpp1zHnjlzRn379tWxY8fUsWNHDR48WLm5uVq9erUGDx6s119/vcjdtYt56qmntGfPHvXt21f+/v5atmyZ3nvvPe3evVtz5syRVDi2/sEHH9Ts2bO1fv16de/e3e0aKSkpWrp0qa699lrdeeedF3y+EydOKDIyUsHBwXrxxRcvWp+fX9H/fX300Ud66623VLt2bfXq1Uvh4eGKjo7WV199pRUrVmjNmjVu7/E5Y8aM0bp169S7d29169ZNmzZt0syZMxUbG6uffvrJ7dglS5ZoyJAh8vf3V//+/dWgQQNt3bpVPXv2VMuWLYutdf78+Ro+fLgCAgLUp08fNWzYULGxsVq0aJFWrlyppUuXqnXr1kXO++yzzxQZGak+ffrozjvvdGuwAQBgJNpmtM3+irYZUPEIdFDp7d+/X7/88osk6eabby719davX6+PPvpIgwcPdtv+zjvvaP369erVq5e++eYbBQUFufZZrValp6cXudayZcu0ePFit1+Ib7/9tiZNmqRZs2bppZdecm0fOHCghg8frsDAQLdrrFu3Tg899JA++OADTZo0ybX966+/VkREhKKiohQSEuJ2TmpqqtvjYcOGKTY2Vl9++aUeeugh1/bMzEzdd999ev/993XfffcVuTN2IUeOHFFUVJRrQsTRo0fr3nvv1fLly7Vw4ULX8zz77LOaPXu2pk+fXqTRMGvWLBUUFGjw4MEymUwXfL6oqChJUtu2bVWrVq1LrvOczZs36+2339Ytt9yiBQsWuE3kOG/ePD333HN644039O233xY599dff9XmzZvVuHFjSZLNZlPfvn21adMm7dy5U+3bt5ckZWdn6+WXX5bJZNKyZcvc/j3++9//1qefflrk2rGxsXrhhRfUqFEjLV++XA0aNHDt27Rpk/r3768XXnhBkZGRRc7dtGmTVq9eXWyDAgAAo9A2o212KWibAeWPIVeodMaNG6dx48Zp7NixevbZZ3XXXXfJYrHo/vvvV8eOHUt9/VatWhVpMNjtdn355ZcKCgrSxIkT3RoMkuTv76+wsLAi1xowYECRuxvn7s6c64J8ToMGDYo0GCSpe/fuuuGGG7Ru3boi+/z9/Yu92/Hnu0vR0dGKjIzUvffe69ZgkKSaNWvqjTfekNPp1IIFC4pc50Jee+01t1+8wcHBGj16tKTCxsA57dq100033aSVK1fq7Nmzru1Op1MzZ85UYGCgHn/88Ys+X1JSkiQpIiKi2P1Tp051/ds49/XnLrFTp06V0+nUpEmTiqzKMWjQILVu3VrLly9XVlZWkWuPHDnS1WCQCu8wnav5zz/H5cuXKz09XQ8++GCRBuxrr72mmjVrFrn2V199pfz8fL333ntuDQZJ6ty5s/r06aM9e/bo0KFDRc596qmnaDAAAAxH28z9eWmbFaJtBhiPHjqodCZMmCCpcGnMGjVqqF27dnrkkUfcurGWxrlE/88OHz6szMxMtW3bVo0aNbrka7Vt27bItnPnnxv7fY7T6dT8+fM1Z84c7d+/X2azWXa73bX/r2OSH374Yf3vf/9Thw4d1L9/f3Xs2FG33nqrateu7Xbctm3bJElZWVkaN25ckXrO3TEqbuz4hdx+++1FtnXq1Ekmk0l79+512/7MM8/o+eef17fffqvXXntNUuFY5uPHj+uRRx5RnTp1SvTcxZk2bZqOHz/utu2WW27RNddcI6nwffDz89NPP/1UpCuuJBUUFMhut+vYsWNFfm6X+nPcs2ePpOLfm5o1a6p169auO5bnnPv5bNmyxXX+nyUnJ0sq/PnccMMNbvuK+7cKAEBFo21WiLaZO9pmgPEIdFDp/PWXbVkr7m7OuQnWzncH4nyK63567q7NnxsEkvTmm2/q888/V/369XXXXXcpIiLCdbdpzpw5RSbfGzdunK655hrNmTNHn3zyiT7++GP5+PjozjvvdE2IJ0lpaWmSpMjIyGK7hp6Tk5NTotdW3PsUFBSkGjVqKDMz0237gAEDNHr0aM2cOVOvvPKKfHx8NH36dEnSkCFDSvR8CQkJxe7ftWuX6/thw4Zp7ty5bvvT0tJks9lcjc7zyc7OLrKtuJ+jr6+vJPef47nXXa9evWKvXdx7du7n89lnn12wruJ+PsVdDwCAikbbrBBtM3e0zQDjEejAI/n4FI4W/Osv5nMyMjLOO9a3uPHC54493y+s0kpOTta0adPUokULrVq1SjVq1HDbv2jRoiLn+Pr66rnnntNzzz2ntLQ0bd26VT/++KO+++47PfDAA9q+fbvq1Knj6ko6duxY/eMf/yizmpOSkty6ukqSxWJRVlZWkTtRQUFBevzxx/XZZ59pzZo1atOmjVasWKEWLVpcclfsc8ft3r1bmZmZxXaRvZCaNWvKarUWuypFWTlX07k7N391rmtyceccP368yPt2MRcb2w4AQGVB24y22V/RNgPKH3PowCOdG4cbFxdXZN+xY8eK3KW4mOuuu061atXSoUOHir1maZ04cUIOh0PdunUr0mCIj4/XiRMnLnh+nTp1dM8992jq1KkaMGCAUlJSXBPVdejQQdIfE9eVlc2bNxfZtmXLFjmdzmLHDj/zzDMymUz6+uuvNWvWLNlstiLj4S+kSZMmuvPOO5WXl6dPPvmkxPXecsstysrK0r59+0p87qVq06aNpOLfm6ysrCLdnc/VJRW+dwAAeCvaZrTN/oq2GVD+CHTgkdq1aycfHx/Nnz/frZtmTk6Oa5xwSfj6+urZZ5+VxWLRP//5T+Xn57vtt9lsxSb8l+rKK6+UJG3dutXtzlV2drZeeukl2Ww2t+Pz8/OLbQQ4nU7XHYhq1apJKhxjfPvtt2v58uWaOXNmscuIHj16tMR3R/773/+6dbHOy8vT2LFjJanYifSuvvpqde/eXWvWrNEXX3yhkJAQDRw4sETPOWHCBNWsWVMTJ07URx99VOxSkA6Ho9jJ855//nlJ0ssvv6z4+Pgi+y0WS6kbVvfcc49CQ0O1ePFi/frrr2773n///WIbq0OHDlVAQIBGjx6tw4cPF9lvs9m0cePGUtUFAIDRaJvRNvsr2mZA+WPIFTxS/fr1NWjQIM2ZM0edO3dWr169ZLFY9PPPP+vKK68s8XhrSXr99de1c+dOrV69WjfddJN69+6tmjVrKj4+XpGRkXrppZc0fPjwy6o3PDxcAwYM0KJFi9S5c2d169ZNmZmZWr9+vYKCgtSqVSu3uxd5eXnq06ePmjRponbt2qlx48ayWq365ZdftG/fPt1yyy3q3Lmz6/gvv/xS999/v1566SVNmzZNt9xyi2rXrq0zZ87o0KFD2rt3r2bNmlWkm+6FNGvWTB07dlS/fv3k5+enZcuW6cSJE7rnnnuKrNhwzjPPPKOff/5ZiYmJeuKJJ0q8xOUNN9ygRYsWafDgwXrrrbc0ZcoUdenSRY0aNZLdbldiYqI2b96s+Ph4NWrUyNUYk6QuXbro3Xff1ZgxY9S+fXv17NlTTZo0kcVi0enTp7VlyxZdeeWVRSbGK4nq1avr448/1pAhQ3TvvffqgQceUEREhLZu3aoDBw6oU6dORe72NGvWTFOmTNHzzz+vjh07qkePHrr22mtlt9sVHx+vbdu2KT8/X6dOnbrsugAAMBptM9pmtM2AikegA4/10UcfKTw8XAsWLND06dMVHh6uhx9+WCNHjnR1dS2JgIAALVy4UDNmzNC8efP03XffyW63Kzw8XHfddZe6detWqno//fRTNWnSRIsXL9aXX36pK664Qn369NGbb76pJ554wu3YkJAQvfPOO9q0aZN27NihFStWKDg4WFdddZXGjh2rIUOGuC2ZGRERofXr1+uLL77QkiVLtGjRIlmtVoWFhalp06aaMGGC7rjjjhLVO2PGDE2YMEELFy5UYmKiIiIiNGrUKI0YMeK844d79+6tsLAwJSUl6emnny75m6TCbrA7duzQ7NmztWLFCm3cuFHp6emu5UlvvvlmjRkzRv369SuyhOkLL7yg2267TVOnTlVUVJRWrlyp6tWrKyIiQo888ogeeOCBy6rpz+6//34tWrRIEyZM0JIlSxQQEKBOnTppzZo1mjRpUrHddx966CHdeOONmjx5siIjI12Nxfr166tnz57q169fqesCAMBotM1om9E2AyqWyWw2F+0DCACXIT4+Xq1bt1arVq20YcMGo8sBAACo0mibAd6NOXQAlJlPP/1UdrtdQ4cONboUAACAKo+2GeDd6KEDoFROnz6thQsXKjY2VrNnz1azZs20efNmt27HAAAAqBi0zYCqg081gFI5ceKE3n77bVWrVk2dO3fWhx9+SIMBAADAILTNgKqDHjoAAAAAAAAehjl0AAAAAAAAPAyBDgAAAAAAgIch0AEAAAAAAPAwBDoAAAAAAAAehkAHAAAAAADAwxDoAAAAAAAAeBgCHQAAAAAAAA9DoAMAAAAAAOBhCHQAAAAAAAA8DIEOAAAAAACAhyHQAQAAAAAA8DAEOgAAAAAAAB6GQAcAAAAAAMDDEOgAAAAAAAB4GAIdAAAAAAAAD0OgAwAAAAAA4GEIdAAAAAAAADwMgQ4AAAAAAICHIdABAAAAAADwMAQ6AAAAAAAAHoZABwAAAAAAwMMQ6AAAAAAAAHgYAh3Ai4wbN04dO3Y0ugwAAAAAQDnzM7oAwFMNGzZMc+fOLbJ948aNat26tQEVAQBQei2nbDe6BMCjRA/vYHQJAKooAh2gFLp27app06a5batbt65B1QAAAAAAqgqGXAGlEBgYqPDwcLcvPz8/rVixQnfeeafCw8PVunVrvfvuuyooKHCd16pVK02YMEHDhg1To0aN1LJlSy1evFhms1lPP/20GjZsqJtuuknr1q1znWO32/WPf/xDrVu3Vv369XXTTTfp448/lsPhuGCNs2bN0q233qrw8HC1b99ekydPvug5AAAAAIDKjUAHKGM///yzhg4dqr/97W/aunWrPvvsMy1ZskTvvPOO23Gff/652rdvr8jISPXv31/Dhg3T3/72N/Xs2VObNm1Sp06dNHToUFksFkmSw+FQRESEZsyYoW3btunf//63PvzwQ82aNeu8tcycOVPvvvuu3nzzTW3btk1jx47Vxx9/rC+//LJc3wMAAAAAQPkymc1mp9FFAJ5o2LBhmj9/voKCglzbOnbsqJycHHXr1k0jR450bV+6dKn+/ve/Ky4uTiaTSa1atVKHDh301VdfSZKys7PVqFEjDR06VO+//74k6eTJk2rTpo3Wr1+vdu3aFVvDW2+9pV27dmnJkiWSCidF/vHHHxUVFSVJuvHGGzV69GgNGjTIdc6UKVM0c+ZMbdu2rWzfEACAV2AOHaBkmEMHgFGYQwcohU6dOunjjz92PQ4KCtLNN9+s3377zW27w+FQXl6eEhMTVb9+fUlSy5YtXfurV6+uatWquW0LCwuTJCUnJ7u2TZ8+Xd98841Onz4ti8Uiq9Wqxo0bF1tbSkqK4uLiNGLECL3yyiuu7TabTU4nOS4AlMbEiRP1008/6ejRowoICNDNN9+sMWPGqEWLFq5jnE6nxo8fr5kzZ8psNqt9+/b64IMP1Lx5c9cxZrNZI0eO1MqVKyVJvXv31vvvv6/Q0NAKf00AAMCzEOgApVCtWjVdc801btscDodef/119e/fv8jxV1xxhet7f39/t30mk0l+fn5uj89dT5IWL16sUaNG6d1331WHDh1Us2ZNffHFF1q6dGmxtZ07b+LEibr11lsv49UBAM7nl19+0TPPPKObbrpJTqdT7733nvr3769t27apdu3akqSPP/5YkydP1uTJk9WsWTO9//77euCBB7Rjxw7VqFFDkvTss88qLi5OCxculCS9+OKL+vvf/67vvvvOsNcGAAA8A4EOUMbatGmjw4cPFwl6SisqKkrt27fX0KFDXduOHz9+3uPDwsIUERGh48eP69FHHy3TWgCgqlu8eLHb42nTpunKK6/U1q1b1adPHzmdTn3++ed6+eWXdf/990sqnDutWbNmWrhwoYYMGaKYmBitXbtWK1euVIcOhUM2Jk2apD59+ujIkSNq1qxZhb8uAADgOQh0gDI2cuRIDRw4UI0bN9YDDzwgPz8/HTx4UDt37iwyMXJJNG3aVHPnztWaNWt0zTXXaNGiRdqyZYtq1ap13nNGjRqlkSNHqlatWurVq5esVqv27NmjhIQE/fOf/7zsWgAA7rKzs+VwOFxDpU6ePKnExER1797ddUxwcLA6deqkbdu2aciQIdq+fbuqV6/u1ovytttuU0hIiLZt20agAwAALohAByhjd911l+bPn6///ve/+uyzz+Tn56drr71Wjz32WKmuO2TIEO3bt0/PPvusnE6n+vXrp+eff/6Cq1w9+eSTqlatmj755BO98847CgoKUvPmzfW3v/2tVLUAANy98cYbrgnvJSkxMVGSVK9ePbfj6tWrp4SEBElSUlKS6tat6xpiKxUOt73iiiuUlJR03uc6cuRIWZcPoBT4TAIoTxe6wcMqVwAAAKXw5ptvavHixVq5cqWaNGkiSdq2bZvuvvtu7du3z23y+ueff14JCQlavHixPvzwQ33zzTfas2eP2/XatGmjp556yrCelKxyBZQMq1wBMIqP0QUAAAB4qlGjRmnRokX68ccfXWGOJIWHh0tyX6nw3ONzqxiGhYUpNTXVbeVBp9OplJQU1zEAAADnQ6ADAABwGV5//XVXmHPddde57bvqqqsUHh6u9evXu7ZZLBZFRUW55szp0KGDsrOztX37Hz1itm/frpycHFYnBAAAF8UcOgAAACX06quv6rvvvtOsWbMUGhrqmjMnJCRE1atXl8lk0rBhwzRx4kQ1a9ZMTZs21QcffKCQkBA99NBDkqTrr79ePXr00IgRI/TRRx9JkkaMGKG7776bCZEBAMBFMYcOAABACZ1bzeqvXn/9dY0aNUpS4fCp8ePHa8aMGTKbzWrfvr0++OADtWjRwnW82WzWyJEjtWLFCklSnz599P7775/3+hWBOXSAkmEOHQBGIdABAACAC4EOUDIEOgCMwhw6AAAAAAAAHoY5dAAAAAAAyhrxqNElAB6lxqS5hj4/PXQAAAAAAAA8DIEOAAAAAACAhyHQAQAAAAAA8DAEOgAAAAAAAB6GQAcAAAAAAMDDEOgAAAAAAAB4GJYtB7xYjtWhFItDqZbC/2ZaHcq1OZVrcyrP5lSe3al8m1MFDqesDqnA4ZTDKfmZJD8fk/x8JH8fk/x9Ch/7/77d30eqGeCj0AAf1Q4s/AoNMKl2oI9C/MmJAQAAAKC8EegAHijf7tSpbJtOZNl1IsumU9l2JebZlfqn8CbV4lCe3VnhtQX6yhX0hAX7qlGIrxpX//0rxFeNq/upYYivAn1NFV4bAAAAAHgLAh2gkrI6nIox23Qw3arjWX+ENyez7ErIs8tR8VnNJcm3S4l5DiXmOXTIbCv2GJOksGAfNQrx1dU1/XRDqL9uCPVTi9r+alLDVz4mwh4AAAAAuBACHaASSLXYtT/Nqn1pVu1Ps2p/uk2HzVYVOIyurHw49UfoszPFKinPtS/Y16TrQv3UPNRPzWv7q3mov1rW8VfDEF/D6gUAAACAyoZAB6hguTaHdiRZFZWYr53JBdqfblVCrpcmN5chz+7UnlSr9qS6Bz0NqvnolrAA3VIvQB3CAtSmbgDDtgAAAABUWQQ6QDlLtdgVlVigqMQCbU3M155Uq2yVdLhUZXYm16ElJyxacsIiSQrwkdrU9dctYQHqUC9QHcIC1IBePAAAAACqCAIdoIyZ8x1aF29RZEK+ohILdDij+HlkUDoFDmlHslU7kq2aohxJ0nW1/NS9YaC6NwjSHREBqubHilsAAAAAvBOBDlAG9qdZtSbOotVxFu1IKqAHjkEOZ9h0OMOmqQdyFOgr3RoWqLsaBqpbg0C1quMvE5MtAwAAAPASBDrAZci2OrThTL7WxFm0Ni5f8bl2o0vCX+TbpY0J+dqYkK8xksKDfdStQaD6XhWsHo2CmH8HAAAAgEcj0AEuUbbVoeWnLFp0PE/r4y1euwKVt0rMc2jesTzNO5anGv4m3d04SPc3CVbPhkEK8iPcAQAAAOBZCHSAC7DYnFodZ9Hi43laHWdRLmOpvEKW1amFsXlaGJun6n4m9fo93OnVKEjBhDsAAAAAPACBDvAXNodT68/ka2FsrlacsijTSojjzbJtTi0+nqfFx/MU4lfYc+fRptXUvUGgfH0IdwAAAABUTgQ6wO+OZFg1IyZX847mKjWf8VRVUc6fwp2Iaj4adG01PdasmprV8je6NAAAAABwQ6CDKq3A7tSPJ/P0dUyONp8tMLocVCIJuQ5N2petSfuy1TE8QE9dF6L+TYKZbwcAAABApUCggyrpWIZNMw7naM4ReuPg4qISCxSVWKA3tpn1yLXV9MwNIbo+lF47AAAAAIxDoIMqw+5waukpi746lKNNCfliZhyUlLnAqf8dzNEXB3N0V8NAPd+yuro1DDK6LAAAAABVEIEOvF621aFvD+dq6oFsncy2G10OvIBT0tr4fK2Nz1fL2n4a3rK6Hr6mmgJ8GY4FAAAAoGIQ6MBrJebaNfVAtqbH5CijgP44KB/R6TY9/4tZ7+zM1LM3hOiZG0JUJ8jX6LIAAAAAeDkCHXidE1k2fbwvS3OP5spChxxUkMQ8h/6zK0sT92br0abV9HLr6rqyOv+LBQAAAFA++GsDXiPGbNV/92Tp++N5stMhBwbJszs1PSZHs47k6P+aheiVNjXUMIQeOwAAAADKFoEOPN7JLJvG787S/GO5BDmoNAoc0vSYHM0+mqMnm4Xon21qKKIawQ4AAACAskGgA4+VmGvXB3uyNPNwjgpYeRyVVL5d+uJQjr49kqPB14doRKsaCifYAQAAAFBKBDrwOOZ8hz7al6X/HcxRro0uOfAMFrs09UCOZsbk6ukbQvTP1tVVl8mTAQAAAFwmAh14jByrQ1Ois/VpdLYyWbUKHirP7tTk6GzNOpKjkW1ramjzEPn7sNw5AAAAgJLxMboA4FIsOJarWxYn6j+7sghz4BUyCpz61/YMdfw+SStP5xldDgAAAAAPQ6CDSm1fmlV9lifrbxvTdSaXiXLgfY5m2jRobZoeXJWig+lWo8sBAAAA4CEIdFAppec79GqUWV1/TFJUYoHR5QDlbt2ZfN2xJEmvRpmVZrEbXQ4AAACASo5AB5WKw+nU9EM5ar8oUV8eymEZclQpdqf05aEctVuUqC8PZsvp5AMAAAAAoHgEOqg0fk0uUNcfk/XPKLPS8hlehaoro8CpV7dmqM/yFMWYGYYFAAAAoCgCHRguz1Y4OWyvZcnam8Yfr8A5W5MK1OXHJE3YnakCuqsBAAAA+BMCHRhqy9l83bEkUZOjs+Xg71WgiHy7NG5Xlu78MUk7kphPCgAAAEAhAh0YIsfq0Gtbzbp3RYqOZTIBLHAxB8023d6lRMIAACAASURBVL08Wa9tNSvbypBEAAAAoKoj0EGFizxjUcfvE/XFwRzRKQe4dA6n9MXBHN32fZIiz1iMLgcAAACAgQh0UGGyrQ69vDld969K1akcehgAlysux67+q1L17x0ZzK0DAAAAVFEEOqgQu1MK1GVJomYczjW6FMArOCV9uj9bPZcl60gGk4kDAAAAVQ2BDsqV0+nU5Ohs9VyapNgseuUAZW1PqlV3/pisrw/lGF0KUOVs3rxZgwYNUvPmzRUaGqrZs2e77Q8NDS3269VXX3UdM2zYsCL7e/ToUdEvBQAAeCA/owuA90q12PX3yFStPWOVZDK6HMBr5dqcGhFl1tp4iz69PVR1gnyNLgmoEnJyctSiRQs9+uijeu6554rsj4mJcXu8a9cuDRo0SP3793fb3rVrV02bNs31OCAgoHwKBgAAXoVAB+ViU0K+hqxLVkoBQQ5QUZadsmhncpKmdqmtrg2CjC4H8Hq9evVSr169JEnDhw8vsj88PNzt8fLly9W0aVPdcccdbtsDAwOLHAsAAHAxDLlCmbI7nHr3V7P6rSTMAYxwNs+hB1en6oM9WXI6mTAZqCyys7O1ePFiPfXUU0X2RUVFqWnTpmrfvr1efPFFJScnG1AhAADwNPTQQZlJzrPrsTVJ2pHqEEOsAOM4nNLY3zK1K6VAn3eurZoBZPeA0RYuXKiCggI9+uijbtt79Oihvn376qqrrtKpU6c0duxY9evXTxs2bFBgYGCx1zpy5EhFlAzgEnnTZ7K+0QUAHqYiPv/NmjU77z4CHZSJ3SkFenhVopIL+MMRqCyWnbLorqXJmt29jq4L9Te6HKBKmzlzpu655x5dccUVbtsHDBjg+r5ly5Zq27atWrVqpVWrVqlfv37FXutCDbsysWZ7+V4f8DLl/pmsQFlGFwB4GKM///z1jVKbdzhLPX8izAEqoyMZNt21NFk/ncwzuhSgytq7d6927dpV7HCrv4qIiFCDBg0UGxtbAZUBAABPxl/guGwOp1P/jDyr5zZnyso/JaDSyrI69eS6NL39a4YczKsDVLiZM2fqqquuUteuXS96bGpqqhISEpgkGQAAXBR/heOyZBQ4dPf3pzQ91m50KQAugVPSpH3Zemh1qsz5DqPLAbxCdna29u7dq71798rhcCguLk579+7V6dOnXcfk5uZqwYIFeuKJJ2QymYqcP3r0aG3fvl0nT57Upk2bNGjQINWrV0/33XdfRb8cAADgYQh0UGIx6QW69btT2pHBFEyAp1l3Jl99lifrdLbN6FIAj7dr1y516dJFXbp0UV5ensaNG6cuXbrovffecx2zePFi5eTk6PHHHy9yvq+vrw4cOKDHHntMN998s4YNG6amTZtq9erVqlGjRkW+FAAA4IFMZrOZ/ve4ZD+fytbjP6fKwnzagEerH+yj73rWVZu6AUaXAqCSaTmFSZGBkoge3sHoEspM1ohHL34QAJcak+Ya+vz00MEl+2Zfih5Zm06YA3iBs3kO3bs8RWvjLEaXAgAAAOAyEOjgkrwVeVIv7bDIbuKfDOAtsm1ODVqbqm8O5xhdCgAAAIAS4q9zXJDT6dTgJTH6KNZPzr9M5gjA89mc0oubzRr7W6bRpQAAAAAoAQIdnFeBza57vjuoH9KqG10KgHL2wZ4sPbcxTTYH06oBAAAAnoBAB8XKtNjUZe5hReXVMroUABVk3rE8PbEuTfl2Qh0AAACgsiPQQRGJWXnqNO+YDtlqGl0KgAq24rRFA9emKsfqMLoUAAAAABdAoAM3p9Ky1HXhScU5GWYFVFUbzuRrwOpUZRQQ6gAAAACVFYEOXA4npKrn93FKUA2jSwFgsK1JBeq/KkXmfEIdAAAAoDIi0IEk6bfYeN23PEmJPgyzAlBoV4pV969KUTqhDgAAAFDpEOhA24/EaeD6TCUR5gD4iz2pVvVbmaI0i93oUgAAAAD8CYFOFbf9SJwe35itZMIcAOexL82qvisZfgUAAABUJgQ6Vdi2w6f02MZsJfswZw6AC4tOt+mRNax+BQAAAFQWBDpV1M4jp/TExhylEOYAuETbkwv0xLo0FdidRpcCAAAAVHkEOlXQ7qMn9VRkhpJ8GWYFoGTWncnXs5FpsjsIdQAAAAAjEehUMXuPntTT69MU51vH6FIAeKgfT1r00haznE5CHQAAAMAoBDpVyMHYk/r7+iTF+oUZXQoADzfrSK5G78g0ugwAAACgyiLQqSKOxyfohbWnddCvgdGlAPASk6Oz9d/dhDoAAACAEQh0qoCzKWkasfSgfvW/2uhSAHiZ/+zK0jeHc4wuAwAAAKhyCHS8XHpGlkYu3q5I/+uMLgWAl3olyqxNCflGlwEAAABUKQQ6Xiwnz6K3FmzQcr8WcppMRpcDwEtZHdKT61N1LMNmdCkAAABAlUGg46UKrFZNXLBai31ayGbyNbocAF4uPd+pgWtTZc53GF0KAAAAUCUQ6Hghu92uL75frTnWpsoyBRldDoAq4mimTU+uT5PVwXLmAAAAQHkj0PEyTqdT362K1KzMcCX41DK6HABVzMaEfL0SZTa6DAAAAMDrEeh4mXXbd2nuaZMO+kYYXQqAKuqbw7n6dH+W0WUAAAAAXs3P6AJQdg7EntSM3+L1S2A7o0tBeVs5WVo1xX1bjbrSOxsLv9+7RtoyX4o7KOWkS89/LTXtcPHrHt0hLXlfOntUqhkmdX9aun3gH/t3LpWWTpLyc6UO/aX+r/+xz5woffJ/0oi5Uo0rSv8a4dHG/Jqp5qH+6tGIYZ8AAABAeSDQ8RIp6Rn6fNV2rQ7swIpWVUXY1YVBzTk+f5r8Oj9PatJOat9XmjPq0q6XGid9MUzq8ID0f+Ol2N+khWOl6rWlNr2k7HTpu/8nPfofqW4j6YvhUrNbpZZdC89fNFbq9RxhDiRJDqc0dGO6Nt0fpoYhTMwOAAAAlDUCHS9gyS/QlMWrtCywrfJN/EirDB9fqWa94vfd0q/wv9npl369Ld8VXm/Avwofh18rndwnrZ9RGOiknpaCqkvt+hTub9pBSowtDHT2rJYsWdKtD17uq4EXSst3aMj6NC275wr5+xA0AwAAAGWJOXQ8nMPh0Iwlq7TSeY3STCFGl4OKlBonjekqvdtL+uZVKeV06a53Yo90fSf3bTfcLp2OluxWqd5VUoHl92FcZunUfqnBdVJelvTjh9Ijb0v0DsNfbE8u0JhfM4wuAwAAAPA6dOfwcN+v26yf0wN1IIBJkKuUq1oXDn0Kv1rKSpPWTJM+eVx6/UcpJPTyrpmVIl13m/u2GnUlh03KNku16kmPvVc4hMtqKewFdMMd0vy3pNselLLTpG9ekwrypC7/5z73Dqq0KdE5ui0sUP2aBBtdCgAAAOA1CHQ8WNSeA1p/OEEbgm67+MHwLs07uz9u0loa21va8YPUdXD5PW/rHoVf58TulE7uke5/TRp3n/TYuMKhWv99QLq6XWEPHkDSPzanq1Udf11dk187AAAAQFlgyJWHOpuSpp9++VWrgtrIamLC0SovMESqf62UfOryr1HjCikr1X1bVqrk4ydVL6bXj61AWvCO9PBbhcO/bNbCHj616klNbylcMQv4XWaBU0+uT5PF5jS6FAAAAMArEOh4oAKrVd/8tEabg5or2VTd6HJQGVjzpcTjUs1SrDDVpI10OMp9W8wWqXFLyde/6PFr/le4ylWTNpLTITnsf+yzWyWnveg5qNL2pVn1xjaz0WUAAAAAXoFAxwPNX7VRu621tMengdGlwChL/lvYAyY1Tjq5V5oxonDumlv6F+7PMUvxB6WzRwofp5wqfJyZ/Mc1Zo8q/Dqn00ApI0n6fpyUeEzaurBwCFe3wUWf/+xR6bel0j0vFT6ud3Xhqlubv5OO7ZQOb5WuvqlcXjo824zDuVpxKs/oMgAAAACPx2QGHmbbvoPacSpFa5k3p2rLSJS+fU3KSZeq1ymcJPnlOVKd30O+6PXS3NF/HP/dmML/3j1c6v184ffpCe7XrNtI+tvn0g8TCoOZWmHSA28WLln+Z05n4UTI978uBf2+slpAkPT4OGnRfwqXL+/5d+nKG8v8ZcM7vLTFrA5hAaobxHBRAAAA4HKZzGYzExp4iJT0DH0yb4l+CGyvU6bLXMkIACqBflcF6ZvudY0uA0AxWk7ZbnQJgEeJHt7B6BLKTNaIR40uAfAoNSbNNfT5GXLlIWw2u2b8uFoHAq4kzAHg8X48adH8Y7lGlwEAAAB4LAIdD7F47SbF5zkVabrG6FIAoEy8ttWsMzlMng0AAABcDgIdD7DncKz2Hj2hnwNaskQ5AK+RUeDUP35JN7oMAAAAwCMR6FRyefn5WhoZpZjgJgy1AuB11p3J15cHs40uAwAAAPA4BDqV3PxVG5XqCNAGhloB8FL/79dMnciyGV0GAAAA4FEIdCqxPYdjdfRUvNb6t2CoFQCvlWtz6vWtZqPLAAAAADwKgU4lxVArAFXJqrh8/Xgiz+gyAAAAAI9BoFNJzV+1UdkOX200NTG6FACoEKO2ZSjb6jC6DAAAAMAjEOhUQnsOx+rYqXht9m8qi8nf6HIAoELE59o1bleW0WUAAAAAHoFAp5I5N9QqPfgK7VV9o8sBgAo17UC29qdZjS4DuCSbN2/WoEGD1Lx5c4WGhmr27Nlu+4cNG6bQ0FC3rx49ergdk5+fr9dee03XXHONGjRooEGDBik+Pr4iXwYAAPBQBDqVzPc/b5bN4dAaU1PJZDK6HACoUDan9EqUWU6n0+hSgIvKyclRixYtNH78eAUHBxd7TNeuXRUTE+P6WrBggdv+UaNG6aefftJXX32l5cuXKysrSwMHDpTdbq+IlwAAADyYn9EF4A+nE5J0MPakDgc30VlTDaPLAQBDbEsq0DeHc/XU9SFGlwJcUK9evdSrVy9J0vDhw4s9JjAwUOHh4cXuy8jI0LfffqvJkyerW7dukqRp06apVatW2rBhg+66667yKRwAAHgFeuhUEk6nUwvXbpKCQrTRdLXR5QCAod7amSFzPhMkw/NFRUWpadOmat++vV588UUlJye79u3evVtWq1Xdu3d3bWvUqJGuv/56bdu2zYhyAQCAB6GHTiWxeVe00jOztCm4pfKYCBlAFZee79QHe7I0tkMto0sBLluPHj3Ut29fXXXVVTp16pTGjh2rfv36acOGDQoMDFRSUpJ8fX1Vt25dt/Pq1aunpKSk8173yJEj5V06gBLwps8kM3gCJVMRn/9mzZqddx+BTiWQl5+v9Tt2KyuojvYowuhyAKBS+OJQtoa2CNGV1flVBc80YMAA1/ctW7ZU27Zt1apVK61atUr9+vW77OteqGFXJtZsL9/rA16m3D+TFYi1JoGSMfrzz5CrSuCHdVvklFMbTFfLyUTIACBJyrdLY3dmGl0GUGYiIiLUoEEDxcbGSpLCwsJkt9uVmprqdlxycrLCwsKMKBEAAHgQAh2DxSWm6EDsSSX41dVxUx2jywGASmVBbJ72pBYYXQZQJlJTU5WQkOCaJLlt27by9/fX+vXrXcfEx8crJiZGt956q1FlAgAAD0E/dgM5nU4tWrtRwYEBijQ1MbocAKh0nJL+345MLel9hdGlAEVkZ2e7ets4HA7FxcVp7969ql27tmrXrq3x48erX79+Cg8P16lTp/TOO++oXr16uu+++yRJtWrV0hNPPKExY8aoXr16ql27tv71r3+pZcuW6tq1q4GvDAAAeAICHQP9Gn1EKeZMxQdF6IyJiT8BoDiRCflaG2dRj0ZBRpcCuNm1a5f69u3rejxu3DiNGzdOjz76qCZOnKgDBw5o3rx5ysjIUHh4uDp37qyvv/5aNWrUcDvH19dXQ4YMkcViUZcuXTR16lT5+voa8ZIAAIAHMZnNZqfRRVRFdrtdH8xcILvTqemm9koxhRhdEgBUWi1r+2nT/WHyYZ4xoNy1nMKkyEBJRA/vYHQJZSZrxKNGlwB4lBqT5hr6/MyhY5DNu6OVk2dRtMIIcwDgIqLTbfruWJ7RZQAAAACVBoGOAaw2m375bb8CgoL0i6mJ0eUAgEf4cE+WHE46lQIAAAASgY4hft62SwU2m3YrQhkm5oQAgEtxNNOm74/TSwcAAACQCHQqXF5+vrbvOyS/gABtMzUyuhwA8Cgf7s2Sk146AAAAAIFORVvxy3Y55dQBhSmL3jkAUCIH0m1adspidBkAAACA4Qh0KlBWTp72xMTK39+f3jkAcJk+3JtldAkAAACA4Qh0KtCyjVvl5+urI6qrVFa2AoDLsivFqrVx9NIBAABA1UagU0Fy8iw6eOK0/Px8tdXU2OhyAMCjfbCHXjoAAACo2gh0KsiaqJ3yMZl0SrWUYKppdDkA4NG2JhVoU0K+0WUAAAAAhiHQqQD5BVbtO3JcAf5+9M4BgDLy2X566QAAAKDqItCpAJG/7pHd4VCiQnTcVMfocgDAK6yOy9exDJvRZQAAAACGINApZzabXb8eOKLAAH/9yspWAFBmnJKmHcw2ugwAAADAEAQ65WzrvoOy5OcrT346pCuMLgcAvMrco7nKLHAYXQYAAABQ4Qh0ypHD4VDU7mgFBwVqn8JlM/kaXRIAeJUsq1Ozj+QaXQYAAABQ4Qh0ytHew8eVmZsnp6TdpgijywEArzQ9JsfoEgAAAIAKR6BTjn7ZtU/VggJ1UqFKN1UzuhwA8EpHMmyKPMMS5gAAAKhaCHTKSUp6hhJS0iRJu+idAwDl6qtDTI4MAACAqoVAp5ys3fabggMDlKUAHVVdo8sBAK+2/JRFZ3PtRpcBAAAAVBgCnXJgtdl05GS8fH19tVf15TDxNgNAebI5pQXHmBwZAAAAVQdJQznYtu+QCmw2OSTtMdU3uhwAqBLmEugAAACgCiHQKQc7ow//PhlybWWZgowuBwCqhAPpNu1LsxpdBgAAAFAhCHTKWFxispLTMyRJ0aYwg6sBgKpl3lF66QAAAKBqINApY+u271ZwUIAK5KPDusLocgCgSlkYmyu7w2l0GQAAAEC5I9ApQ/kFVh2PPysfHx8d0RWymnyNLgkAqpTEPIfWn8k3ugwAAACg3BHolKGdBw/Lbi9cNveAqZ7B1QBA1TSPyZEBAABQBRDolKHdh44pOChQefLTCdU2uhwAqJKWnbQoy+owugwAAACgXBHolJHMnFwlJKdKkmJ0hRwm3loAMEKe3amlJy1GlwEAAACUK1KHMrJld7R8/QrnzDnEcCsAMNSyk3lGlwAAAACUKwKdMnIo9pQC/f2VI3+dUqjR5QBAlbb+TL4sNla7AgAAgPci0CkDaRmZSjZnSJKOqY6cJpPBFQFA1ZZjc2r9GYZdAQAAwHsR6JSBzbujFRjgL0k6ZqpjcDUAAElafopABwAAAN6LQKcMHDkZL38/P9llYnUrAKgkVp62yOFk2BUAAAC8E4FOKaWaM5WakSlJOq1aKjD5GVwRAECSki0ObU8qMLoMAAAAoFwQ6JTS9v2HXMOtjjLcCgAqFYZdAQAAwFsR6JTSsbgE+fsV9so5proGVwMA+LNlp1i+HAAAAN6JQKcULPkFSk4zS5JSFSyzKdjgigAAf3Ys066jGVajywAAAADKHIFOKUQfO+macPOYGG4FAJXRpgTm0QEAAID3IdAphb2Hjyk4MECSFMv8OQBQKW1MyDe6BAAAAKDMEehcJofDoTPJaTKZTLLLpHjVNLokAEAxfjlLoAMAAADvQ6BzmeLOJis3r3D1lATVkM3ka3BFAIDiJFscOpDOPDoAAADwLgQ6l2l7dIyCgwMlSadVy+BqAAAXsolhVwAAAPAyBDqXKe5ssnx9Ct++0yYCHQCozAh0AAAA4G0IdC6DJb9A6VnZkiSHxPw5AFDJbU7Md61KCAAAAHgDAp3LcOLMWdlsdklSoqqrwORncEUAgAtJz3dqXxrz6KBsbd68WYMGDVLz5s0VGhqq2bNnu/ZZrVaNGTNGnTp1UoMGDXT99dfr2Wef1enTp92uce+99yo0NNTt6+mnn67olwIAADwQgc5l2Hf4uKoxfw4AeJQtZwuMLgFeJicnRy1atND48eMVHBzsti83N1d79uzRq6++qsjISM2ZM0fx8fF66KGHZLPZ3I59/PHHFRMT4/qaNGlSRb4MAADgoehachnOpqXL5/f5c+KYPwcAPMKuFAIdlK1evXqpV69ekqThw4e77atVq5Z++OEHt22TJk3SbbfdppiYGLVs2dK1vVq1agoPDy//ggEAgFehh04JWW02pZozXY/j6KEDAB5hVypDrmCsrKwsSVJoaKjb9kWLFumaa67RbbfdptGjR7uOAwAAuBB66JTQqYQkWa02BQb4y6wg5Zn8jS4JAHAJjmbYlGV1qIY/9zJQ8QoKCjR69Gj17t1bDRs2dG1/+OGH1bhxY9WvX1+HDh3S22+/rejoaH3//ffnvdaRI0cqomQAl8ibPpP1jS4A8DAV8flv1qzZefcR6JTQnsOxCv59/pwkhRhcDQDgUjkl7U6xqnNEoNGloIqx2WwaOnSoMjIyNHfuXLd9gwcPdn3fsmVLNWnSRHfddZd2796ttm3bFnu9CzXsysSa7eV7fcDLlPtnsgLRPxAoGaM//9ymLKGzKWny/X3+nERTdYOrAQCUxG7m0UEFs9lseuaZZxQdHa0lS5aoTp06Fzy+Xbt28vX1VWxsbAVVCAAAPBWBTgk4HA6lmDNcj5NEoAMAnoR5dFCRrFarhgwZoujoaP3000+XNPFxdHS07HY7kyQDAICLYshVCaRmZCo/3yp/v8K3LZFABwA8CitdoSxlZ2e7etI4HA7FxcVp7969ql27tiIiIvTUU09p165dmjt3rkwmkxITEyVJNWvWVHBwsI4fP6758+erV69eqlOnjmJiYjR69Gi1bt1at912m5EvDQAAeAACnRI4HndWPr6FnZry5KcsE/MwAIAnOZ5llznfodBAOqii9Hbt2qW+ffu6Ho8bN07jxo3To48+qjfeeEPLly+XJHXt2tXtvMmTJ+vxxx+Xv7+/IiMjNXXqVOXk5Khhw4bq1auX3njjDfn6+lbkSwEAAB6IQKcEYuMTFBwYIIneOQDgqfakWnVnAwJ5lF7nzp1lNpvPu/9C+ySpUaNGrtAHAACgpLhFWQJpGVkymUySCHQAwFMdyWAeHQAAAHg+Ap1L5HQ6lZ6Z7XqcZGLJcgDwREcybEaXAAAAAJQagc4lyszJVV7+H5NppqqagdUAAC7X0UwCHQAAAHg+Ap1LFHc2WU6nw/XYrGADqwEAXK6j9NABAACAFyDQuURHTsUrOKhwEs08+SnfxHzSAOCJTufYZbE5jS4DAAAAKBUCnUuUkp4hX5/Ctyud3jkA4LEcTik2i146AAAA8GwEOpcoKzfP9b1ZQQZWAgAoLSZGBgAAgKcj0LkETqdTWTl/BDr00AEAz8Y8OgAAAPB0BDqXIDvXIqvtj8a/2USgAwCejJWuAAAA4OlKFOicPn1aeXl5592fl5en06dPl7qoyiYtM1M2+x+N/3SGXAGAR4vPsRtdAgAAAFAqJQp02rRpo6VLl553/4oVK9SmTZtSF1XZnD6brAB/f9djliwHAM92NpdABwAAAJ6tRIGO03nhZV5tNptMJlOpCqqMzqakKTCgMNCxy6QcU4DBFQEASuNsHoFOVTRhwgQdOHDgvPsPHjyoCRMmVGBFAAAAl6/Ec+icL7DJyMjQ2rVrVa9evVIXVdlk5eS6XneO/C9yNACgsssscCrX5jC6DFSw8ePHKzo6+rz7CXQAAIAnuWigM378eNWpU0d16tSRyWTS0KFDXY///HX11VdrwYIFGjBgQEXUXaH+vMJVruidAwDe4GwugQ7cZWdny9+fGzcAAMAz+F3sgPbt2+uZZ56RJH355Zfq1q2brr32WrdjTCaTQkJC1LZtW/Xr1698KjVQVm6efHzooQMA3iQh165ral701yA83P79+7Vv3z7X46ioKNlsRVc5M5vNmj59upo1a1aR5QEAAFy2i7Zke/bsqZ49e0qScnJy9PTTT+vmm28u98IqC5vNroICq4KCCnvm0EMHALxDIhMjVwlLly51DaMymUz6+uuv9fXXXxd7bGhoqP73v/9VZHkAAACXrUS3JqdMmVJedVRaORaLHM4/uuXn0kMHALxCQh5DrqqCwYMHq3fv3nI6nerevbvefPNN142qPwsJCdHVV18tPz96bQEAAM9Q4laL3W7Xzz//rBMnTshsNhdZ+cpkMmnkyJFlVqDRcvIssv1/9u48usr6wP/457n7kuVmvUnIxpIQVtmRRQEVREVRcR2tW/251YrO1PZndart9GiPtbVOx1I6PbaOU6edWn7TutTRttSKLO5YRSTKvhNIIPvdnt8fgcAlCSSQ5Ln35v06J4fc7/Pk5hNN4PLhu0SPvujnhCsASA0cXT4wFBQUqKCgQJL04osvavjw4Sl5gAMAABh4elTofPDBB/rSl76knTt3dnmEeaoVOgfrG3TswV7M0AGA1HCglRk6A83MmTOtjgAAANBrelTo/NM//ZNaWlr0q1/9StOmTVMgEOirXAljf129nMdMv25kDx0ASAkNYQqdgejPf/6znnvuuRPONP7www8tSgcAANB9PSp0PvnkEz300EO64IIL+ipPwjlwqF5O59H/TM09X6UGAEhADeHOZ5oidf3rv/6rHnnkEeXn52vChAkaOXKk1ZEAAABOWY/aiaKior7KkbAam1pkt9naH4dltzANAKC3NFLoDDg//elPdfbZZ+u3v/2tnE6WUAMAgORmO/ktR91333169tlndejQob7Kk3BaQqG4x+Ge/ScDACSoepZcDTh1dXVauHAhZQ4AAEgJPZqhU1tbK5/PpwkTJmjhwoUaNGiQ7Pb4GSuGYeiee+7p1ZBWaj6u0IlQ6ABASmDJ1cAzceJEVVdXWx0DAACgV/So0HnkkUfa33/mmWc6vSfVCp1wKBz3OMKSxiOb2gAAIABJREFUKwBICRQ6A88TTzyhK6+8UuPGjdNVV11ldRwAAIDT0qNCZ+3atX2VI2FFzfgp+Sy5AoDU0BBhydVAc8MNNygUCumOO+7Qfffdp8LCwk5nGq9evdqihAAAAN3Xo0KntLS0r3IkrEgkevR9GZJhWJgGANBbWqNSOGbKaeP39YEiNzdXeXl5GjZsmNVRAAAAThtncJ9ENBqTDr/WZ7kVAKSWxrCpgJtCZ6B4+eWXrY4AAADQa3pU6IwdO1bGSWaoGIahDz/88LRCJZJoLNo+HZvlVgCQWmIm++gAAAAgOfWo0JkxY0aHQicajWrbtm1as2aNRowYobFjx/ZqQCuZpqlo1NSR5fWccAUAqYVddAaWt956q1v3zZgxo4+TAAAAnL4eFTpLlizp8trf//53LVq0KKVOjYjFYoqZvNwHgFQVY4LOgLJgwYKTzjSWpAMHDvRDGgAAgNPTa3vojBkzRjfddJMefvhhvfHGG731tJYKR6I6dja+TbzyB4BUQqEzsLz44osdxqLRqLZu3apnn31WsVhMDz/8sAXJAAAAeq5XN0XOz8/XZ5991ptPaam2QufoDB22zUQycZhReRSRW5Fjfo0efWwef+3o+25FT/4JgCRUEszVP1x4bvtjTrgaWGbOnNnlteuuu04XXHCBVqxYoVmzZvVjKgAAgFPTa4XOgQMH9Nxzz6moqKi3ntJy0Wg0bk6OwQwd9COHGW0vVzoWM22FTKdFzeFf7Xy/Ah3YxDHl6JzNZtPll1+uJ598Ug8++KDVcQAAAE6qR4XOxRdf3On4wYMHVV1drVAopKVLl/ZKsIRgSGLJFU6R3YzFlSzHz4LxtBc2kU4LGwffb0Cv41ArnEhtba0OHjxodQwAAIBu6VGhE4vFOmwmaBiGysrKNHv2bF1//fWqrKzs1YBWstls0jFfLzN0BhZbeyHTcfZLWyETOa6wicqjcPv9zgQ6P8c0TcViMUWiMUWiUUWjUUmGbDZDNsPW9nPNpAUMAM4jxxZiQNq2bVun4wcPHtTKlSv14x//WNOmTevnVAAAAKemR4XOyy+/3Fc5EpIhI+7vuMzQSS6GaXYoYdydzJDxdHHdlWiFjGm2lTGRqCLRmAxDMgyb7DZDhmHIYbfL6XDI5XK0/epwyOVse9/tdMrrdSvd51W636cMv08+r0cel1Nul0sel7OtwASAFDZ27NguT7kyTVOTJ0/Wk08+2c+pAAAATk2vboqcamzH7bPABIb+ZZjmcSVLNL54MTtfquTW0b1nEknbDJlo+ywZmZLd1jY7xmYzZLfZ2gsYl9Mpl7OtlHG6HHI5nPK4XUr3e5Xuaytk/D6PvG6X3C6X3E6nHA5mHgDAifzbv/1bpzONA4GABg8erKqqKouSAQAA9FyPC53a2lo9+eSTeu2117R161ZJUmlpqebPn6/FixcrKyur10NaxWYzjl1xxQydnjLN9nLlxJv6xm/6e3SGTDShSrQjS5ai0agi0ahM02wvZAxb20wZl9MZNzPG5XTK6bTL5XDK63Ep3e+LK2Q8LpfcLqc8LheFDAD0seuuu87qCAAAAL2mR4XO9u3bNX/+fO3YsUPjxo1r3yS5urpaTz31lF544QW9+uqrKi4u7pOw/c04btGVI4GW4PQL05Sr0xOWonGzZDps9nvMnjKJVshEj8ySiUQVi5my220yDJtshmS32eVy2uV0OOV2OeQ4XMy0zZRxyuN2Kt3nU5rfp4w0n9K8RwoZlzxupxx2e5dT+QEAiSMajWrt2rVx/zA1btw4lp4CAICk0qNC55FHHtHBgwf14osvaubMmXHXVq5cqWuuuUbf/va39e///u+9GtIqNpsh85hZOYYkpxlV2EiemRQuM9LNWTIdN/91K6JEemlrHt5D5siypVjUbNvU9/DGvnabTU6HXU5n254xTuexM2UccjsPL1ny+5Th9yrN55PHfXQPGafDQSEDAClu2bJlevDBB7Vnzx6Zh489MwxDwWBQjz76qC677DKLEwIAAHRPjwqdv/zlL7r99ts7lDmSNH36dN1222165plnei2c1WyG7bhtkSWXIgqr/wodZxdHW7fvFdPFPjKeBC5kokdOWorFZLfZZDMOn7RkM9r2jHEeXqrksMctYXK5HG0zZHxeZfh9Sk/zxS1ZcjkpZE4qFpOaGmQc86bG+vjHTQ0ymhqlaMTqtECfi8y5WNER462OgX7y8ssv69Zbb1VlZaX+8R//sf1kzg0bNuiZZ57RrbfeKrfbrQsvvNDipAAAACfXo0KnublZubm5XV7Pzc1Vc3PzaYdKFDabIfO4fsCtqBp78BwO8/jZMcc9NuNPVzr+PnsC7dtjmmZ7GdNeyBwuYtqOvlbcnjHtm/oeWbbkdCrN61Wav62QyfD75HG3FTJet5tCpjtMs5NCpqGTQubwW2N93GO1NsswE+d7CrBadNREiUJnwPjBD36gcePG6ZVXXpHH42kfnzVrlm644QbNnz9fTzzxBIUOAABICj0qdKqqqvTb3/5WN998s9xud9y1UCik//7v/9aIESN6NaCVDKPt5KFjDVat8s2GuKOvOz0S+/CvjkQrZGJHNvWNKXr46GubYZPNbsiQ7fCsmCNFjLNtT5ljZsmk+bztM2Qy0/zthcyRGTLsP3ASpik1N3ZevrSXM53NmDn8fnOzDHOA7eUE9CWD37MGkk8//VQPP/xwXJlzhNvt1tVXX61vf/vb3X6+t956Sz/+8Y+1du1a7dq1S08//XTcxsumaep73/uenn32WdXV1WnixIl64okn4l4r1dXV6etf/7peffVVSdL8+fP1+OOPKxAInMZXCgAABoIeFTr33nuvbrrpJs2ZM0e33HKLhg0bJqltU+Rf/OIXWr9+vZ599tk+CWoFwzDkOu7kofPMLyxK0/bC8MhJS21Ll6IyZMhmb1u2ZBhG2x4yjqNFjNvpaC9knE6H0rwepft8Sk/zKsPnk9fjblu25HbK7XRSyHRHc1PHsuXwsqUOBc3xs2WamyhkgETC73kDitfr1f79+7u8XlNTI6/X2+3na2xs1MiRI3Xttdfqjjvu6HD9qaee0tNPP62nn35aFRUVevzxx3XZZZfpnXfeUXp6uiTp1ltv1fbt2/XCCy9Iku655x7dfvvt+s1vftPDrw4AAAw0PSp0Fi5cqJ/+9Kf61re+pfvvv799eYxpmsrPz9eSJUvaT75KFQ6HQ5FotFeeyzRNxY7sIxNpmyVjGG3FUduSJaP9lKVjZ8Y4D5+y5HLa5fd62zb29fmUkeaV1+1p39jX7XTIbk+eDZst09oso/FI4XJ4NkxjFzNmjrnWNkOmQUaMQgZIGSzzHFBmzZqlpUuXas6cOZo+fXrctdWrV+tnP/uZzjvvvG4/37x58zRv3jxJ0l133RV3zTRNLVmyRPfee68WLlwoSVqyZIkqKir0wgsv6Oabb9Znn32mP/3pT3r11Vc1ZcoUSdKTTz6pCy64QNXV1aqoqDidLxcAAKS4HhU6knT11Vdr0aJF+uCDD7Rt2zZJUklJicaPHy+Ho8dPl/CcxxU6sWOOvT5ayNhkt7XNkHHY7W2nKrmOWbZ0zOa+Xq9b6b4jJy355PN65HEdPWmJQqYbWlu6NRum83saZbDZL4DDTJfL6gjoR9/+9re1atUqLViwQGeccUZ7YVJdXa21a9cqGAzqkUce6ZXPtWXLFu3Zs0fnnHNO+5jX69X06dO1Zs0a3XzzzXr77beVlpamqVOntt9z5plnyu/3a82aNRQ6AADghE6pgXE4HJo8ebImT57c23kSzpDiQu2vPSinq22WjMftOjpDxu+T3+eJO2nJ4aCQOalwqMNmvSfd3PfI4+YGGeGw1V8BgFTh8VmdAP2otLRUK1as0A9/+EO9/vrr+sMf/iCp7R+m7rrrLt17770nPPyhJ/bs2SNJysvLixvPy8vTrl27JEl79+5VTk5O3IEAhmEoNzdXe/fu7fK5q6ureyUjgN6RSj+TBVYHAJJMf/z8n+gfeE5a6OzevVsXX3yxFi5cqIceeqjL+7773e/qD3/4g1555ZVeezGUCC6ZPc3qCIknEpHRVH/McqTjZsN0unzpmAKHQgZAgjDd3d8vBcmvsbFRzc3NevTRR/Xoo492uL5t2zY1NTXJ50vsoq/PZ+68/nbfPj+QYlJpNl291QGAJGP1z/9JC52lS5eqtrZWixcvPuF9ixcv1i9/+UstXbpUDz74YK8FRB+IRro3G6axi9OWQq1WfwUA0Ds8FDoDyTe/+U29//77evPNNzu9ft1112ny5Mn6wQ9+cNqfKxgMSpL27dunkpKS9vF9+/YpPz9fkpSfn6/9+/fLNM24fQlramra7wEAAOjKSQud1157TZdddln7aQxdSU9P16JFi/THP/6RQqevxaIdN+vtyWlLrS1WfwUAkBBMllwNKMuXL487Vvx4CxYs0PPPP98rn6usrEzBYFDLly/XhAkTJEktLS1atWqVvvOd70iSpkyZooaGBr399tvt++i8/fbbamxsjNtXBwAAoDMnLXQ2bdqk2267rVtPNnLkSD333HOnHSrlxWJSc+Nx+8d0MhumQ2Fz+J6WZqu/AgBIDczQGVD27NmjwsLCLq8Hg0Ht3r2728/X0NCgjRs3Smo7NGH79u366KOPlJWVpZKSEt1555364Q9/qIqKCg0bNkxPPPGE/H6/rrjiCknS8OHDdd555+m+++7Tj370I0nSfffdp/PPP9/yKdwAACDxnbTQMQxDsW4e0xyLxeI29ktZptlWyBxTwpz4xKX4x2ppkmGaVn8VADDgMUNnYMnNzdX69eu7vL5+/XplZmZ2+/k++OADXXzxxe2PH3vsMT322GO69tprtWTJEi1evFjNzc26//77VVdXp4kTJ2rZsmVxs55//vOf6+tf/7oWLVokSbrgggv0+OOPn8JXBwAABpqTFjqlpaV67733dPPNN5/0yd5//32Vlpb2SrBE5Xx9mVy/+jcZZvdKLgBAYjJtNsnltjoG+tHcuXP1y1/+UldeeaXGjx8fd+3999/XL3/5y/ZipTvOOuss1dXVdXndMAw98MADeuCBB7q8JxAI6Gc/+1m3PycAAMARJy10zj//fC1dulT33HOPKisru7xvw4YNeuGFF3THHXf0asBEY7o9lDkAkApYbjXgPPDAA3r99dc1d+5czZ07VyNGjJAkrVu3Tn/605+Un5/PPoAAACBp2E52w1e/+lWlpaXp4osv1gsvvKBIJBJ3PRKJ6IUXXtAll1yi9PR03X333X0WNhGY/hNvDg0ASA6mv/tLa5AajmxSfOWVV+qtt97Sk08+qSeffFIrV67UVVddpeXLl59wjx0AAIBEctIZOjk5Ofrtb3+r66+/XrfddpvuueceDRs2TGlpaWpoaNDnn3+ulpYWFRYW6te//rVycnL6I3e/qdm5Q9Xvv6tIJKxIKKTMvdt0ttWhAACnzQxkWx0BFsjPz9eSJUvajweX2vbWGRB7AAIAgJRy0kJHksaNG6eVK1fqF7/4hV599VWtX79e9fX1Sk9P19ixY3XBBRfopptu6tFGgslixxfV2vrZp3K4XJKkaDNHfgNAKjADqfUPEOgZwzCUl5dndQwAAIBT1q1CR5IyMjK0ePFiLV68uC/zJBxfeoai0Wj7f6gmp8fSPACA3hGj0AEAAEASO+keOgNdWkamosfsGxR2OBWydbsHAwAkKDOTQgcAAADJi0LnJNx+f4d19U0uZukAQLJjDx0AAAAkMwqdk3B7vbLZji90OOoWAJIde+gAAAAgmVHonITXnyabPX6JVSOFDgAkPZZcAQAAIJlR6JyEzW6X0+2OG2tkY2QASHpsigwAAIBkRqHTDW6fL+4xS64AILmZbo+UEbA6BgAAAHDKKHS6we2JL3BYcgUAyS0WLLY6AgAAAHBaKHS6we2l0AGAVEKhAwAAgGRHodMN/oxMRaOR9sf1br9iMk7wEQCARGYWUOgAAAAguVHodENmbr4ioVD745jNpnq37wQfAQBIZDEKHQAAACQ5Cp1uyMzLUzQSjRs76E23KA0A4HTFCkqsjgAAAACcFgqdbvBnZsput8eN1XkodAAgWcWCg6yOAAAAAJwWCp1u8PrT5HS748YOetMsSgMAOB2mP11K58hyAAAAJDcKnW4wDEPe9PgZOczQAYDkxAlXAAAASAUUOt3kT8+Ie3zIkybToiwAgFMXKxlidQQAAADgtFHodJM/kKVY9OjGyBG7Q40ur4WJAACnIlpeaXUEAAAA4LRR6HRTQVmZWlua48bqOOkKAJJOrIxCBwAAAMmPQqebsvILZRhG3FiNj001ASCZmHY7S64AAACQEih0usmfmSmH0xk3VuPPsigNAOBUxArLJJf75DcCAAAACY5Cp5tsNpt8afEbI9f4maEDAMkkVl5hdQQAAACgV1Do9IAvI77QaXW6Ve/yWZQGANBT7J8DAACAVEGh0wPZBYWKhMNxY8zSAYDkEWWGDgAAAFIEhU4PFFcMV7i1NW6MQgcAkoNpsylWOszqGAAAAECvoNDpgaz8IBsjA0CSipVVSB6WyQIAACA1UOj0gMPplD8jM25svy9TMRldfAQAIFFEh59hdQQAAACg11Do9FB6VrZM02x/HLU7VOvLOMFHAAASQbRqnNURAAAAgF5DodNDwbKyDvvo7ErPtSgNAKA7TMOmaOUYq2MAAAAAvYZCp4eKhlYoGo3Eje3KyLMoDQCgO2IlQyR/utUxAAAAgF5DodND6VnZcrk9cWN707IVNdhHBwASVbSK/XMAAACQWih0eshmsykjOztuLGJ3cNoVACSw6HD2zwEAAEBqodA5BbmDShSNsOwKAJKBaRiKVo21OgYAAADQqyh0TsHg0WMVammOG2NjZABITLGSIVJaptUxAAAAgF5FoXMKsvKDcnt9cWP7/FkK2+wWJQIAdCV6xjSrIwAAAAC9jkLnFNhsNgXy8uPGTJtNe9JyLEoEAOhKZByFDgAAAFIPhc4pKigrVzjUGje2IxC0KA0AoDOxjCzFhoywOgYAAADQ6yh0TlH5qDGKhuM3Rt4aKJBpUR4AQEfRsVMkG3/UAQAAIPXwKvcUpQWy5E1Ljxtrcnm13xewKBEA4HiRcdOtjgAAAAD0CQqdU2QYhgJ5eTLN+Dk5WwMFFiUCABzLdDgVHT3Z6hgAAABAn6DQOQ3lo8Z0OL58a1ahRWkAAMeKDh8rHXciIQAAAJAqKHROQ0nlcNnsjrixg950HXT7LUoEADgiynIrWGzMmDEKBAId3q666ipJ0mOPPdbhWmVlpcWpAQBAsnCc/BZ0xelyKzs/qPq62rjxrVmFGrP7c4tSAQBMw6bIpLOtjoEBbvny5YpGo+2Pd+/erdmzZ+vSSy9tH6uoqNBLL73U/thut/drRgAAkLwodE5TyfAqffjGcrk8nvaxbYECCh0AsFBs+BiZ2XlWx8AAl5ubG/f4ueeeU3p6ui677LL2MYfDoWAw2N/RAABACmDJ1WkaPPoM6bjDyvf5s9Tk9HT+AQCAPhc+8zyrIwBxTNPUc889p6uvvlper7d9fPPmzaqqqtLYsWN1yy23aPPmzdaFBAAASYUZOqfJ4/MpIydPLY0NRwcNQxuzB2n0ni+sCwYAA5RpdygyeZbVMYA4y5cv15YtW3TDDTe0j02aNEk/+clPVFFRoZqaGn3/+9/XvHnztHr1amVnZ3f5XNXV1f0RGUA3pdLPJOf1Aj3THz//FRUVXV6j0OkFRUOGasN778jhcrWPfZFbQqEDABaIjpkspWVYHQOI8+yzz2rChAkaM2ZM+9jcuXPj7pk0aZLGjRun559/XnfffXeXz3WiF3a94vW3+/b5gRTT5z+T/aje6gBAkrH6558lV72gYtxERSLhuLE6b4b2+zItSgQAA1eE5VZIMPv27dMrr7yiG2+88YT3paWlqaqqShs3buynZAAAIJlR6PSCtEBA6Vkdp0Z/kVNsQRoAGLhMt0eRCTOsjgHEef755+V2u7Vo0aIT3tfS0qLq6mo2SQYAAN1CodNLSoePUDjUGje2KbtYMcOwKBEADDyRCTMlN5vSI3GYpqn/+I//0OWXX660tLS4aw899JBWrFihzZs3691339WNN96opqYmXXvttRalBQAAyYRCp5dUTZoqMxZ/2lWL060dGfkWJQKAgScyfe7JbwL60Ztvvqkvvvii0+VWO3fu1K233qrJkyfrS1/6klwul15//XWVlpZakBQAACQbNkXuJR6/X9nBAtXX1co4ZlbOFznFKjm4x8JkADAwxPIKFR092eoYQJyzzz5bdXV1nV575pln+jkNAABIJczQ6UXDxk9UqKU5bmxboECtdqdFiQBg4AjPWiDZ+GMNAAAAAwOvfHtRWdVIOV3uuLGYzc7myADQx0y7Q5GzL7A6BgAAANBvKHR6kcPpVF5xicxYLG78s/zBMrv4GADA6YtMmCkzs+NpgwAAAECqotDpZSOnTlPrccuuDnnStDMjz6JEAJD6IudcYnUEAAAAoF9R6PSyvOJS+dIzOoyvzx9sQRoASH2xghJFR06wOgYAAADQryh0eplhGCofOVrhUGvc+PbMoOrdPotSAUDqCs9eYHUEAAAAoN9R6PSBUWfO6DhoGPosr7zfswBAKjNdboXPmm91DAAAAKDfUej0AZfHo2BpuWLHbY5cnVuqsM1uUSoASD3hsy6Q0jKtjgEAAAD0OwqdPnLGWbMVao7fHDnkcGlT9iCLEgFAajFtNoXnX2V1DAAAAMASFDp9JLugUJm5HU+2WhccyhHmANALIpNmycwvsjoGAAAAYAkKnT40YvJUtR43S+egN11bAwUWJQKA1BG+6FqrIwAAAACWodDpQ4NHj5Xb4+kw/lFhpQVpACB1REZOUKyc30sBAAAwcFHo9CGb3a6SqhGKhMNx4wf8Ae3I6LgcCwDQPeELmZ0DAACAgY1Cp4+NnTlbphnrMM4sHQA4NdGyCkXHTLY6BgAAAGApCp0+5vH5VDxsuKKRSNz43vQc7UnLtigVACSv8IXXWB0BAAAAsByFTj+YcO7cDsuuJGbpAEBPRYsHKzJljtUxAAAAAMtR6PQDX1q6Bg0dplg0Gje+MzNfNb6ARakAIPmELr9FsvFHFwAAAMCr4n4y4Zx5CodCHcY/LBpuQRoASD7RwVWKTjzL6hgAAABAQqDQ6SfpWVkqKCtXLBa/QfKOQFC703IsSgUAySN0xa1WRwAAAAASBoVOP5pwzlyFWls6jL9XPMKCNACQPKJVZyg6epLVMQAAAICEQaHTjwJ5+covKpZ53CydmrRsbQkUWpQKABJf6yJm5wAAAADHotDpZxPPm69QS8dZOu8Xj1DMMCxIBACJLXLGmYpVjrE6BgAAAJBQKHT6WXZBgQrKh3Q48eqQJ03VuaUWpQKAxGQaNoUWfdnqGAAAAEDCodCxwJT5FyoSDncY/7BouMI2uwWJACAxRc6ar1hZhdUxAAAAgIRDoWOBtMyAykaM7FDqtDg9WhccalEqAEgsps+v1itvszoGAAAAkJAodCwy8dzzOx3/uGCYGp2efk4DAIkntPAmKSNgdQwAAAAgIVHoWMTt9api/ESFW1vjxiN2h94pGWVRKgBIDLGiMoXPu8zqGAAAAEDCotCx0NiZs+RwuTqMb8kepJ3puRYkAoDE0PoPd0sOh9UxAAAAgIRFoWMhh9OpUdNmdHqM+ZqysYoa/O8BMPBExs9QdMxkq2MAAAAACY3GwGLDJ06RLyNDpmnGjR/ypGldcIhFqQDAGqbDqdZ/+IrVMQAAAICER6FjMZvNpukXLVSouanDtbWFlWpweS1IBQDWCF90rcz8IqtjAAAAAAmPQicB5BWXaFDFcEUjkbjxKBskAxhAokXlCl3yJatjAAAAAEmBQidBnHnBxZ2Ob80q0vbM/H5OAwD9yzRsav3y/ZLDaXUUAAAAIClQ6CQIt9erMTPOUri14wbJq8rOUMjOaS8AUld47uWKDWNGIgAAANBdFDoJpGrymfJnBjpskNzk8uqdktEWpQKAvhXNLVDoilutjgEAAAAkFQqdBGIYhqYvuFSh5uYO1z7PLWXpFYCUFLrlfsntsToGAAAAkFQodBJMTmGRykaMVDgU6nBtZdk4tdrZXwJA6giffaGioyZaHQMAAABIOhQ6CWjq/AVyulwdll41uzx6m6VXAFJELJCj1mvvsjoGAAAAkJQodBKQw+XS9AULO116tTG3RFsDBRakAoDeY8pQ620PSL40q6MAAAAASYlCJ0EVDh6qspGjFAl3XHq1qmysWlh6hW763oY9cvz+Q93z0fb2sT0tYd3y/haVvPqx0l9aqwtXfaHqhtaTPtcbNQ2a8tfP5H9xrSpeX6elm2rirj+/7YDK//cT5b7yd/3Txzviru1oDmnoa59oT0u4d74wJLXwhVcrOmqS1TEAAACApEWhk8Cmnn+RnM6OS69anB6tKj/DolRIJqsPNOrnW/ZrbMbRDWdN09Tlb29SdWNIv5s6WO/OGq4yr0vnr/xcjZFol8+1qbFVF6/eqGnZfr07e7i+URHU4r9v17KddZKkmtaIbvtwmx4fXaQ/Thuq57fV6qXdB9s//qsfbdeDwwsU9FBGDnTh0mEKLeJUKwAAAOB0UOgkMIfLpRmXXK5QS8elV1uzirQ+r7z/QyFpHAxHdcN7W/Tv40oUcNrbx6sbW7Wmtkn/NrZYU7L8Gp7u0dNnFKs5aurXO+q6fL6lm/eryOPQU2OLNSLdo1vLc3RDSbZ+8PleSdLGplZlOu26alCWJmf5NDs3Tevr22b9LNtZp4ORmG4uze7bLxoJL+p0K/SVRySHw+ooAAAAQFKj0ElwwbJylY8ao0gnp169UzJK+32ZFqRCMrjjw226vCigOXnpceOtsbYZXx6b0T5mMwy5bYbe2t/Q5fOtrm3U3LyMuLF5+Rl6r67LpJDAAAAgAElEQVRJ4ZipCr9bTdGYPqhr0oFQRO/WNWlMpkcHw1F945Od+ukZJTIMo4tnx0ARumGxzIJiq2MAAAAASY9CJwlMmXehnB5Ph6VXMZtdbwyZqJCNf+lGvJ9v3q8vGlv1LyMKO1yrSvOo1OvUQ5/u0oFQRKFYTI9X79H2lrB2tUS6fM49LRHle+K/1/LdDkVMqSYUUZbLoV+ML9XN72/VtL9t0PUlWTo/P0P/95Odurk0W/tCEU3962ca/edPO+y9g4GhddIsRc++0OoYQL957LHHFAgE4t4qKyvbr5umqccee0xVVVUqKCjQRRddpE8//dTCxAAAIJnQBCQBh9Opsy+7Uq//6lm5PJ64a/WeNK0uG6uzN71vUTokms/qW/TQpzv1xswKOW0dZ8Q4bYZ+O2Wwbvtgq/L/+LHshnRuXrrm56fL7OT5euLSooAuLQq0P16xv0Frahv1/dEVGvnn9frFhFKNTPdo/PL1mp7j15gM72l+RiSLcCBH4S/fb3UMoN9VVFTopZdean9stx9dAvvUU0/p6aef1tNPP62Kigo9/vjjuuyyy/TOO+8oPT29s6cDAABoR6GTJHKLBmnMjLP097dWyOVxx13blFOsgvoaVdZstSgdEsnq2kbVhKIau3x9+1jUlN7c36ilm2t06KKxmhjw6b05VToYjioUM5XndmjaGxs0KeDr8nmDHof2HjeDZ29rRA5DynV1/K2kNRrTV9Zu19JxJdrYGFIoFtO5h5d/zcpN0xs1DRQ6A0TMZlf4nn/hiHIMSA6HQ8FgsMO4aZpasmSJ7r33Xi1cuFCStGTJElVUVOiFF17QzTff3N9RAQBAkmHJVRIZNW2m8ooHKRrpuCzm7dIxqvXyr3mQFhZm6sM5w/Xe7KNvkwJeXT0ooPdmD5frmFk7mU678twOVTe06r26Jl1cmNHl856Z5def9tXHjf1pX70mBnydzgR6rHqP5uSm6cxsv2IyFTlm+k8oZipqnu58ICSL1hvvU2zoSKtjAJbYvHmzqqqqNHbsWN1yyy3avHmzJGnLli3as2ePzjnnnPZ7vV6vpk+frjVr1liUFgAAJBNm6CQRwzB09mVX6Q8/e1qmacZtMBu12fXXIZN00fo35Yp2vQ8KUl/A6VDAGf+j7bPblO1yaPThGTEv7KhTjsuuMp9LHx9q0X1/366FhZmal3+00LnpvS2SpF9OLJMk3V6eo59sqtE//n27/k95rlYeaNSzWw/oV5PKOmRYd6hF/7W9Vu/OGi5JGp7mkcOQlm6q0cgMj/6yr0EPVhb0ydePxNI043zFZi+wOgZgiUmTJuknP/mJKioqVFNTo+9///uaN2+eVq9erT179kiS8vLy4j4mLy9Pu3btOuHzVldX91lmAD2XSj+TvDoDeqY/fv4rKiq6vEahk2RcHo/OvvQK/fk3v+qwn84hb7r+Nniizvl8DVOvcEK7WsL62sc7tKc1okKPQ9eXZOuh4fFLArY2x5+sNtjv1otnDtHXPt6hn27eryKPUz8aM0iXH7NnjtS2jOCOtdv0xOhBSj98XLrXbtMvJ5Tpno+262Akqgcqg5qU1fXyLqSGxqLBMm/5mtUxAMvMnTs37vGkSZM0btw4Pf/885o8efIpP++JXtj1itff7tvnB1JMn/9M9qP6k98C4BhW//xT6CSh/NIyjZg6TevfXi2nO34/nR2BoN4fNEKTdnBKBo76y8z432i+OjRPXx2a18XdnX+M1Lb3zTuzh5/w4wzD0N/O6vix84MZ2jCXZTcDRYvHL33jCcnhtDoKkDDS0tJUVVWljRs3asGCtplr+/btU0lJSfs9+/btU35+vlURAQBAEmEiR5I646zZygoWdLqfzieFFfoiu9iCVAAgRQ2bov/4mMxAjtVRgITS0tKi6upqBYNBlZWVKRgMavny5XHXV61apalTp1qYEgAAJAsKnSRlGIZmX3GNbA67zE42l11Zfob2+QOdfCQA9K3ma+6UOXys1TEAyz300ENasWKFNm/erHfffVc33nijmpqadO2118owDN1555166qmn9Ic//EHr1q3TXXfdJb/fryuuuMLq6AAAIAmw5CqJub1enXf19Xr1uWfkdMUvvYrZ7Fo+dIoWfPo3+cItFiUEMNAcOnOubPOvtDoGkBB27typW2+9Vfv371dubq4mTZqk119/XaWlpZKkxYsXq7m5Wffff7/q6uo0ceJELVu2TOnpnFoJAABOzqirq+Ps4CS3ed3HWvnS7+X2ejtcy2ms1fz1b8lhxixIBmAgqR08Ss5v/ViyMfkTSGajfsKmyEBPfHLXFKsj9Jr6+661OgKQVNKf/C9LPz+vulNA+cjRqpo0ReHWjjNx9vuztGLwBFHnAOhLddlBOb/5Q8ocAAAAoJ/wyjtFjJ9znvJLyhQOhTpc25JdpHdKx1iQCsBAUO9Jk/1bP5GOW/oJAAAAoO9Q6KQIwzB09uVXyev3KxbrOB9nff5gfVTQ8ShpADgdLQ6Xwg/8SEYWJ1oBAAAA/YlCJ4U4nE7Nve5GmbFopydffVA8QhtySy1IBiAVRQybDn3l23KVD7M6CgAAADDgUOikGF96huZcdZ3CodZOr68uO0PbMoP9nApAqolJ2nfNV+SbMM3qKAAAAMCARKGTgvIGFWvmJYvU2tzc4ZppGHpj6CTt9WdZkAxAKjAl7Zh/rdLnL7I6CgAAADBgUeikqJLK4Zo09/xOS52oza4/V0xVrSfdgmQAkt3m6Rcq69rbrY4BAAAADGgUOimscvwkjZ4+s9NSJ+Rw6bXh03TQk2ZBMgDJ6vMxM5V3+9etjgEAAAAMeBQ6KW7szFkaOuYMhVpbOlxrcXr06vDplDoAuuWzoeMU/Kd/sToGAAAAAFHoDAhT5l+kwvIhinSyUXKL06P/raTUAXBi68tGqeCbT8gwDKujAAAAABCFzoBgGIbOvuxKBfILFAmHOlxvdh0uddx+C9IBSHTri0eo4J9/JLvDYXUUAAAAAIdR6AwQNrtd515zvTJy8hQJhztcb3Z59L/DZ1DqAIjzaVGlgg//SA6n0+ooAAAAAI5BoTOAOJxOzf2HG5SRk6twqIuZOpQ6AA5bWzJSwYf/VU6X2+ooAAAAAI5DoTPAHCl1MnPzTljq1HGkOTBgmZLeKT9DxQ/+QC6Px+o4AAAAADpBoTMAtZc6OTldljqvVs3QPn/AgnQArBSToZVDJmrI//2e3F6v1XEAAAAAdIFCZ4ByOJ2ae91NXZY6rQ6XXqucrp3puRakA2CFiGHT3yqmaPj9/0KZAwAAACQ4Cp0B7Eipk5HdeakTsTv054oztTmryIJ0APpTyGbXm6PO1tivfVsen8/qOAAAAABOgkJngHM4nZp3/U3KystXuLW1w/WYzaY3hkzUuvzBFqQD0B9a7E69OX6uxi/+JnvmAAAAAEmCQgeHZ+rcqGBpmUKdlDoyDL1TOkbvDhohs//jAehDdW6//jbjUk2662tyuFxWxwEAAADQTRQ6kCTZ7HbNuuIalVRUKtTS0uk9nxRW6M3BExQ1+LYBUsEOf7bWzLlaZ958p+wOh9VxAAAAAPQAfzNHO5vNphmXXK6K8RPV2tLc6T2bcor16vAZanK6+zkdgN60PmuQPp1/vaZf8yXZbPxRAAAAACQbXsUjjmEYmnTe+Rp31pwuS52atCy9POJs1fgy+zkdgNMVk7QmWKE9F9+oqRdfJsMwrI4EAAAA4BRQ6KBTI8+crukXLlRrc7NMs+POOU0ur16tmqlNnIAFJI2wza4/lY6T89rbNfHceZQ5AAAAQBKj0EGXykeN1rnXXKdoJKJYLNbhetRm19+GTtIHRVVslgwkuAaXVy8PnaIhty5W5fhJVscBAAAAcJoodHBCwdJyLbj1DjndbkVCoU7v+aioUn8dOllhm72f0wHoju3peXp51BxN/crXVVA22Oo4AAAAAHoBhQ5Oyp+RqQW33K7comKFWjs/AWtrVqFeGXGW6jxp/ZwOQFdikt4LDtWqifM09857lJ6VZXUkAAAAAL2EQgfd4nC5dM4116li3ESFmjvfLLnOm6GXR5ytz3OK+zkdgOO1OFx6tWyC9k67QOffcItcbo/VkQAAAAD0IgoddNuRE7CmzL9I4ZaWTjdLjtgdemvwBK0oH8cSLMAi+/wB/W7IVAXmLdTMSxfJZudnEQAAAEg1DqsDIPkMHTtOgbx8Lf/v5xWNRWW3d/w2+iK3VDX+LM364l1ltdRbkBIYmNbllumdQSM0Y9HV7JcDAAAApDBm6OCU5BQWacH/uUvpWTkKt7Z2es9Bb7peHnGWqnNL+zkdMPA0O1x6rWy8Ph49Qxfd/lXKHAAAACDFUejglHl8Ps2/4RZVTpik1uamTpdgRe0OrSwfpzcHj1eok5k8AE7ftsygfjt0mhwz52r+jbfK4/dbHQkAAABAH+Nv2DgthmFowjlzVThkqFb8z+8Uk9npEqyNOSXanZ6r6Zs/1KBD+yxICqSesM2ut4tH6dNAoc688BKVjxhldSQAAAAA/YQZOugVheVDdPFtX1FGdk6XR5s3ubz6U+U0rSoby4bJwGna68/SsmHTtaV4uBZ8+U7KHAAAAGCAodBBr/H4fDr/S7eoatJUhZqbO12CJUkb8sr1+1FztCs9p58TAskvahh6r6hKvy+fqNyJZ+qiL9+utEDA6lgAAAAA+hlLrtCrDMPQ+NnnqmjIUK34/TJFQiE5XK4O9zW6fXqtcrqq9m7ShB2fyhmLWpAWSC77/Fl6c9BI1afnaPYll6qwfIjVkQAAAABYhEIHfSJYWq6Ft9+t1X98SVs/+1Quj0eGYcTfZBhaHxyiHZn5mr55rQoa9lsTFkhwIbtD7w8aoY/Sgxo0rFJzFiyU0+W2OhYAAAAAC1HooM84XC7NXHi5tn+xQatfflGRcFgOp7PDffWeNP1v1QwN2b9Nk7atkzfS+THowEC0OatQqwaNULPdrWnzLtTg0WOsjgQAAAAgAVDooM8VD63Uwjvu1sqXfq8dn1fL7fV2et/GnBJtyyzQ+J3rNXzvZtnU+R48wEDQ4PJqdelYbXRnKLegSHMvv4rjyAEAAAC0o9BBv3C63Jp1+VXatuEzrfnji4pGo53O1gk7nHq7dIw+zy3V1C0fKb+x1oK0gHVihqFP84fovfyhitgdmjRrjirGT+q4ZBEAAADAgEahg35VUjlcwbIyrXr5D9pRvUEur7fTv6ge8GXqj1UzNaxmqybu+FSeSMiCtED/2pYZ1LvFI7RPDhWVD9G0ixZ2OaMNAAAAwMBGoYN+53J7NOvyq7Rny2at+uOLam5okMvdyQavhqHP88q0NatQZ+zcoOH7Nstuxvo/MNDHDngz9E7JKG1zZ8jt9WrOhRercPBQq2MBAAAASGAUOrBMsKxcl9z2FX28coXWrV4pm8Mmu73jt2TI4dI7paP1aXCwxu9Yr8EHdojFJ0gFTU63Phg0QtVZgxQOh1QxboLGzz5Xdge/NQMAAAA4Mf7WAEvZbDaNnXm2KsZN0KqXf6/dmzd1uQyrwe3Xm0Mm6pPgUE3cvk5F9TUWJAZOX9hm17rgUH1cMEyNrSEFMjM145LLlZmTa3U0AAAAAEmCQgcJwZuWpnOuvk47N36uNX98Sa3NzXJ2tgxL0gF/QK8Pn66ig3s1Yfs65TQf6ue0wKmJGjZV55bq74UVOmgacjtdmjb3QpWPHMWmxwAAAAB6xGZ1AOBYRUOGaeEdX9XIM6crGokoHOp6M+Sdmfl6aeQs/W3wBB30pPVjSqBnooZN6/PKtWzMuXqraITqbU6NPHOmFt7xVQ0eNZoyB0hRP/zhDzVnzhyVlJRo6NChuvrqq7Vu3bq4e+68804FAoG4t/POO8+ixAAAIJkwQwcJx2a3a+zMWaqaPFUfLP+zNn38kWwOe6f768gwtCmnWJuyB6msdqfG7qpWNjN2kCCOnZHT4HArHGpVWVWlJs+9QC6Px+p4APrYihUr9OUvf1kTJkyQaZp69NFHdemll2rNmjXKyspqv2/27NlaunRp+2OXy2VFXAAAkGQodJCwXG6Pps6/SGNmnq13/vcV7fjic7ncbhm2TiaWGYa2ZA/SluxBKq7brTG7qpXfWNv/oQHFFzmNTo9Czc3KC+Zq6oWXKCM72+p4APrJsmXL4h4vXbpUpaWlWr16tS644IL2cbfbrWAw2N/xAABAkqPQQcLzpaVr1qKrVVezT2+/+pJqduzocuNkSdoeKND2QIEKDu3T2F0bVFi/v58TY6BqtTtVnVuqT4ND1Oj0qLW5SVnZGTrr0isULC2zOh4AizU0NCgWiykQCMSNr1q1SsOGDVNmZqZmzJihf/7nf1ZeXp5FKQEAQLIw6urqTKtDAD2xZ+sWvffn11S7Z7fcPt9J9x/JazigkXs2qrRul2wm3+7ofYfcPn2aP0Sf55YqbLO3FTn5BZp47jyKHADtbrrpJn3xxRf661//KrvdLkn63e9+J6/Xq7KyMm3dulXf/e53FYvF9Ne//lXuLg4HqK6u7tOcl77ODFegJ/5nbtbJb0oSBT/5ltURgKSy+67v9PnnqKio6PIahQ6S1r7t2/T+8j+pZucOuT2ezpdiHcMXatbwfZtVsW+LvJGuN1sGumt3Wo7WBYdoW6BApnS4yAlqwjnzVFBWbnU8AAnkm9/8ppYtW6ZXX31V5eXlXd63a9cujRkzRs8884wuueSS/gt4jFE/eduSzwskq0/ummJ1hF5Tf9+1VkcAkkr6k/9l6ednyRWSVl5xic7/0s06sHu33v/La9q7baucHo9sXRQ7TS6vPhg0QmsLK1Veu1NVezcpr7Gun1Mj2UUNmzZnFWldcIgO+AMyTbO9yJm5cBFFDoAOHnjgAS1btkwvvvjiCcscSSosLFRRUZE2btzYP+EAAEDSotBB0ssuKNB5/3CDDu6v0ft/fl27tmyU0+mS7fB09uPFbHZtzCnRxpwS5TbUqmrfJpUf2Cm7Gevn5EgmB7wZqs4t1cacYoUcLkWjEUWam5U3qFhnnD1H+SWlVkcEkIC+8Y1v6P/9v/+nF198UZWVlSe9f//+/dq1axebJAMAgJOi0EHKyMzJ1ZyrrlVDXZ0+fOMv2rnxc0UjkRMeD12TlqUVaVlaUzJGg2t3aGjNNk7HQruQ3aGN2cWqzi3VAX/bJqah1hbZFFbxsOEaN2uO/BmZFqcEkKi+9rWv6Te/+Y3+8z//U4FAQHv27JEk+f1+paWlqaGhQd/73vd0ySWXKBgMauvWrfrOd76jvLw8LViwwOL0AAAg0VHoIOWkBQKaufByRUIhffbeO6pe+74aD9bJ7e16A+Www6kNeeXakFeu9JYGDd2/XUP2b1d6qKmf08NqpqTd6Tn6PLdUW7KKFLXZZZqmQs1N8vrTNOrMGRox5Uw5XZ1vVgoAR/z85z+XJC1cuDBu/Bvf+IYeeOAB2e12rVu3Tr/+9a918OBBBYNBnXXWWfrFL36h9PR0KyIDAIAkwqbISHmmaWr3po36+8o3VbNzhxxOp+yObnSZpqlgw34N3b9dZQd2yhWL9H1YWMKUtM+fpS1ZRdqSVahGt0+S2pZVtbYqkBdU1ZRpKh85qss9mgAgVbApMtAzbIoMDFxsigz0McMwVDhkqAqHDFXjoYP6aMUb2vH5BoWaW+Tyers+9twwtCc9V3vSc7W6dIwKD9WotG6XSup2c0pWCji2xNmcXaQml7dt3DQVamqS2+tV8bBKjZ5+ljKyc6wNCwAAAADHodDBgOLPyNS0Cy9RLBrVturPtOG9d7R/106ZpnnCvXZiNrt2BILaEQhqlWkqv+GASut2qbR2N8uykkhMUo0/S5uzi7Ql62iJI0mRUEixWFQ5hUUaPnGKSiqrutxYGwAAAACsRqGDAclmt6usaqTKqkYq1NKiDe+/q83r/q6D+2vkdLlPvCTLMLQ3PUd703P0bsloZTUdVGntLg06tFc5jQdlE6sYE0mT062dGfnakZmvnRl5Cjlc7ddi0ahCLS3yZWRq2LjRGjl1urxpaRamBQAAAIDuodDBgOfyeDR6+kyNnj5Thw7s17rVK7Vz0xdqqj8kt8d70lkatb5M1foytXZQlZyRsArqa1R0aJ8K6msUaGnop68CR0QNm/amZbcXOLW++FOojpY4GSocPETDJ01VdrCg66V3AAAAAJCAKHSAY2Rk5+jMCy+WaZrav3uXqj94V3u3blXDwTo5nE45nM4TfnzY4dS2rEJtyyqUJPlCzSo4VKPC+n0qPFQjf7ilP76MASVss6vGH9C+tGztTcvWnrQcRezxv7XFolGFWlvkS6fEAQAAAJAaKHSAThiGodzCIuUWXiJJqq89oA3vv6tdmzfq0P79stlscrpPfmx1k8urjbkl2phbIqmt4MltrFVuY53yGmqV01QnZyzap19Lqml0erT3cHmzLy1bB3wZMo2OJ0+FW1sVjUXlz8ikxAEAAACQcih0gG5Iz8rWxHPnSZKaGur1xdoPtXPj5zq4f5/CLa1yeTzd2kC3yeXVVpdXW7OKJEmGaSqzuV55h0uenKY6ZbY0yEHJI1NSvdunWm9G25svQ/t9gfYjxY8Xi8UUam6S0+NRIDdfhYOHasjoMfJnBvo3OAAAAAD0AwodoId8aekaM+MsjZlxlmLRqGp27tCmjz9Sza4dqq89oGg4LLfXJ8PWcdbI8UzDUJ0vQ3W+DFXnlR0eNJUWalKguV6ZzfUKtDQos6Vemc0NcsUiffzV9T9TUrPTrUPuNNX6MtoLnDpveoelU3EfZ5oKNTdLhqH0rCzlFBZpyJhxyi8u4XQqAAAAACmPQgc4DTa7XfklpcovKZUkhUOt2r15kzav+0R1e/eo8WCdIpGIXF6P7CcoJ+IYhhrcfjW4/doeKIi75As1K6OlQf5Qs/yhFvlDzfKFmtseh5vliiZm4dNqd6rB7VO926cGl08N7ra3+sPvx2wnL2DaNjNult3hVFogoIycXA0aWqGiIcM4mQoAAADAgEOhA/Qip8utksoqlVRWSWoreA7s2qVt1Z/pwJ7daqg9oJbGRpky5fZ4uzWL51hNLq+aXN6uP38kLH+4Wd5wq1yRsFzRsFyRkNzRI++3/eqOhOWIRWWYMdlMUzYzJkPm0ffNtvclKWYYiho2xWw2xQyboja7Ise8he0OtTpcanG41eJwHX7fpRanu/397hQ2xzJNU6HWFsWiUbm9PmVk5ygrGFRp5QjlFg2Sw+U6+ZMAAAAAQAqj0AH6kNPlVrCsXMGy8vaxpoZ67dmyRTu+qFb9gf1qqj+k1pZmxSJROVxOOZyuU964N+xwqs7hVF3XnU/CiYTDCre2yuawy+P1y5+ZIX9mloIlpcovLVNGdg4bGQMAAADAcSh0gH7mS0vX4FGjNXjU6Pax1uZmHazZp73bturAnl1qqj+kpkP1amlqVCwalWEz5HS5ZbPbk7LciEYiCrW2yJAhm90mp9sjr98vX0amsvKDKhw8VIG8fLm9SdREAQAAAICFKHSABOD2euP24jki1Nqihro6HaypUe3e3Wqoq1OopVmtTY1qbW5WqKVFsWhE0WhMhmHI7nDIZrfL7nD0efFjmqZi0agikbCi4YgMo21PIcNmk8PhlMfnl8ff9pYeyFZ2YYEyc/Lky8iQ03XyI98BAAAAAF2j0AESmMvtUXawQNnBgrgZPUfEolE1N9SrubFRLQ0Namw4pOb6erU0NiocalUkFGpb0hQKKRoJyzRNmbFY269x78dkxtrGbDabDJvtmF/tstvtstntsjnssjuccrrccrpd8qVlyJ+ZqbRAljx+v9xer1werxxOpwX/tQAAAABg4KDQAZKYzW6XPzMgf2bA6igAAAAAgH7UsyN2AAAAAAAAYDkKHQAAAAAAgCRDoQMAAAAAAJBkKHQAAAAAAACSDIUOAAAAAABAkqHQAQAAAAAASDIUOgAAAAAAAEmGQgdAQhgzZox+/OMfWx0DAAAAAJIChQ6AU3LnnXcqEAjo7rvv7nDt4YcfViAQ0NVXX21BMgAAAABIfRQ6AE5ZcXGx/ud//keNjY3tY5FIRL/+9a9VXFz8/9u7/6Cqq/yP46+rwLUUuU0KOPLLC6FiaImJsRCoZZZF4kgokgWJs2y66NovzXUzNU23Glut2dk0ca4ZVLhsFjlKjqCEziS5zG6raZY6q9yLDsaICHLv9w/H++0OWJLQh9s+HzN3xs/7nM+573Nn9I+Xn3uugZ0BAAAAwK8bgQ6An23YsGGyWq3atm2bu7Zjxw6ZzWYlJia6awcPHlRaWpqsVqtCQ0M1ceJEHThw4EfXPn/+vPLz8xUVFaWQkBA9+OCDqq6u7rK9AAAAAIA3IdABcEMee+wxbdmyxX1ts9k0Y8YMmUwmd62hoUEZGRkqLS1VWVmZYmNjlZ6ernPnzrW7psvlUkZGhk6fPq3CwkKVl5crISFBqampOnPmTJfvCQAAAAC6OwIdADckPT1d1dXVOnbsmGpra1VWVqbMzEyPOcnJyZo2bZoGDx6s6OhorV69Wr169dLOnTvbXbO8vFw1NTUqKChQXFycrFarFi9erPDwcBUWFv4S2wIAAACAbs3H6AYAeDeLxaKHHnpINptNAQEBSkxMVGhoqMcch8OhFStWqKKiQg6HQ62trbp48aJOnTrV7pqHDh1SY2OjoqKiPOpNTU06fvx4l+0FAAAAALwFgQ6AG5aVlaW8vDz17t1bixYtajOel5cnu92ul19+WWFhYTKbzUpNTVVzc3O76zmdTgUGBqq0tLTNmL+/f6f3DwAAAADehkAHwA1LTk6Wr6+vzp49q0mTJrUZr6qq0qpVq3T//fdLkux2u2pra6+53ogRI2S329WjRw9FRER0VdsAAAAA4LUIdADcMJPJpH379snlcslsNrcZj4yMVFFRkUaNGqXGxkYtWbJEfn5+11wvJSVFY8aMUWZmppYuXarbbhXBD40AAA7hSURBVLtNdrtdu3btUkpKihISErpyOwAAAADQ7XEoMoBO4e/vr759+7Y7tm7dOl24cEEpKSnKyclRVlaWwsLCrrmWyWRSUVGRkpKSlJ+fr7vuukvZ2dk6evSoBgwY0FVbAAAAAACvYaqvr3cZ3QQAAAC6h2FvHjC6BcCr/Ot3o41uodM0zJ9udAuAV/F/fauh788TOgAAAAAAAF6GQAcAAAAAAMDLEOgAAAAAAAB4GQIdAAAAAAAAL0OgAwAAAAAA4GUIdAAAAAAAALwMgQ4AAAAAAICXIdABAAAAAADwMgQ6AAAAAAAAXoZABwAAwGBvv/22hg8frqCgICUnJ6uystLolgAAQDdHoAMAAGCg4uJiPf/881qwYIHKy8s1evRopaen6+TJk0a3BgAAujECHQAAAAOtX79emZmZevzxxzV48GCtWbNGQUFB2rhxo9GtAQCAbszH6AYAAAD+VzU3N+vLL7/U3LlzPerjxo3T/v37DenpX78bbcj7AjCe/+tbjW4BQAfwhA4AAIBBzp49q9bWVvXv39+j3r9/f9ntdoO6AgAA3oBABwAAAAAAwMsQ6AAAABjk1ltvVc+ePeVwODzqDodDgYGBBnUFAAC8AYEOAACAQfz8/HTHHXdo9+7dHvXdu3crPj7eoK4AAIA3INABAAAw0FNPPaV3331Xmzdv1uHDh/Xcc8/pzJkzys7ONro1eLmVK1fq7rvvNroNAF0gNjZWf/nLX4xuAwYj0AEAADDQlClTtHLlSq1Zs0ZJSUmqqqpSUVGRwsLCjG4NHZCXlyeLxdLm9c9//tPo1gB0A1f/jZgzZ06bsT/96U+yWCzKyMgwoDN4M362HAAAwGCzZs3SrFmzjG4DNyglJUV//etfPWq33nqrQd0A6G5CQkL097//Xa+88op69+4tSbp8+bLee+89hYSEGNwdvBFP6AAAAACdwGw2KygoyOPl4+Oj0tJSJScnKygoSMOHD9eyZcvU3Nzsvi82NlavvPKK8vLyFBISomHDhqm4uFj19fXKycnRwIEDNXLkSH322Wfue1pbWzVnzhwNHz5cwcHBGjlypNauXSun0/mjPdpsNsXHxysoKEhxcXFav379T94DoHMMGzZMVqtV27Ztc9d27Nghs9msxMREd+3gwYNKS0uT1WpVaGioJk6cqAMHDvzo2ufPn1d+fr6ioqIUEhKiBx98UNXV1V22F3QPBDoAAABAFykrK9Ps2bOVm5urqqoqrVu3TiUlJXrppZc85r311luKi4vTnj17NHnyZOXl5Sk3N1f33XefKioqlJCQoNmzZ6upqUmS5HQ6NWDAAG3atEn79+/XH//4R7366quy2WzX7KWgoEDLli3TokWLtH//fi1fvlxr167V22+/3aWfAYD/99hjj2nLli3ua5vNphkzZshkMrlrDQ0NysjIUGlpqcrKyhQbG6v09HSdO3eu3TVdLpcyMjJ0+vRpFRYWqry8XAkJCUpNTdWZM2e6fE8wDoEOAAAA0Al27dqlgQMHul9Tp07Vn//8Z82dO1dZWVkaNGiQ7rnnHr344ot655135HK53PeOHz9es2bNUmRkpBYuXKhLly5p0KBBmj59uqxWq5555hnV1dXpq6++kiT5+vrqhRde0MiRIxUeHq60tDTl5OToww8/vGZ/a9as0dKlS/XII48oIiJCDzzwgObNm6cNGzZ0+WcD4Ir09HRVV1fr2LFjqq2tVVlZmTIzMz3mJCcna9q0aRo8eLCio6O1evVq9erVSzt37mx3zfLyctXU1KigoEBxcXGyWq1avHixwsPDVVhY+EtsCwbhDB0AAACgEyQkJGjt2rXu6169emnUqFE6ePCgR93pdOrixYuqra1VcHCwpCtfxbiqT58+uvnmmz1qgYGBkiSHw+Gubdy4UZs3b9bJkyfV1NSklpYWhYaGtttbXV2dTp06pfnz52vBggXu+uXLlz2CJQBdy2Kx6KGHHpLNZlNAQIASExPb/L11OBxasWKFKioq5HA41NraqosXL+rUqVPtrnno0CE1NjYqKirKo97U1KTjx4932V5gPAIdAAAAoBPcfPPNslqtHjWn06nnnntOkydPbjO/X79+7j/7+vp6jJlMJvn4+HhcX11PkoqLi7Vw4UItW7ZMo0ePVt++ffW3v/1N27dvb7e3q/e99tprio+P/xm7A9BZsrKylJeXp969e2vRokVtxvPy8mS32/Xyyy8rLCxMZrNZqampHmdv/ZDT6VRgYKBKS0vbjPn7+3d6/+g+CHQAAACALjJixAgdOXKkTdBzoz7//HPFxcVp9uzZ7tqP/U98YGCgBgwYoOPHj2v69Omd2guAjklOTpavr6/Onj2rSZMmtRmvqqrSqlWrdP/990uS7Ha7amtrr7neiBEjZLfb1aNHD0VERHRV2+iGCHQAAACALvLss88qIyNDoaGhSktLk4+Pj7766it98cUXbQ5G7oioqCht3bpVO3fulNVq1YcffqjKykoFBARc856FCxfq2WefVUBAgCZMmKCWlhYdOnRIp0+f1h/+8Ief3QuAjjGZTNq3b59cLpfMZnOb8cjISBUVFWnUqFFqbGzUkiVL5Ofnd831UlJSNGbMGGVmZmrp0qW67bbbZLfbtWvXLqWkpCghIaErtwMDcSgyAAAA0EXGjx+voqIi7d27V+PHj9f48eP1+uuvKyQk5IbWzc7O1uTJkzVr1iyNHTtWJ06c0FNPPfWj98ycOVPr1q1TYWGhEhMT9cADD6igoEDh4eE31AuAjvP391ffvn3bHVu3bp0uXLiglJQU5eTkKCsrS2FhYddcy2QyqaioSElJScrPz9ddd92l7OxsHT16VAMGDOiqLaAbMNXX13MKGgAAAAAAgBfhCR0AAAAAAAAvQ6ADAAAAAADgZQh0AAAAAAAAvAyBDgAAAAAAgJch0AEAAAAAAPAyBDoAAAAAAABehkAHAAAAAH4lJk2apEmTJhndBoBfgI/RDQAAAACAt6mrq9Obb76pTz/9VCdOnFBLS4uCg4M1ZswYzZgxQ/fcc4/RLQL4lSPQAQAAAIAOqK6u1qOPPqrvv/9eaWlpys7Oltls1okTJ/TJJ58oNTVV77//vu677z6jWwXwK0agAwAAAADXqb6+XjNmzFCPHj1UUVGh6Ohoj/HFixfrH//4h3r37m1Qh53H5XKpqalJN910k9GtAGgHZ+gAAAAAwHV655139N///lcrV65sE+ZclZqaqoSEBI/amTNnNHfuXEVHRyswMFCjR4/Whg0bPOZUVFTIYrHogw8+0KuvvqqYmBgFBQUpNTVV33zzTZv32bRpk+644w4FBwdr3LhxqqysbLefS5cuadWqVRo5cqQCAwM1dOhQLVy4UI2NjR7zLBaL5s+fr+LiYiUkJCgwMFDFxcUd+XgA/IJ4QgcAAAAArtOnn36qm266SQ8//PB13+NwOHTvvffK6XTqySefVP/+/bVnzx4tWLBA586d0zPPPOMxf+3aterZs6fmzJmj77//Xm+88YZyc3NVVlbmnrN582bNmzdP8fHx+u1vf6uTJ08qMzNTFotFAwcOdM9zuVzKysrSvn37NHPmTA0ZMkSHDx/Whg0b9J///EfFxcUymUzu+ZWVlSopKVFubq6CgoKuGVoBMB6BDgAAAABcp8OHDysqKkq+vr4e9YaGBjU3N7uvzWaz+vTpI0lavny5mpubVVlZqX79+kmScnJy9Pvf/16vvfaacnNzZbFY3PdeunRJe/fulZ+fn6QrT848//zz+ve//62YmBi1tLRo2bJlio2N1UcffeSeN2TIEM2dO9cj0Pnggw+0a9cuffTRR0pMTHTX77zzTs2ePVu7d+/WuHHj3PUjR45oz549Gj58eGd9ZAC6CF+5AgAAAIDr1NDQ4A5qfig/P1+RkZHu19Wnblwul0pKSjRhwgSZTCadPXvW/Ro3bpwuXryoL774wmOtadOmuUMaSbr77rslSd9++62kK4cyOxwOPf744x7zpk+froCAAI+1tm3bpqioKA0dOtTjvX/zm9/IZDKpoqLCY358fDxhDuAleEIHAAAAAK5Tnz591NDQ0Kb+9NNPa+bMmZKuBDJX1dXVqb6+XjabTTabrd01HQ6Hx3VISIjH9dWnd+rr6yVJJ0+elCRFRkZ6zPPx8VF4eLhH7dixY/r666/bzL3We0dERLQ7D0D3Q6ADAAAAANdp8ODBqqmpUUtLi8fXrmJiYhQTEyNJ6tmzp7vudDolSVOnTlVWVla7aw4ZMsTj+of3/5DL5epwv06nU0OGDNGqVavaHQ8ODva45hetAO9BoAMAAAAA12nixIk6cOCASkpKNHXq1J+c369fP/n7++vy5ctKSUnplB5CQ0MlXXn6ZuzYse765cuX9d133+n222931wYNGqQvv/xSycnJHocfA/B+nKEDAAAAANcpJydHwcHBeuGFF3TkyJGfnN+zZ0+lpqbq448/Vk1NTZvxurq6Dvdw5513ql+/fiooKPA4iHnr1q06f/68x9y0tDTZ7fY2P5EuXTl8ub2vjwHwDjyhAwAAAADXyWKxaMuWLXr00UeVlJSkKVOmKC4uTn5+fjp16pS2b9+uCxcueJyD8+KLL2rv3r2aMGGCZs6cqaFDh6q+vl41NTXavn27amtrO9SDr6+vFi9erHnz5unhhx/WlClTdOLECW3ZsqXNGTgZGRkqKSnR008/rX379mnMmDFyuVw6evSotm3bpk2bNikpKakzPhoAvzACHQAAAADogLi4OFVVVWn9+vXasWOHSkpK1NraquDgYMXHx2vlypVKTk52z+/fv7/Kysq0evVqffzxx9q4caNuueUWRUdHa/ny5T+rhyeeeEKtra164403tGTJEsXExOjdd9/VihUrPOb16NFDNptNb731lrZu3apPPvlEvXr1UkREhJ588kmPr2cB8C6m+vr6jp+sBQAAAAAAAMNwhg4AAAAAAICXIdABAAAAAADwMgQ6AAAAAAAAXoZABwAAAAAAwMsQ6AAAAAAAAHgZAh0AAAAAAAAvQ6ADAAAAAADgZQh0AAAAAAAAvAyBDgAAAAAAgJch0AEAAAAAAPAy/wdnKGzZcFfe8QAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "