diff --git a/22-05-28-SVM/April_SVM.ipynb b/22-05-28-SVM/April_SVM.ipynb new file mode 100644 index 0000000..d6a6296 --- /dev/null +++ b/22-05-28-SVM/April_SVM.ipynb @@ -0,0 +1,670 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "April SVM.ipynb", + "provenance": [], + "authorship_tag": "ABX9TyPBPfhh93RhCpfXA1fZhDqW", + "include_colab_link": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "code", + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from mlxtend.plotting import plot_decision_regions" + ], + "metadata": { + "id": "wFsWv0tPW4JN" + }, + "execution_count": 2, + "outputs": [] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "mwTQfxwJT_i1" + }, + "outputs": [], + "source": [ + "from sklearn.datasets import make_circles\n", + "\n", + "X, y = make_circles()" + ] + }, + { + "cell_type": "code", + "source": [ + "plt.scatter(X[:, 0], X[:, 1], c=y)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 282 + }, + "id": "EaoQ-9UkWvfB", + "outputId": "4109a5c3-9791-4e2f-b521-34dec3f2025a" + }, + "execution_count": 3, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 3 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD4CAYAAADhNOGaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydd5gUVdaH39O5J5MRUEHFgJgRc1ZUVMCAYljDqrjqGtesnznCqmt2May6rhgwoRgWXXNAMCAmEEHJMDB5Onef749qYGa6JzHd1RPu+zz9zMytunV/A1P3VN17gqgqBoPBYOi6OHItwGAwGAy5xRgCg8Fg6OIYQ2AwGAxdHGMIDAaDoYtjDIHBYDB0cVy5FrAh9OzZUwcOHJhrGQaDwdCh+Prrr1eraq+G7R3SEAwcOJBZs2blWobBYDB0KETkj3TtZmnIYDAYujjGEBgMBkMXxxgCg8Fg6OIYQ2AwGAxdHGMIDIZmqKmoZc4nP7PstxVtvlawNsQPn/7MHz8tzoAygyEzZMRrSESeBI4EVqnq0DTHBbgPGAkEgNNV9ZvksdOA65Kn3qqqT2dCk8HQVlSVZ256kRcnvI7L4yIWjbPVsM258dXLKepe2OrrvTlpOo9e+jROl4N4LEG/zftw65tX03vjnllQbzC0nEy9ETwFHNbE8cOBwcnPeOARABHpDtwA7AYMB24QkW4Z0mTootRWBXjx71O54uCbmHjGQ8z/duEGXefjl75gyt1vEAlFCVQFiQQj/DzjV+44+b5WX+uHz37h0UufIhwIE6gKEg6E+eOnJVxz+G1sSAbgQHWQl//xJlcccjN3nfYAc2fOb/U1DIa1ZOSNQFU/FpGBTZwyGnhGrb/4L0WkREQ2AvYHpqtqGYCITMcyKJMzocvQ9agqq+bcXa6gclUV4WAEh0P46KXPueyJ89j/hL1ada2X7p5KqDZcry0WiTH7w5+oKK2kpFdxi6/12v1vEQlG6rUl4glW/lHKgu//YPMdBrb4WrWVtZw37CrWLCsjHIwgDuGTl7/kokfGc8if9mvxdQyGtdi1R9AfqLsouiTZ1lh7CiIyXkRmicis0tLSrAk1dGxevudNyldUEE5OuomEEg5EuO/cx4hFY626VuXq6rTtTreTmvLaVl2rbEUF6R78HU5Ho+M0xusPvcPqpWvW/Y6a/B0fOP9xIqFIM70NhlQ6zGaxqk5S1WGqOqxXr5QIaUMnYPHcpTx25b+5+8yH+ey1r4jH462+xmevf0U0nDrhx+Nxfv+xdRu0ux62I06XM6Xd43Wx0WZ9WnWt3Y/aBa/fk9Iei8TZathmrbrWp69+RSQUTWkXhzD/u99bdS2A5QtW8uS1z/H3Pz/ERy9+3mqDaej42JViYimwcZ2fByTblmItD9Vt/9AmTYZ2xP8mf8I9Zz1KLBonHovz4UtfsNWwzbnz3etwuVv+Z1rYrSBtezyWoKAkv1WaTrr2WD6e8iWBqgDRcAwRweN3c+FDZ6c1EE1xxPhDePPR6axZVrZuEvfmeTn95hPIL26druIe6Teq47E4hd1ad60v3pjFbSfeSzyaIBaN8dGUL3np7qnc89HNeHyphsvQObHrjWAqcKpY7A5Uqupy4F1ghIh0S24Sj0i2GboQoUCYe8f/k3AwQjxmvQWEakLMnTmfDyZ/1qprHXPxkfjyvfXaHE4Hg7bbhL4De7fqWj37deexOfdw7CVHsdWuW7Dv2N35+/9uZL/j92zVdQDyi/J45Ou7OOX/jmPr3Qaz+5G7cPPrV3LcpUe1+lpjLhyZ9nfsv8VGbLxV2pXVtEQjUe467QHCgci6t4BQTYjff1jMtMfea7UuQ8clU+6jk7Ge7HuKyBIsTyA3gKo+CryF5To6H8t99IzksTIRuQWYmbzUzWs3jg1dhx8/+wWHM/WZJFQb5n/Pf8ohp7Z8A3Tvo4cz/9sjeOnvb+DxuYjHEvQd2JsbX7l8g7R1613MmbeftEF9G5JfnM+JVx/DiVcf06br7DZyZ064YjTP3f4qHp+beCxOr417cMvUK1t1nfnf/o4mUjcuwsEIH0z+lKMvGNkmnYaOQ6a8hk5s5rgC5zdy7EngyUzoMOSWeCze6iUTwFqCaMSD0t/gybc5RIQzbjmRoy8cybxZC+jet4TNdxyIFcrSeTjl/8Yy6rzD+OWr+ZT0LmLwzpu1+nf0+NwkEom0x3x5rft3X8va6zkcHWb70UAHTUNtaD+oKq/eP43nbnuFytXV9N6kJ+Mnnsp+Y/do8TWG7LklHr+HQHWwXrsv38vIsw/ZIF0lvYoZfvhOG9S3o1DUo7BNv+Nm229KSa9iVtSsqtfuy/dy5F9GtOpaZSvKue/cx5gx7RtUlWGH7sDFj55DrwE9NlifwT6M2Ta0iZfufoMnr31+nQvkqkWrmXjGg3z55tctvobT6eS2aVdT2C2fvEI/vnwfHp+b0ecfxrARO2RLepdHRLhl6lWU9C4ir8iPL9+Lx+fmkFP3Y59jd2/xdWLRGBfteR0zpn1DPBYnEU8w693ZXLD71cadtYMgGxLVmGuGDRumpjBN7kkkEhzT8wxqKwIpxzbbflP++d3fW3W9SDjKrHe+o7q8hp0OHErvTYybsB3EojG+/u9sKkqr2H7fIa12jf301RlMOP1BgtWheu3+Ah8XPTKeg07eJ5NyDW1ARL5W1WEN283SkGGDCVYHCTeIvF3L8gUrW309j9fNnqN3bassQytxuV3sdsQuG9x/ybzlhAOpT/7BmhCL5y5tizSDTZilIcMG4y/0k1fkT3tswJb9bFZjyBUDt90Yb15qzIG/wMegoZvkQJGhtRhDYAAsn/LWLhM6HA5Ou+kEvA08TLx+D2fekRmXS0P7Z9fDd6Rn/x64POsXGJwuJ8U9i9hzTOvf8GLR2AYl4jNsOMYQdHG+nj6bM7a5iCP8JzO65FSevO65dUFdLWHUeYdxwYNn0mfTXrjcTgYO3ZgbXr6MXQ4xm7xdBafTyT8+vYUDT9wbX74Xb56X/Y7fg/u/vB23x93i6/z05Tz+svPljPSdxFEFp/DghU+YzWabMJvFXZhfvvqVyw68sd76rjfPw4jT9ufCh87OoTJDV2PJvGWcu8sV9bK9enxudj18J258ecOCAQ2pNLZZbN4IujDP3jIlZZMvHIjw7r8+oLayddk1DYa28NLdU1MS6UVCUWa+/S2rFplsw9nGGIIuzKKf03t0ON0uSpeYTB8G+1g4ZxGJeGqUs9vrZtlvrfdAM7QOYwi6MI2lXojH4vTZ1JRPrItqHA1/iNY8gganodq6tWuNzkNrHkNrn0Xjq7OksuOy5bDNcbpT05NEQlEGbGU80LKNMQRdmD9dPxZPgxz53jwvR184En9BerfQjo7GV6CRr9FERcv7JGrQNWPQikvQmvvQquvQ0gPQ2JLm+6qSqLoVXXMcWnMvWj0BLT2QRHB6y8fXBBr9CY3OQbX1NRo6AsddelRK2muv38P+J+xJz37dc6Sq62AMQRdms+03ZeL7NzBkjy1xe1306NeNP992YsaybbYnVIMkys9FSw9By8ejq/YhUXV7i9wUteZeiC0ArQUS1tfEGrTyquYHjsyAwEtACIglv4ag8jI00fw+jEbnoKX7oWUnoWWnoqv2QsMzmh+3g9F3YG/u++xWdjpoO9xeN8W9ihh39dH87fFzcy2tS2C8hjoBsz/6kdceeJuKVZXsMWpXjjznEPIKO+cT/YaSqLwKgtOAupHQfii8Akf+yU33Xbk7pM2O7kJ6z0IceU2Mew0EXyYlvaoUIMV3IL5DG+2riVq0dB/QmgZ985Ce7yNOk9CtLt9//BOv3v9W8j4YxpHnjDD3QQNMiolOyiv3T+PJayYTDlgT3LyvF/DWY+/x8Ky7OuVNoPGlaM1jEP0anAORgvGIe7um+2gEgm8CDdf1gxB4EpoxBI3myG6Z4kb6t+Ca4emgadJEaxxCb0D+6U2PnKhFA89C6G2QQiT/FPCO6HQpuQFee/BtHr/qP/Xug2mT3uORryd0yvsg05iloQ5MbVWAJ69+bt0fP0AkGGH1kjVMm9TyNeiOgsYWoqtHQfBFiM2F8H/RNSejoQ+a6Rig0Ym3JXsFviNI1lmqgwPcOzX5NgAgvqNA0kxEGgfPXk2PmygDUmsTQxhNNL3hrBpC1xwHNQ9C7CeIzkArr0CrJzQ9ZgckWBPk8SufTb0Plpbx5qP/zaGyjkNGDIGIHCYic0VkvoikLJyKyL0i8l3yM09EKuoci9c5NjUTeroK82b9ltbTIhyM8MXUzrd0ptV3J9fp1xZXVyCEVt3Q9Fq/FIMjXZlKAc/wZseVwovBuSlIsh6w5IGjG1J8R/OiPXuAbwzgw7rdPNb3xRMQR/r6yuv7DiftS7vkIZ6m00RrYCrEl1FvKUyDEHgWja9oXncHYt6sBbjSeRwFI3w+dWaaHoaGtHlpSEScwEPAIcASYKaITFXVn9aeo6qX1Dn/AqBuNY2gqu7YVh1dkcLuBWl9r0WgpE9xDhS1DtUIJCrB0R3rz6gZIl8BaZZKEmXWp5E1cxGB4pvR8vOxlocSgAvEhxQ2H7UqjiLoORXCH0LsZ3BuDL7DEPE131cEKb4JzTvB6i954DsccTaf6lncQ1Hv/lY/kkV7xA/uHcDTTN3kSJ0+9S8K0e/AeViz42uiGogjjpJmz80lhd0LiKe5DwBKerf/+6A9kIk9guHAfFVdACAizwOjgZ8aOf9ErJrGhjay+Q4D6bVxD5bOW06iTu1Zj9/bruvNqsbQ6okQmAwoSB5aeBmOvLFNd3R0g3gjSzmO/Ca7incf6PE8WvsYxBaCe2ek4EzE2bJi7yIu8B0MHNyi81P6u4eAe0jr+5XcA6GpaOAlIAa+Y5C8YxFp5mXe0RdwAg3dTRUcTW8ya3w5WnE5RL+1fnZtgRRPRNxbtlq/HQzabhP6bNqLxXOX1XswWusKbWieTCwN9QcW1/l5SbItBRHZFBgE/K9Os09EZonIlyIyprFBRGR88rxZpaUm5Bysp8073r6O/lv2w5fvJb84D6/fw1l3nsx2+2yTa3mNotUTkkYgBIRBy6HqFjT0XtMd888EGq63e8E3smVP5+4hOEruxdHzNRzF17fYCOQSESfiPxpHj+dw9HgRR/44RJpP5Cb5J5F2X0NKwN147QHVGLpmHERnYe1PRCH2s+W+mqhsy6+SNUSE29+6hgHJ+yCvKHkf3HESO+y3ba7ldQjs9hoaB0zR+lExm6rqUhHZDPifiMxR1d8adlTVScAksNxH7ZHb/umzaS+e+PFeFs5ZRNWaarYctnm79pJQDUPgeSwjUJcQWvMg4mv8iVv8Y9HYHxB4xlri0Ch490GKb8qq5o6IuLZAiydA1bWAWpvTzv5It0ebfpsIfwxaRcoSnEbQ4FQk/0/ZlL3B9N6kF4//cE+HuQ/aG5kwBEuBjev8PCDZlo5xwPl1G1R1afLrAhH5EGv/IMUQdBVKl6yhYlUlm2zTH6/f23wHrCeizbbfNMvKMkSikkY9eOLLm+wqIkjR5WjBOdbyjrMP4uybeY2dBIf/MNR3IMR+AclHXJs33ym+BDSW5kAIYn9kXGMmact9sOy3FQSqgwwauglOVwv2qzoZmTAEM4HBIjIIywCMA1JCU0Vka6Ab8EWdtm5AQFXDItIT2AvofP5tLaC6vIabj7ubn76Yi8vjIpFQzr7zZEad1/ymXq5RDUMk6aXk2RWR1GpV63D0APGBpilx6W7Za7w4isBj6h20BBEPuLdveQf3UBBHqq2WPMTTvE+Hxn6zDIZrC8TV/quTrfyjlBuOnsCSuctwuBy4XE7+9sR57DWmeW+yzkSb9whUNQb8FXgX+Bl4UVV/FJGbRWRUnVPHAc9rfT+/bYBZIjIb+AC4s663UVfi5rF388NnvxAJRQlUBQnVhJh0xbN8PX12rqU1iYY/RlftgVZcYH1W7YGGP2v0fBEnFF5G6lq/Hym8NKtaDS3AvRO4hgJ130bdlvutb0Sj3TQRIFF2Orr6aLTyMnT1ESTKL2h1cj47UVUuP/gmFs5ZRDgYIVgdorq8ljtOuY8/flrc/AU6ERmJI1DVt1R1S1XdXFVvS7Zdr6pT65xzo6pe1aDf56q6narukPz6RCb0dDRKl6zhp8/nEovUfyUPB8K8OLH9hlZofDVa/lcrBcK6TzVacR6aKG+0nyPvBKRkIri2sXz8PXshPf6DuIfaqN6QDhFBuj9pbcw7+lpvcHnjkB4vNfmmp9W3QuRrIJRMiRGG8EdozUO2aW8tP34+l4qVlSku2NFwjKmPdK1ANJNioh1QsaoSl8eVUpgDYPWydlwXIPQWadf7FQi9A3knNtpVfCOQJp4wDblDxGsF0RVe3KLzVRMQnEpqCo+Q5RhQeEm6bjmnfEUF4khNt5GIJyhd1LVShZsUE+2ATbbpXy8OYC0uj5NhI9rxWrhWkz4FQgQS1XarMeSMGOujvRugaYLa2gnb7D6YaCRVtzfPy66Hda0YV2MI2gFev5ez7zoFb976dVmX20l+cT4nXDE6h8qawbMX9deS1+IGbzN5dAydBhGPtcyXegQ8u9mup6X07N+DUeeOwJe//m/Y7XPTs393Dj51vxwqsx+zNNROGHXuofTfoi8v/X0qq5eWscuIHTjhitF079vNVh2qCtGZEJ0Dzv7gPbDxtWH3Dla0beh9IGC1SR74DkVa6AFk6BxI8S1o2SmgEay3Aw+IFym6psl+Gv0VIp+CFIJvhOURZiPn/P00ttltS1594C0ClUH2OW53jrn4CPz5zQcodiZMPQLDOlRDaNnplt+5RkC8lttg98mNugKqJiD8Hhp8FRDEfwx4D+qUqY4NTaPxpWjtM1ZmWPcOSN7JiDNdsj/rgUOrbk7WakgAThCQkkcR7x626u5KmHoEhmbRmkkQ/ZF1GSs1BhpEKy9DeryYto+Iw3qSMxu/XR5x9keKrm7ZyZFPIPgK9SLMFbTifOj9ZdOxKIaMYwxBFvnlq19596kPCNWG2efY3dn9yF1wONrxtkzwZepX8AJIQPRHNFGOOOxdpjJ0XjTwMmmzo4KVZda7t616WsOK31cxbdJ7rFi4kh32H8pBp+zT4ZeSjCHIEi9MfJ1/3/QikVAUTSifvvIVOx+8HTe8fFk7NgZNLRN2vCVEQ3umYVbUujTigdQOmP3hj1x31B3EojFikThfvvk1L054jQdn3klR98Jcy9tg2uuM1KFZs7ycp69/gXAggibdQkO1Ib5573tmvvNdjtU1gf9IrMIpdRFwbY44uudCkaGTIv7RQLrqbol262mkqtx12gOEasPEIpYhC9WGWb20jOfvfDXH6tqGMQRZ4Jv3vk9bMSlUG+azV2fkQFHLkPzzwDVwfSUu/Fat2+K/51KWoTPiPQi8+yfLeArrKrcVTUTSlfZsB6z4fRVVq1PjY6KRGJ+83H7v65ZgloaygC/PSzqnGYfTQV5R0zVus4HGV6GB563qWu6hSN6JaZ/wxVEAPV6D8P/QyGzEtTH4jmy+pKLB0EpEHFByL0S/RsMfgxQh/iMbzSarqhD5CA1OBRyI/2jw7Gmrd5ovz5s28HPtsY6MMQRZYNfDdyKdJXB7XIw4bX9btWh0Hlo2LunfHYHwp2jtv6DHy4grNWWvVYnLeAEZso+IgGcY4knxZqyHqqKVV0L4v6BWvIqGp4P/OKTo/+yQCkC3PiUM3mUzfpnxa0oltFHnHWqbjmxgloaygC/Pyy1TryK/OI+8Ij/+Qh8en5vxE/9ke90ArbohmQRsbR6YsJUYruoWW3UYDBtMdDaE3l1nBAArdUXgJSsgzUaue/4S+g7qjb/Ah7/Auq/3PmY3jjjnEFt1ZBrzRpAltt93CC8uf4xZ/51NJBhh54O3p6iHvV4FqnGIfpPuCES+SNNuMLQ/NPwRqRXtAOIQ+Rjcg23T0mtAD/71y33M+eRnVi8pY6vhWzBg8Ea2jZ8tjCHIIh6fhz1H7ZpDBQ6surVpcsK3oMavwdAeEEcBmu7vWFwg9u9fORyOTlcLOSNLQyJymIjMFZH5InJVmuOni0ipiHyX/JxV59hpIvJr8nNaJvQYLEQE/KNJdQn1gv+4XEgyGFqP7wjSTlUK+Dr22nx7oc2GQEScwEPA4cAQ4EQRGZLm1BdUdcfk5/Fk3+7ADcBuwHDghmT5ynaNqrJ6WRlVZe0/1bIUXmMlh8OXdAv1gWe4qQZm6DCIsy8UT8RyZ8633gIkD+n2AOIoybW8JolFY6xaVEo4mKY0azsiE0tDw4H5qroAQESeB0YDLSk5eSgwXVXLkn2nA4cBkzOgKyv88NkvTDj9QdYsLUMTyrZ7b83Vz15oe5bQliKOfKTHf9DozxD/HZxbIDauqRoMmcDhPxT17g2RLwEHePdA2vny5iv3T+OZG14kFo2DKkeMP5jxE0/F6UqNMco1mVga6g/ULfC5JNnWkGNF5HsRmSIiG7eyb7tg1eLVXH3YrSz/bSWRUJRoJMacj3/i8oNuIhdZXDX6PYk1x5NYsQ2JlcNJ1DxobRCnQdzbIL7DjREwdFjEkY/4DkJ8BzRqBDQym8SasXXuiYcavSeyyf+e+4Qnr5lMbWWAcCBMOBhh2mPv8cQ1z9mupSXY5T76BjBQVbcHpgNPt/YCIjJeRGaJyKzS0tKMC2wJ0/453bLudYjHEpQuXsOPn/1iqxaN/YaWnQrR74A4aAXUTEKrrrdVh8HQXtDY/OQ9MZv198Q/0aqbbNfy7K0vEw7UXw4KByJMffhdYtH2l0spE4ZgKbBxnZ8HJNvWoaprVHXtv8rjwC4t7VvnGpNUdZiqDuvVq1cGZLeeJb8uTykwD4DAyj/srXGqNZNAG7rUhSD4Oppox3WODYYsoTWPkJo9NwTBV9FEha1a1jRSazweixOobn/lOzNhCGYCg0VkkFhJxMcBU+ueICJ1HW1HAT8nv38XGCEi3ZKbxCOSbe2S7ffdpl45ybXEo3G22nVze8XEfsIq6NEA8UJskb1aDIb2QPRn0t8Tbojbe09ssdOgtO2F3Qso7Nb+Ura02RCoagz4K9YE/jPwoqr+KCI3i8io5GkXisiPIjIbuBA4Pdm3DLgFy5jMBG5eu3HcHhlx2v4U9yysl1DOm+dhj1G7MmDLfvaKcW1Nepe6MDRSTcxg6NS4G7snouAcYKuU8RP+hLdBzjFvnoe/3H1qu6zeZ0pVtpKK0kr+ffMUPnt1hpVj5NwRjLlgpO2eABqbj64+lvrFPXzgH4mj+E5btRgM7QGNzkPXHEf9KGQf+I/EUXy77Xp+/WYBT/3f8/z6zQL6DurDn24Yy66H7mi7jro0VqrSGIIOjEa+seq+xn62/Kv9JyGFFyHizrU0gyEnaOTrOvdEIeSdghRcYCVTNJiaxZ0R8eyM9HwNVW2Xr5sGg92IZxek5+vmnmglxhC0YzRRiwbfgNgP4BqM+McgjuKU88wfvMFQn8buCauuwVdo6B0QP+Ifhbi3tlld+8MYgnaKxlega46FRA3WPoAfrXkQeryIuNJ7JBgMhsax6hpcBeF3kq7XggaeRQsvwZF/Rq7l5RRTj6ABy35bwW0n3svYvmdx1naXMv2Zj3ITNVx1ByTKWL8ZHAStQivtK8RhMHQqIjOSRiCIlbEuAYSg+m40vsp2OUvnL+fWcdZcc/b2lzL937mZa8C8EdRj1aJSzht2JcHqIImEUrGqkvvPf4wl85dzxs3j7BUT/gBoGBqvEJ2FasxsfhkMrURD76YJwsRKZx3+BPKOtU3Lyj9KOX/Xq+rPNec9xrLfVnDajSfYpmMt5o2gDi9MnEooEK5XlzRUG2bK36dSW1lrr5hGPX8cmP82g2EDEB+Qbu9ArEBMG3n+zlcJ1abONS9NnJqTyGMzo9Rhzsc/EY+mJqhyeVws+mWZvWJ8Y0itI+AG7yFW4W+DwdAqJG1tDoAEePe3VcsPn/5CPJY61zjdThb/kjbLTlYxM0od+m3RN13NeaKRGL0GdLdVixReCu4hIH6sWgJ54BqIFN9oqw6DobMg7q2h8BLAY91Xkg/4kZL7EYe9aR8am2tikRg9B/SwVQuYPYJ6nHDFGGa98x3h4PqSeG6vm10O3p6e/e39zxFHPnR/AaLfQmweOAeCZzfjKmowtAFH/hmo7whrT0C84N3fdiMAcMIVo/l6+mzCgfVzjcfnZpcRO9BjI/trm5g3gjpss9tgrnr2Qrr3LcHj9+D2utnr6OFcM/ninOgREStoLG8c4t3dGAGDIQOIszeSdyziPzInRgBgyB5bceXTF9Ctbwkenxu3183ex+zG1f+5KCd6TIqJNCQSCcqWl5NfnIe/wJ+1cdai0R+swDHiiG8k4tk562MaDIb6aKIcDbwK8YWIewfwH4FIdu9/u+cak2KiFTgcDtuWghI1D0DNY0AEUDT4Euo/HkfRtbaMbzAYkgnryk60MpUSsh7Mah6AHq8gzuzNBXbONU3qyLWArozG/oCaSVjZEhOAWsEugRfQaEtKPhsMhkyglVeD1rA+c2kAEqVozd25lGUbxhDkkvAHWBGODYmgofftVmMwdEk0UZMs9NTwXoxBaHouJNlOlzcEkXCUeNz+4tYAiIf0/wVOrGJvBoMh64iL9IFmNBHYmV1UlXAwTCKRpuJaFsiIIRCRw0RkrojMF5Gr0hy/VER+EpHvReR9Edm0zrG4iHyX/Ext2DdbzPv6N84ddgVH5Z/MUQWnMOGMB+2P6POOIP0bgQN8h9urxWDoooj4wLMnqVumXvDbl3ZiLZ+8MoNTBp3HqKJTObr76Txz04tZNwhtNgQi4gQeAg4HhgAnisiQBqd9CwxT1e2BKcCEOseCqrpj8jMKG1i1qJTLDriR+d8sJJFQouEYHz7/GdePsreylzh7QvFdgBfIs4LG8ELR9YgpN2kw2IYU32GVs5R8wAf4wb0DUnC+rTq+ee977jr1flYtWk0iniBQFeTFiVN54prnsjpuJryGhgPzVXUBgIg8D4wG1u12quoHdc7/EjglA+NuMK89+A7RSLReWzQc45eZ8/n9x8UM3HZj27Q4/CNR754Q/hA0Ab79EYe9UcwGQ1dHnL2g5zsQ+QLii8G1Dbi3tz125+kbX6gXZAYQDoR5/V1XK+8AACAASURBVMF3OO3G4/H4srNknImlof7A4jo/L0m2NcaZwNt1fvaJyCwR+VJExjTWSUTGJ8+bVVpa2ibBC+csIhZJk+fD5WLpr8vbdO0NQRwlVtGZvGOMETAYcoSIA/HuZQVwenbISQDnsvkrGj1WUVqVtXFt3SwWkVOAYcDEOs2bJgMcTgL+ISKbp+urqpNUdZiqDuvVq1ebdGyz+2A8vtRNoFgkyqDtsr8ko4laq/CM5miT2mAwtBhNVKHxVbbUCths+03TtjudDrr1Sa1OmCkyYQiWAnXXUgYk2+ohIgcD1wKjVDW8tl1Vlya/LgA+BHbKgKYmOercQ/H4PYhjvcX3+D0MP3xn+m3eN2vjqoZIVFyBrtoNLR2Blu5FIjgta+MZDIYNR+NrSJT9GV21B1p6ILr6YDSSvYwGAKffciLevPrLP948LydddyxuT/Y8mDJhCGYCg0VkkFg+j+OAet4/IrIT8E8sI7CqTns3ESsRuIj0BPaizt5CtujWu5gHZ9zB7kfugjfPS3GvIsb+7SiumZzdPB9acQWE3saKIg5ZFcgqr0YjM7M6rsFgaB2qipafCpEvgSgQgfhitPxMNJ69NNHb7DaYO9+5jq13s1Yt+g7qzfn3n8Hxl2XXjyYjuYZEZCTwD8AJPKmqt4nIzcAsVZ0qIu8B2wFrF+AXqeooEdkTy0AksIzSP1T1iebGy3auoWygiTJ01b5YRqABnn1wdG/21zYYDDahke/Q8tNBAw2OuCH/DByFl+VCVpvJaq4hVX0LeKtB2/V1vj+4kX6fYxmIzk98pRWcomkMQXyR/XoMBkPjxJeCptssjkJsoe1ysk2Xjyy2DddAyz00BSd4Ugy0wWDIJe6hQCzNAT94htutJusYQ2ATIn4o+AtQN9WsA8SP5J+bK1kGgyEN4toUfIdgBZetxQWOIiQH0cbZxhgCG3EUnIsU3waurcDRw6o/3GOKiSI2GNohUjzRKm3p3AQcvcA/Funxas6K2WSTLlOPQFX56MXPmXLPG1SWVrPr4Tty0rXH0rOfzbWI/Uci/iNtHdNgMLQeESeSfwbkn5EzDarK+//5hJf/8SY15bXsfsQunHTtMXTrU5LRcbpMhbKnb3yBKXe/QajWCmFwupwUdMvnsTn30K139gI1DAaDYUOZdMUzvPHwfwkFrHnL5XZS1LOIx+bcTVH3wlZfrzGvoS6xNFRTUcsLE15fZwQA4rE4gaoAr96X/YAuVU2Wo3wLjf2W9fEMBkPmUQ2iof+hoffRREO30sxTvqqS1x58Z50RAIhF49SU1/Dmo//N6FhdwhAsnLMItyd1FSwajvHNe3OyOrYmqtA1Y9Gyk9Gq69DVR5MoPwdN50ZqMBjaJRr6wIowrrwMrbwcLd2DRDC7RWvmf7sQjzc1mjgSivL19O8zOlaXMAQ9+nUjFk3N6yMi9B3UtrxFzaFVN0DsZ6sE5dpSeOHP0ZqHszquwWDIDBpfg1ZcZAWXaU3yE4TKv6HxVc1fYAPp2b878TTzlsPpYKNBvTM6VpcwBP0278tWwzbH1eCtwON3c9ylR2VtXNUohP6LFaJelzAEX8jauAaDIYOE32nkgCZTxmSHQUM3YZMhA3C5nfXa3V4Xx1ycWYeTLmEIAG567Qp2OmAobq8bX4GPoh4FXP7k+Ww9fHAWR41jZc9Ig4bStxsMhvZFopb0wWVR0NqsDn37W9cwdJ9trHkr38qLds1zFzeapXRD6TJeQ2upKK2kpryWjTbrg9PlbL5DG0msPhpiPzZodYB3BI5u92d9fIPB0DY0+jO65gSg4cObD+kxGXFvm3UN5SsrqK0MsNHmfXA6N3ze6tJeQ3Up6VXMgC372WIEAKT41mT5u7WpZX0gxUjRlbaMbzAY2oa4twH/MSB1swL4wX+ULUYAoFufEmveaoMRaIouE1CWK8S9LfR8Gw08D7F5Vh3UvBMQR2YDQgwGQ/aQohvAdwgafA1IIP4x4Nk717IyhjEENiDOvkjhxbmWYTAYNhARAe9eiHevXEvJCl1uachgMBgM9ekybwRVZdXMePMb4vEEu43cKeO5OhpDVSEyA+ILwbUFuIflpCi2wWBoOxpfDeGPQBzgPcC2Jd54PM43781hxcJVbLHTILYevkVG55GMGAIROQy4D6tC2eOqemeD417gGWAXYA1wgqr+njx2NXAmlq/lhar6biY01eXjKV8w4bQHcTgdqCoPnJ/g3HtP58hzRmR6qHpoogItOwXiS6xaBOIA52bQ/ZlOmcHQYOjMJAIvQNWt1n2sAtyAFt+Jwz8yq+OuWV7OJfv8HxWllSRiCcQhbLXrFtz+1jV4fJ7mL9AC2rw0JCJO4CHgcGAIcKKIDGlw2plAuapuAdwL3JXsOwSrxvG2wGHAw8nrZYyK0kruOu1BwsEIwZoQodowkVCURy59mqXzlzd/gTagVbdY1Yw0AISsr7G5aPVdWR3XYDBkFo0tsowAYSuqmOQ9XXml9ZaQRSac9iAr/yglWB0iHIwQqg3z84x5PHfbyxkbIxN7BMOB+aq6QK0EOs8DoxucMxp4Ovn9FOAgsd5rRgPPq2pYVRcC85PXyxifvfoVjjSvUPFYnA+e/yyTQ9VDVSH0DqlRxVEIvZG1cQ0GQ+bR0NukDw4VCGc2AVxdgjVBvv/oRxLx+mNHglHe+dcHGRsnE4agP7C4zs9Lkm1pz1HVGFAJ9GhhXwBEZLyIzBKRWaWlpS0WF43ESCRS/wMT8QTRUMNJOpMo1mpXukPpohQNBkO7RcOkv58T6euQZ4h4LEFjIb+xSCPzywbQYbyGVHWSqg5T1WG9erU8UdxuR+yctt3j87DnmOzVHhVxgGcPUv+JHeDdL2vjGgyGzCO+g1kfFFrvCHgPzNq4BSX5DBqaWsHQ5Xay9zG7ZWycTBiCpcDGdX4ekGxLe46IuIBirE3jlvRtExsN6sPJ1x2L1+/B4RBEBG+el8P+fABbDds8k0OlIEU3gRSzvk6xHxzdkaLrsjquwWDILOIeAnnjsGoYO5IfHxSck/VSs1c8dT75xXl4/ZYh8hX46Nm/B2fcOi5jY7Q511ByYp8HHIQ1ic8ETlLVH+uccz6wnar+RUTGAceo6vEisi3wHNa+QD/gfWCwqjb5zrMhuYbmf7uQDyZ/SiwWZ9/j9mDbPbdqVf8NRRM1VjRibB64hiD+oxBHvi1jGwyGzKKR79DQW4DTKjtrU4qJqrJq/vv0hyz9dTlbDx/M/ifsidfvbfV1Gss1lJGkcyIyEvgHlvvok6p6m4jcDMxS1aki4gP+DewElAHjVHVBsu+1wJ+x0vtdrKrN5nVtS9I5g8Fg6Kpk1RDYjTEEBoPB0HoaMwRdJrI4l6hGIDQd4ovAtTV49yXD4RIGgyHLaGwJhKcDCt6Ds743YCfGEGQZjS9H1xy/vryd+MHZD7pPRhxFuZZnMBhaQKL2GaieCGudOavvRQsvxZF/Rk51ZYoO4z6aSexcDtPKayBRmqxklLC+xn5Hq++xTYPBYNhwNLYkaQTCQCT5CUP1PWjsD/t0ZHHe6jKGIBqJ8tiV/2Z08akc6jqBv+5+NXNnzs/qmKoRiHxJakRiFEJvZnVsg8GQIdYuB6UQT9Ykzx6RcJSHL/kXRxX+iUPdJ3DRXtcy/7uFGR+nyxiCiWc8zGsPvkOgOoiqMver+Vx24I0smbcs19IMBkO7pqkn8eyuLtw27l6mTZpOqDaEJpSfvpjHpftez8o/Wp5doSV0CUOwelkZn74yg0iwfih4NBzlpbunZm1cEQ94diX1n9kNvuxmLDQYDBnCezCQLuWzE3zZy2C8fOFKZr37HZFg/VQ40XCMV/4xLaNjdQlDsGz+Cjw+d0p7PJZg/re/Z3VsKb4DHD1A8pIN+eAcgBT+LavjGgyGzCCuTaDwUsALuLF8bLxQcAHiGpi1cZfMXYbbmzpvxaIxfv12QUbH6hJeQ/0Hb0QknJpgzulyMHjnQVkdW5z9odf71lpi/A9wbQXeA7ECsg0GQ0fAkX8G6j0wuSeg4BuRVSMAsPHW/YmmmbdcHhdb7rJZRsfqEm8EPTbqxn7H7bEuV8da3D4PYy8blfXxRXyIfxRScAHiG2GMgMHQARHXpkjB2UjB+KwbAYC+A3sz/PCd8TSct7xujrnoiIyO1SUMAcDfnjiXYy85koKSfBxOB9vuuRX3fHgT/bfYKNfSDAaDIS3XTL6IMX89jPziPBxOB9vvN4T7Pr2F3pu0PANzSzApJmxGo3PQ2qcgvhy8eyN5JyOO4lzLMhgMadDwp2jgP5CoBt9IJO9YrMq7HROTYqIdkAhOg8qrsQJSEhCdgwYmQ8/XEUf3XMszGAx1SFTfB4Enk6Upse7X4MvQY7LlEdiJ6DJLQ7lGNQpVNwAh1geYhSFRhtY+nkNlBoOhIRovhdrH1hsBAIIQmw+hZhMkdziMIbCL2ALSl7qLQuh9u9UYDIamiM4CSXXdhCDaCe9XYwjswlHceK1iRzd7tRgMhqaRxvbtHFZcUCejy+4R1FTUMuXeN/nslRnkl+Rx9AUj2XfsHoikiyBsO+Lsi7qHQnQ2Vg2etfiRTpLB0GDoNHh2s4JANUD9NBIeJO+ErA69fOFKJt/xKj98+gsbbdaHE68+mqF7bZ3VMdtkCESkO/ACMBD4HTheVcsbnLMj8AhQhLU2cpuqvpA89hSwH1CZPP10Vf2uLZpaQrAmyHnDrmT10rJ1ARu/ffc7c2f9xvgJf8rauFLyAFp+trVMJE7QCOT/GbzZC1M3GAytR8QJ3Z9Gy84CrcBaPIlD4U2IO3uT8pJfl3P+rlcSDoSJxxIs/mUpsz/8gcv/9Vf2G7tH1sZtk/uoiEwAylT1ThG5Cuimqlc2OGdLQFX1VxHpB3wNbKOqFUlD8KaqTmnNuG11H331gbd44ur/EA7Uzz3k9rp5duFDdO+b3aUajf4KiVXg3hZxlGR1LIPBsOGoKsTmQCIAnh0Q8Wd1vFvH3csnU74gkag/L5f0LuaFZZNwONq2mt+Y+2hb9whGA08nv38aGNPwBFWdp6q/Jr9fBqwCMhsN0Upmvv1tihEAcHtd/DIju6mpAcQ9GPHuZYyAwdDOERHEvT3i3T3rRgBg9oc/phgBgEB1kDXLytP0yAxtNQR9VHV58vsVQJ+mThaR4YAH+K1O820i8r2I3CtNRGqIyHgRmSUis0pL25aCtfcmPXE4U391TSjd+to/OasmrECzyGy0sQ1lg8GQdTS+DI3MRBNlORm/W5/0m9SaUApK8rI2brOGQETeE5Ef0nxG1xNqrTE1us4kIhsB/wbOUNW1jvRXA1sDuwLdgSsb6Y6qTlLVYao6rFevtr1QjD7/MNye+tsjDqeDHv27s/XwLdp07daike/Q0r3RslPR8tPRVXui4S9t1WAwdHVUgyTKz0FLD0XL/4Ku2o9E5U2sn6rsYdyVY/Dl1X8e9vjc7Hvc7vgLsvdG0qwhUNWDVXVoms/rwMrkBL92ol+V7hoiUgRMA65V1S/rXHu5WoSBfwHDM/FLNceg7TblymcuoLBbPv5CHx6/h813HMiE6ddnzWsoHZqoQcv/DInVVglLrQWtQCvOQeNrbNNhMHR1tOomCH8OhEGrra/BV9DAv23VccCJezPuqjF4/R7yivx4fG6GH74zF//znKyO29bN4onAmjqbxd1V9YoG53iAt4E3VPUfDY5tpKrLxZp97wVCqnpVc+NmKtdQPBbn9x8Xk1fkZ6NBTa5qZQUNvIJW3QwEGhzxIoWXIfmn2a7JYOhqqEbQlTtjpX5pgKMfjt4f2i2JYE2QJfOW07N/d7r1ydxydbZyDd0JvCgiZwJ/AMcnBxsG/EVVz0q27Qv0EJHTk/3Wuon+R0R6YZX/+Q74Sxv1tAqny8nmOwy0c8j6aDlp//gIo4nytDWRDAZDhtEwqXXF1x6rslXKWvwFfgbvnNmaA03RJkOgqmuAg9K0zwLOSn7/LPBsI/0PbMv4HR7PblgVjxpuEOchnt1yIMhg6IJIATj7QXxRwwPJe7TzY1JM5BBxDwXvAVDPLc0Pnl3As3vOdBkMXQkRQYpuBvysnxJdIAVI4eU5VGYfXTbFRHtBSu6B0Jto4CUgjviPAf8YWzetDYaujnj3hB4vWpmAYwvAsyOSfybi7JdrabZgDEED5n+7kEcueYqfZ/xKQUkex1x8BMdfPrrNEX2NIeIA/yjEn/2SmQaDoXHEvRVSMtG28X79ZgGPXPIUv3w1n8Ju+Rxz8RGMvWxU1uaapjCGoA5L5i3jkv2uJ1QTAqB8ZSXP3jKFVYtWc+FDZ+dEk8ZXQ3whODdGnH1zosFg6EyoRiH6I4gHXNvk5O178dylXLrfDYRqrbmmbEUF/755CqVL1vDX+8+0XY/ZI6jDC3e9RiRY34snHIjw7r8+oGpNta1aVOMkKq9BS/e3AlxKDyFRfiGq6byMDAZDS9DQB+iqPdDyM9Cyk9DSA9DoL7brmHzHq0RCDeeaMG8//j7V5TW26zGGoA5zZ/1GIp7qRub2ulk6f4WtWrR2EgTfBCLrA1zCH6LVE2zVYTB0FjS2BK24yHIJ1VorxXRimRXVb/MD1q9fL2h0rllm81wDxhDUY+DQTXA4Ul8TI6EofQf1tldM4BmsspZ1CUHgRdoSBGgwdFU0+DKNVgkMf2Srlk2Hbow0Mtf0GWh/Tk5jCOpw4lVjcPvql6fz+j3se9zudOvdWMWiLJFo7PUwAkTtVGIwdA4Sq0l772gCEtnL7JmOE686Go/PU6/N6/ew3wl7UtLL5rkGYwjqMWi7Tbn9rWsZOHRjRARfvpcj/zKCvz1xrv1iPDulb3dtgZW1w2AwtAbx7m1VHUshAR5b0pytY/MdBnLbm1ez6bbr55qjzjuUvz1ma3KFdbQp11CuyFSuoaaIRWM4Xc6c+fNr9Be0bJxVxYwY4AQ8SPcnEc8uOdFkMHRkVGNo2ckQ/Zn1y65+8I/CUXxLznTZOddkK9dQp8Xlzu0/jbi3hh5T0donIDoH3Fsi+WchLnvTZBsMnQURF3T/txW8GZoK4kPyxoH3sJzqyvVcA8YQtGvEtQlSfFOuZRgMnQYRD5J/MuSfnGsp7QpjCDowGluC1jwAkc/B0QPJPwt8R5j0FIYui8YWJ++JL8DRE8k/G/GPzLWsdo8xBK0kEo4y/ekP+fDFz8kr9HPUuYcybMQOtuvQ+Ap0zRjQGiABiZVo1bUQ/x0p+KvtegyGXKPx5eiao+vfE5VXo/HfcRScZ7ueNcvLee2Bt/jxs7lssk1/jr3kSDbeqr/tOlqC2SxuBbFojEv3u54F3y8iHAgD4Mv3cswlR3LGzeNs1ZKougUCk0lNYe1Fen+BOAps1WMw5JpE5U0QfIHUe8KXvCfybdOyfMFKztv1SsKBMNFwDIfTgdvr5va3rmH7fYfYpqMhjW0Wt8l9VES6i8h0Efk1+bVbI+fFReS75GdqnfZBIjJDROaLyAvSzv0iP57yJQvnrDcCAKHaMC9NnMrqZTYXu458ReofPCBuiP1mrxaDoT0QmUH6e8IF8QW2Snnsyn9TWxkgGrb0JOIJwoEw945/1FYdLaWtcQRXAe+r6mDg/eTP6Qiq6o7JT900m3cB96rqFkA5YH+2pVbwxdRZhGrDKe0uj5PvP/rJXjHOAZCuhplGwWl/2U2DIec4B6Rv1yg47M0M8M37c9BE6mrL8oWrqKmotVVLS2irIRgNPJ38/mlgTEs7JusUHwhM2ZD+uaCkdxEOZ+o/mSAUdrd3KUbyxwPeBq0e8Aw3WUoNXRIpGA/4GrR6wLMHYvPDUX5RusA1cIjg8be/hY+2GoI+qro8+f0KoLF/bZ+IzBKRL0Vk7WTfA6hQ1bXvckuA9rmTkmTk2Qfj9qTur3v8HnY+aDtbtYhnJyi+E6Qb1h+/B7z7ISX32arDYGgviGcYFN+evCf8WPfEAUjJvbZrGXPB4Xjz6j+oub0u9jluDzxedyO9ckezXkMi8h6Q7hHz2ro/qKqKSGM7z5uq6lIR2Qz4n4jMASpbI1RExgPjATbZZJPWdM0Yg4ZuwsWTzuG+v0zC4XSimiC/KI/b374Wp8tpux6HfyTqOxTiy8BRjDiKGj1XE9UQXw7OfmYj2dAhUVWI/wE4rPocadykHf4jUd/hLbonsskxFx/Bop+X8v5zn+DxuolFYgzZcysueiQ3dU2ao01eQyIyF9hfVZeLyEbAh6q6VTN9ngLeBF4GSoG+qhoTkT2AG1X10ObGzZXX0FpCgTA/fTEPX76XrYdvkZOKQi1FNY5W3QLBKdZGssYg72Sk8AqrOprB0AHQ6By0/CJIrAEUnH2RkgcQd5PTTc5ZvayM339YTN9BvRkweKNcy8mO1xAwFTgt+f1pwOtpBu4mIt7k9z2BvYCf1LJAHwDHNdW/PeLL87LzQdsxZPct27URAKzgmuArWHUNaoEwBCajtf/KtTSDoUVoohItOxUSS4AgEIL472jZKagGcy2vSXr2686wETu0CyPQFG2dxe4EDhGRX4GDkz8jIsNE5PHkOdsAs0RkNtbEf6eqrnWxuRK4VETmY+0ZPNFGPYY6qGojdQ2CEDD/1IYOQmgaaLo6AjEITbddTmekTZHFqroGOChN+yzgrOT3nwNpd1JVdQFgb/5Xm1ny63IiwQibbjsAp9PufYREMsoy3aEKe6UYDBuIxleR+jADaBgSq2zXA1bUcNnycgZs1Q9/fkNPpY6HSTGRJZb8upwbj57AioWrcDgdeP0ernr2QnY5xL50FCJO1Lk5xNMEmLm3tU2HwdAWxLMTGsizSkvWO+AG9862aglUB7n95Pv4Zvr3uL0u4rEEf7phLCdcPtpWHZmmfS9wd1DisTh/2/8GFv28lHAwQrAmREVpFTccPZEVv9v7BCNF12O5l671sBDAhxRe23gng6E94dkHXFtRP0bAZxkBdyMFnLLExNMf4pvps4mGowSqgoQDYZ696SU+eWWGrToyjTEEWeDr6d8TrAml1BaOx+K88+T/bNUi3j2QHv8B7wHg3AS8I5AeLyCeHRvto7H5aPA1NDLT1Ec2ZBWNr0KDb6ChDxotIC/iQLo/AwUXgHOwZRQK/4Z0m2Rrpt2qsmpmvPXNurQRawkFwrww4TXbdGQDszSUBcpXVqCJREp7LBJj1eLVtusR93ZIt+ZznKjG0IqLIfwxrHUtdfSB7s8iTvsLahs6N4mah6HmYcANIoATuj+JuFO3FEW8SMHZUJA7P/zqshqcLgfR1CwzlK/o2Htu5o0gC2y751Yk0uQZ8eV72eVg+1NWtxStfcoyAoSs9VgNQHwRWnlZrqUZOhkamQk1/wQiQK3l1KCVaNlZrE820L7oO7A3rjSZBRxOBzseODQHijKHMQRZYMCW/Thg3F748teHmHt8Hvpt3pd9x+6eQ2XNEJxMqndGHCKz0ERVLhQZOikaeIG0nkBEIDLTbjktwulycv59Z+DNW58ryOl2klfk50/Xj82hsrZjloayxKWP/YUd9t+WNx55l1AgzIHj9mb0BYfj9rS/PCPr0HQ3JoBYrnoGQ6bQWiDd/pNAOw4SO/iU/ei1cU9emPA6K38vZccDtuWEK8fQe+OeuZbWJkxhGsM6EpU3QvBFUnK6OwciPd81JTANGUODb6CV12FFCtfFFFbKJtlKMWHoREjhheDohZW5EcADkocUT2jSCGhsPonqh0hUP4yaojhdFtUgGnyVRPU9aHBao15AAPgOB/cOIGvTNTsAHxRdb4xADjBvBO2IpfOXM23Se5QuXs2wQ3fkgHF74fHZm7tcE7Vo8HWIzgTnICTv+CbrG1ieH4+w/i3CBQUX4sihd4fBfjS+FF1zvLXkowGQfHB0Q3pMQRzd0/fROITfQ0PTwVGC+MfmJIncb7N/563H36e2opa9xgxnzzG75iALgD009kZgDEE74au3v+XmsX8nFo0Tj8bx5XvpM7A3939+G3mF/uYvkAM09hu6egzQcP/Ai/Schrhyky7cYD+JsjMg8gVQ123aBb4jcZRMyJWsZnlz0nQevfQpoqEoiYTiy/eyzR5bcsdbuUktn23M0lA7Jh6Pc9dpDxAORIhHreRaodowy39bwWsPvJVjdU0Qeg9IlwxMIWySgXUVVGMQ+ZL6RgAgBuH/5kJSi6ipqOWRi/9FOBBZ5+4dqg3z8xfz+OTlL3Oszl6MIWgH/P7DYqKhaEp7JBTlwxc+z4GiluIgbd1kADrf05RhQ2i/U8zsD39MGxcQqg3z0Uvt+b7LPO33f6kL4cv3kkgTiQzgL2jHmQ19h5L+T0jAd0iTXTX6M4mKy0msHkuiegIaX5kViYbWo6po8C0SZaeTWHMyGngJ1dQHlbWIuMC7L6nG3w2+kVnV2hbqxvnURUTIK0xfc7izYgxBO6D/Fhux0WZ9EEf9p2tfvpfR5x+WI1XNI65NoPAKwFv/U3gN4my8/LSGP0bXnAChNyA2G2qfRlcficYW26Tc0BRadQ1aeTVEPofoTLTqVrT8LFTTP6wASNEt4NzI2iTGZX11DUQKr7BPeCvZYf9tcblT31w9fg8jzz44B4pyh9ksbics+20Flx14IzUVtaBWgrpDTtufix4+u93772t8WXK/wHoTaMrLSFXR0v0hsbzBEQf4RuIouSebUg3NoNFf0TXHkhL1K3lIyX2Id7/G+2oUwh9adYVdW4Jn73ZfDnXuzPlcfditxOMJVJV4NM4p14/lxKuOzrW0rJAVryER6Q68AAwEfgeOV9XyBuccANxbp2lrYJyqvpasX7wf6wvZn66q3zU3bmc0BGBtGs/+8CfKV1QwZM8t2WhQn1xLyjgaX20ZAtL4mEt3HH2a36RTVSs3jeQhYvYimkMTtSBuRJp3RdbaZ9Hqu0j1BAPyTsNR1PnSl0cjUb6Z/j21VUF2OnAo3fqU5FpS1mjMELQ1xcRVwPuqeqeIXJX8+cq6J6jqB8COSRHdgflAJQTyYgAAFWxJREFUXVeCy1V1Sht1dAqcTic7H5S2mFuzBGuCBGtCdOtT0r7fIKSJtVdHUbPdE4HXoeYuq8KaeNC805GCC9v9k2cu0OgctPIaiM0HHKj3IKT4VqSpf2dHCYgrTUoRDzh6ZFNuRtiQ+8DtcbPbEbtkWVn7pq13z2jg6eT3TwNjmjn/OOBt1YalhgwbSm1lLTcd93eO7flnTtnsfE4eeC6z/js717IaRRx54D0QaPh06oe8M5rsq6EPoOr/ILEaiFmBS7X/Qmv+kS25HRaNL0fL/gSxuVguvlEIv4+W/bnpjr6DSD8tOBB/c7d37qitCnDz8XfXuw9mvvNtrmV1GNpqCPqo6trF3hVAc2sZ44DJDdpuE5HvReReEUm/jQ+IyHgRmSUis0pLS9sguXNxw5gJzJj2NdFIjGgoSuniNdx4zAQW/rDo/9s78/ioqrOPf5/ZJwskgYggCkHcaNkChda2igoiUEEQEQotLqBoW94qyvKxvqViFawVl9oKYtVqX3GlYHnVgkK1VVCqyCphUQQCBNkMkGUyc/rHvcE7zJ7MZJLM+X4++eTOueec+5vn3rnnnuU+T7qlRURa3geu7wBukFzjf9YoJGt01HLq2KOEeqysgBPPRndnUFs+cIjAsfkEjk4ncPwlVKBpPI8o3zoCR2cRODoz7mBB6sT/QYg7Zx/4t6J8GyOWE/EiBc+A7TSj9ybZIC2Q/D9EnftJNzNH/I5Vrwf/Dn4z8vd8vn5nuqU1CWIODYnIciDcFRA0WKiUUiIS8QoVkbYYQezfsiTPwGhAXMB8jGGle8KVV0rNN/PQu3fvpjfDnQJ2l5Ty2YfbQiIm+apqeHXu37njqVvTpCw6YstBCp5G1XwJ/lJwnhvRDUEQ/t3h01UAAuVgjzx0oXybUYfGmjfHSuBN1PHHodVrSJRyQXXU7ADfZ+A4ExzfTmgITgWOQPVqEC+4vhvXeD1AoPxROL4AY05FoSoWgXc40nJm9II12wg7D4MN/LuixqwWZ1cofBdqNoDygbMbIo3Xa27p9n1s+qAEX1XwEldfZTUv//51pj7z8zQpazrEbAiUUhHXUYnIfhFpq5Taa97oowXkHQUsUpYFyZbeRJWIPA3oCCgJUPblVzhcDqoqgn/wAX+A3SWlaVIVP+I4CxJxQ+E4D3wfhqnIY4xtR0EdnW5MMJ/kBASqUcd+b/RQopVVPkvkNofR8DjOhoKnEVvLmLIDx5+H8jlGWeOLQP4CxBU9SJGq2QnHnyR44rYCKhahskYgzm6RCzt7QtW/CelBqRoz/m90RGwQrf5GxP6dB3C6HFSf+jsIKHaXnLo6TROO+g4NLQHGm9vjgcVR8o7hlGEhs/FAjEerq4AN9dSTURR1PYvqMG8kO90Oul3UJQ2KUovk3kFwAHMAL+T8MurqIRUoh5qtYfbUmMteo6OOz4Oq94Aq049+BdRsQR2NvYJG+TZC+QPflFXHjUhchyfEHs6q+mekHajK6LGvJWuU0fsI+ol7wH0R4iiKqbspUdT1LKqrwvwOXA66XXxBGhQ1PerbEMwGBojIVqC/+RkR6S0iC2oziUhH4Ezg1Cv7ryKyHlgPtAburaeejCK/TR6DJlyKO+ubqRWb3YYn28PwyY33jc66Iq4exvi1s9gYu7Z3Qlr+Flv22BgFo3R84xmiObGQ0LkJH1StQMUI2KNOvEz4IRq/+cQeBXERaeIWif7GudjykNaLDHfPkmO4F8+eiOQ1v4n1vMKWDJnYP/h3YBM8OR6GTx6SRmVNh3otH1VKHQQuC5O+Bphg+fwFEPKqqVLq0vocXwM/e+QGOn7rTF57eCnHjhyneEB3brh3TLNdCy2uYqTVwsTKiBflutB4UzYo6I4bvCNjVxAxcpsyxtAjr3EAVU6oM7bassejH9dzOXwdbtjKjsThukHs7ZC8uTHzNQduffh6OnRpz6sPL+XY4WMUD+jO9bNG06ptfrqlNQn0m8UZTtmur3jhvtdYu2IDrdu3YvS0q+g1IPrYdVNE+b8yJosDZcYYP4CrGMmfF3PiNnBkClQuJeSG7jgPW+vXox+38i3U0WnGUtcg3EjhypgT1YGKZXB0CogdlAL80GImtqyro5ZrihwuO8qLD/yN1Us/pmXrFoy8/Uf8YHjfdMtqVuh4BJoQyr48wM0976SivBJ/jeFO2p3l4pa51zFkYnSncU0RpQLGyh3/bnB2QaKsnAkq599nxF1QJzCGiFwgDqTgL9EnbDGCr6jDE8D3iVneZpTP+R9sOTfGd/xAuTlfUAPuixFb83vK/fpgORO7TeHrg+XUVBu9Nk+2m1FTh/GTu5t2YPjGhG4INCE8dNMT/OOZFfhrgp90s3K9vFz2FC53410y2NCowFFjvN/3CTg6I1lj4l5Xb0TiWoaqeANsOYh3VMwVQ5nGszNf5KU5i0MmfV0eJy+WPklOXnaalDUvUuViQtOE+XTFhpBGAAxfPnu376NDlzPToKpxIraWSM6E2BnDlRU7eK5API3Xk2y6+XjZurArfxwuJ9vXfkH3fvH13jR1QztoyWAK2oUfYqjx+WlZGNvvj0aTLArPbBX2BT2/r4b805vnwofGhG4IMpjRU68KWnIHxjsIvS7vTl5h7BelNJpkcfVtV+LyBg9F2h12irqexVnnR45toUkOuiHIYPoO6cWE2WPx5njIyvXidDvpNaA7M56fnFA9G9/fwl1D7mP8OT/nvh8/zM5NOsBMpuGr9vHaI0u5qfsUJnS9nZceXEx1ZWz/T7Vc0Pccbps/iey8LLy5HlweJ9+68DxmvT49hao1tejJYg3VldXsLtlLfpuWCb9/sOrv/+Heax866ebCZhNcXjdz37uHzj2a1xusmvAopZg+8F42vv8ZVSeM68DtddG5uIiH/nkPNlv8z5s1vhp2fbaH3IIcWp/R+N1eNzUiTRbrHoEGl8dFp24dEm4ElFI89osFQb6OAgFF5fFKnpz6XLJlahopG/71GZs+2HKyEQCoqqhm+6c7+Xj5+oTqcjgdFHXtoBuBBkY3BJo6c6K8goOlh8Pu27wqnG8fTXPE8Px5qstrqDxWycZ/f5YGRZpE0Q2Bps54stxhg38D5J1Wt1VHu0tK2bx6a9ilhJrUUbp9H5tWlVB5IrrvpHAUtM3D6Ql958ST5aZVuzjci2vSjn6PQFNn7A47g268jDcWvB00POTJcnPttMSiWZXt+oq7h85mT8le7E47SikmPz6B/uMiB0vX1J/D+4/wv8Pm8Pn6L7E77QT8AW763U+4ctLAuOv4wYi+/PGXT4ek2xw2+l17YTLlalKE7hFo6sVNv/sJ/cZ8H6fbiTfXi9vr4uopP2LwhIhhLEIwJhtn8cWGXVRVVHPi6woqyit5eNJ8tqzZnkL1mruHzmbrx5+ftHvl8Srm3fEcn66MHMXsVLzZHh5a+Rvan9sWt9eFO8vF6UWn8cDyX+s3gpsIetWQJimUHz7GwdLDtOlYiDc7uovkUyn5z3am9Ps1lceDhyXEJlw27iKm1SHClN/v58Cug+TmZ5PdsnnejGq/Y05edp1uuLtLSpnU886QwEYA37uyN/csnpZQfUop9u7YTyCgOKPz6QlFcNM0DNrFhCal5ObnkJufU6eyR8q+xu4I7ZyqgOLgnkMJ1/fOC+/x+OSnqaqoJuD3c+Gw7zDlqVsTbqAaM++9uopHbn2SyuOVBPwB+gwq5s5nfkZ2i6y46zhy4GvsTgeEaQgO7k3c7iJCu7Mbb1xjTWR0Q6BJO+f36Rx21Ynb66Lv4J4J1bX+vc08NPGJoKWM7y9eg6/qUX6zaGrC2nzVPt57dTXr/rmJNh1aM/D6Syg4vW7eP/1+P6uXfsxHb64l77QWXD6+H22L2iRcz+bVW5kz/rGg7/jhG59w76iHuP/NX8Vdz9ndO5z0OmvF6XbSZ3Bxwro0TZd6zRGIyDUislFEAiIS0t2w5LtCRLaIyDYRmW5JLxKR1Wb6ixJvRG9Ns6JFq1zGzBiOJ/sbdxcuj5NW7fIZlMBcA8ALsxcF3SABfFU+PnpzLYf2hV/qGokT5RXc0msac2+ex9L5y3h+1itcd+5kNr6/JaF6wHhRatqAWdw/7lH+/sQ/WDh7ERO/fTvvL/4o4bpefnBJSHxeX5WPde9uouzLA3HX483xcsN9Y4LcjDjdDloW5jbLCHeayNR3sngDMAJ4N1IGMYLJPg4MAroAY0SkNqDuHGCuUqozcBiIz0G7ptkx7u5r+NXC2+g1oBudexYx9ldX88c1c8jK9SZUz/4vysKmO90ODu09klBdLz24hNJt+6g8ZkQoq670UXGskvvHPkKic2vLn3uXLR9tO1lXTbWfqopq5vz0sYSXypZu30e4wztcTr5KcChtxOQh3PO3qXxnUA/O7tGRUXcOY94nD9KiIDehejRNm/qGqtwMxJoU6gNsU0rtMPMuBIaJyGbgUuDHZr5ngZnAn+qjSdN06TukF32H9KpXHV1/2IU9W/eFDHn4awKccW7bhOpa8cK/8IW5SR85cJS9O/YnNB6+/K/vhkyGAyCweVUJ3S+O381yj0u+xc5Nu6ipDv6ONdU+OnRpH3c9tRT370Zx/+gBdjTNm4ZYPnoGYPVCtttMawUcUUrVnJIeFhG5SUTWiMiaAwfi7/5qMosxM4bjyXFjs33zcOLOdjP2rhEJTxZHCswTCCicCQbtcXvDj3oqlXhdI6cMxZvjxWb/5ufryXZzzZ1Dm+0KKU1qidkQiMhyEdkQ5m9YQwisRSk1XynVWynVu7CwsCEPrWlCtOlQyJ/WPEC/MT+gVbsCOhcXcedTtzJmxoiE6xpy8wDcWcE3cLEJHS5oT2H7xHzhDJk4IGgOpBZvjofz+3ROqK7W7Qr4038e4LKxP6RVuwLO7tGR2+bdzPiZ1yZUj0ZTS8yhIaVUYrN1oewBrKGu2ptpB4E8EXGYvYLadI2mXrTt1IYZzyXmSjscV066nLUrNrDmrbUA2O12vLke7n7p9oTr+t7Q3gy87hLeeOptxGbDZrdht9uYtWR6Qt45a2nToZCpdXi/QqMJR1JeKBORlcAdSqmQt7xExAGUAJdh3Og/An6slNooIi8DryqlForIE8A6pdQfYx1Pv1CmaUh2rNvJ5lUltD6jgN4De2B3hPevFA+7t+5l3cqN5Bbk0HdIMS6PXiinaThSErxeRIYDjwGFwBFgrVJqoIi0AxYopQab+QYDDwN24M9Kqd+a6Z2AhUAB8AkwTikV0+uVbgg0Go0mcVLSEKQL3RBoNBpN4ujANBqNRqMJi24INBqNJsPRDYFGo9FkOLoh0Gg0mgynSU4Wi8gBYGcdi7cGvkqinGShdSWG1pUYWldiNFddHZRSIW/kNsmGoD6IyJpws+bpRutKDK0rMbSuxMg0XXpoSKPRaDIc3RBoNBpNhpOJDcH8dAuIgNaVGFpXYmhdiZFRujJujkCj0Wg0wWRij0Cj0Wg0FnRDoNFoNBlOs2wIROQaEdkoIgERibjUSkSuEJEtIrJNRKZb0otEZLWZ/qKIJMVXsIgUiMgyEdlq/s8Pk+cSEVlr+asUkavMfc+IyOeWfT0aSpeZz2859hJLejrt1UNEPjDP9zoRudayL6n2inS9WPa7ze+/zbRHR8u+GWb6FhEZWB8dddB1u4hsMu3ztoh0sOwLe04bSNd1InLAcvwJln3jzfO+VUTGN7CuuRZNJSJyxLIvJfYSkT+LSJmIbIiwX0TkUVPzOhEptuyrv62UUs3uD7gAOA9YCfSOkMcObAc6AS7gU6CLue8lYLS5/QRwS5J0PQBMN7enA3Ni5C8ADgFZ5udngJEpsFdcuoBjEdLTZi/gXOAcc7sdsBfIS7a9ol0vljy3Ak+Y26OBF83tLmZ+N1Bk1mNvQF2XWK6hW2p1RTunDaTrOuAPYcoWADvM//nmdn5D6Tol/y8wXOen2l4XAcXAhgj7BwNvAAJ8F1idTFs1yx6BUmqzUmpLjGx9gG1KqR1KqWqMuAjDRESAS4FXzHzPAlclSdows7546x0JvKGUOpGk40ciUV0nSbe9lFIlSqmt5nYpUIYRHyPZhL1eouh9BbjMtM8wYKFSqkop9TmwzayvQXQppVZYrqFVGNEAU0089orEQGCZUuqQUuowsAy4Ik26xgAvJOnYEVFKvYvx0BeJYcBflMEqjOiObUmSrZplQxAnZwC7LJ93m2mtgCPKCJ9pTU8GbZRSe83tfUCbGPlHE3oR/tbsGs4VkdAguKnV5RGRNSKyqna4ikZkLxHpg/GUt92SnCx7RbpewuYx7XEUwz7xlE2lLis3YjxZ1hLunDakrqvN8/OKiNSGtG0U9jKH0IqAdyzJqbJXLCLpToqtYsYsbqyIyHLg9DC77lJKLW5oPbVE02X9oJRSIhJx7a7Z2ncF3rIkz8C4Ibow1hNPA+5pQF0dlFJ7xIgs946IrMe42dWZJNvrOWC8UipgJtfZXs0RERkH9AYutiSHnFOl1PbwNSSd14EXlFJVInIzRm/q0gY6djyMBl5RSvktaem0V8posg2BUqp/PavYA5xp+dzeTDuI0e1ymE91ten11iUi+0WkrVJqr3njKotS1ShgkVLKZ6m79um4SkSeBu5oSF1KqT3m/x1ixKnuCbxKmu0lIi2ApRgPAassddfZXmGIdL2Ey7NbjFjdLTGup3jKplIXItIfo3G9WFnCwUY4p8m4scXUpZQ6aPm4AGNOqLZsv1PKrkyCprh0WRgN/MyakEJ7xSKS7qTYKpOHhj4CzhFjxYsL46QvUcYMzAqM8XmA8UCyehhLzPriqTdkbNK8GdaOy18FhF1hkApdIpJfO7QiIq2B7wOb0m0v89wtwhg/feWUfcm0V9jrJYrekcA7pn2WAKPFWFVUBJwDfFgPLQnpEpGewDxgqFKqzJIe9pw2oK62lo9Dgc3m9lvA5aa+fOBygnvGKdVlajsfY/L1A0taKu0ViyXAT83VQ98FjpoPOsmxVSpmwNP9BwzHGCurAvYDb5np7YD/t+QbDJRgtOh3WdI7YfxQtwEvA+4k6WoFvA1sBZYDBWZ6b2CBJV9HjJbedkr5d4D1GDe054GchtIFXGge+1Pz/42NwV7AOMAHrLX89UiFvcJdLxhDTUPNbY/5/beZ9uhkKXuXWW4LMCjJ13ssXcvN30GtfZbEOqcNpOt+YKN5/BXA+ZayN5h23AZc35C6zM8zgdmnlEuZvTAe+vaa1/JujLmcScAkc78Aj5ua12NZDZkMW2kXExqNRpPhZPLQkEaj0WjQDYFGo9FkPLoh0Gg0mgxHNwQajUaT4eiGQKPRaDIc3RBoNBpNhqMbAo1Go8lw/gsqWLRaGoyVtAAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "from sklearn.linear_model import LogisticRegression\n", + "\n", + "log = LogisticRegression().fit(X, y)\n", + "plot_decision_regions(X, y, clf = log)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 372 + }, + "id": "Olh6OaDPW9Mh", + "outputId": "99dea639-49f9-411c-b5e5-9ee03a893ea8" + }, + "execution_count": 4, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.7/dist-packages/mlxtend/plotting/decision_regions.py:242: UserWarning: No contour levels were found within the data range.\n", + " antialiased=True)\n", + "/usr/local/lib/python3.7/dist-packages/mlxtend/plotting/decision_regions.py:244: MatplotlibDeprecationWarning: Passing unsupported keyword arguments to axis() will raise a TypeError in 3.3.\n", + " ax.axis(xmin=xx.min(), xmax=xx.max(), y_min=yy.min(), y_max=yy.max())\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 4 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAdJ0lEQVR4nO3df7RU9Xnv8ffDD0MKeCCgQtBguNIkbbqSGEJjmxITNFUWSkmjAvU25JqgaWwaV29yNaybdGXFakzTlUSoLVqvemPhVO9FiYWbaNBibYyciIC/QZrUgyDI4cA5mGPgnOf+MXtwmDOz58f+zsyemc9rrbPO/Piy9/fsvZlnf7/PM3ubuyMiIjKi0R0QEZF0UEAQERFAAUFERCIKCCIiAiggiIhIZFSjOxDn4ef3qQRKRKQCH3v3qVbtv011QNi5r7/RXRARaSofe/epVf9bTRmJiAiggCAiIhEFBBERAVKeQxARaQTD6Rg9xJiRYFZ1jrZm3J2BQTh0dAROuP4pIIiI5OkYPcSEsWMYslGQwoCAO2P8GBwZoPfoyGCL1ZSRiEieMSNJbzAAMGPIRjEmXCwAFBBERIYxs/QGgyyz4NNZCggiIgIoIIiIpFbXv23kios+wmfmnUPnbTfXfH0KCCIiKTQ4OMjK67/KN//ublbd/688suE+fvnSCzVdp6qMREQS+Is/Xcihw4eHvd5x8sl87661VS/3he1bmPqOM5l6xnQAPnrhAn768I+Y/l/eVfUyS1FAEBFJ4NDhw8xctmLY6ztWXZ1ouQf27eWUKdOOP5982lRe2LYl0TJL0ZSRiIgACggiIqk06dQp7N+7+/jz117dw6TTptR0nQoIIiIp9K73vp9Xfvkf7O3+T44e/TX/uuF+PnzuH9Z0ncohiIik0MhRo/izr/41y69azNDgIJ9YuIgzz6pdQhkUEEREEuk4+eSCCeSOk09OvOzZc+Yye87cxMsplwKCiEgCSUpL00Y5BBERARQQREQkooAgIiKAAoKIiESCBAQzu93M9pnZ00XeP9fMDpnZU9HP10KsV0REwgk1QrgDuKBEm0fd/f3RzzcCrVdEpCX97f+8hss++l6uXHhu3dYZJCC4+yagJ8SyREQEzl9wKd+85Z/qus565hDOMbOtZrbBzH67WCMzW2ZmXWbWtWnd6jp2T0SkeocOHuD6L17O4d4w58a/M+scxndMDLKsctUrIDwJTHf39wE3A/cVa+juq9x9lrvPmnPx4jp1T0QkmY333c3QK1v5ydofNLorVatLQHD3w+7eHz1eD4w2s8n1WLeISK0dOniALQ/ey3c/eTpbHrw32Cih3uoSEMxsiplZ9Hh2tN4D9Vi3iEitbbzvbi46C2ae9lYuOoumHSWEKjtdDfwUeJeZdZvZFWZ2lZldFTX5FPC0mW0Fvg8scncPsW4RkUbKjg6WfLADgCUf7GjaUUKQi9u5e+xkv7uvAIbfY05EpMllRweTxo0GMr+zo4SFn/li1cu94SufZ9vmf+dwbw+Xzz2by7/w37ngk0tCdbsgXe1URCSB7U88yqN7Bli9rfuE1yfsfzRRQLjupluSdq1iCggiIgl87ZZ7Gt2FYHQtIxERARQQRESGcXdIe92LO6FrcxQQRETyDAzCCD+W3qDgzgg/xsBg2MUqhyAikufQ0RFwZIAxIyH6ClWquDsDg1E/A1JAEBHJ4xi9R0fC0Ub3pL40ZSQiIoACgoiIRBQQREQEUEAQEZGIAoKIiAAKCCIiElFAEBERQAFBREQiCggiIgIoIIiISEQBQUREAAUEERGJBLm4nZndDswH9rn7ewu8b8D3gHnA68BSd38yxLpFauGGqxfT39837PVx48Zz3YrVFbcTaQahrnZ6B7ACuKvI+xcCM6Of3wVuiX6L1E0lH979/X3M+OzNw9ruuu3Pq2pX6fpFGiFIQHD3TWZ2ZkyTBcBdnrm9z+NmNsHMprr7nhDrl/ZW7gdtJR/etVDu+hU4pFHqdT+EacDLOc+7o9eGBQQzWwYsA7j8L7/JnIsX16WD0rwa/UEfWqv9PdI8UneDHHdfBawCuHXTrpTev05EpPXUKyDsBs7IeX569JpIUZo6iaftI6HVKyCsA642szVkksmHlD+QUho5dTJu3PiC6xk3bnxV7WpBU0sSWqiy09XAucBkM+sGvg6MBnD3vwfWkyk53Umm7PQzIdYrUolKPrzLPcOu5Ey8kcFDpByhqoxiM79RddEXQqxLWkPI6Y5yP2gbPY1S7vpDBg5NK0klUpdUlvYQcrqj1T7YQv49mlaSSujSFSIiAmiEIClWjzn3vt4e1nz7yyz+yt8wrmNiVW1CLKMayklIaAoIUhMh5q7rMRW0eUMno17dzhPr1/DxxZ+vqk2IZVQjxPZRjkFyacpIaiI7d53/U+jDp5b6enu4dfkV9B86WPC9Fzat5TsLp/HCprVVtQmxjFL9rKW07CdJB40QpCHqNd0Rd2a+eUMnF82Es059KxfNPFJVmxDLKNXPJDStJJVQQJCGCDUdETc3nz0zX7lwGl94YC2z5y063ib73tcv6wBg8dkdLOmsrE2IZZTqZ6m/sRRN+0glNGUkTS33zLrQe2+emXNCm+x7k8aOBjK/K20TYhml+lnqbxQJSSMEqUo9k5HFzpCTjAB2bHmMLfsG6NzWfWL/9z52fMqmVJsQyyh3FFJs9BC3fUJQ0rm9KCBIVUp94Snk3HWx+fW4ufm4M/OPL/48V970g5LrLdUmxDJK9bPW+YdS+0lfbGsvCghSEyFzBIXOkEOMANIgrp8fuvCyxPmHUnSWL7kUECTVip0hhxgBpEFcPzeuviX2b4TyKphEyqWksqRCoTr87Nnv4rPfPEPO1vHv2PIYndsG+IOV3cd/OrcNsGPLY436E4Ir9TfGbZ+sRn2/QZqTRghSVFxCMbRC8+Bxo4BmGQEkkTT/kG1Ti+83gBLOrUgBQYqKSyiGTBoXmwdvljxAo5RbwVRtfgHik85KOLceBQSpSrVngIVKJIvNg7fDKCCJckcQhfIL5Zaqxu3n5UvnV9dxSS3lEKSu8r9kVc48uFSu1HbVl92kEAUEqZtCF3kr55u8Urm47VrOxfakPYW6p/IFwPeAkcBt7n5j3vtLgW8Du6OXVrj7bSHWLc2j0BSG8gS1EbddAZWqSkGWud1xggWYjQReBM4HuoHNwGJ3fzanzVJglrtfXcmyb920K1nnpGyFKkYOHXgNHzrGhFOmnPB6uVUkufPU7s4PrlvEP13WwaSxozlw5ChLOg/xX2/sDH65BSmur7en6H5w94ougVGLY0aS+9ycGVbtvw0xQpgN7HT3XQBmtgZYADwb+68kVeIqRq6/44Gqlpk/T12qRFJqr9QUXSUlqoU+4Jcvna/KoyYWIiBMA17Oed4N/G6Bdn9sZnPIjCaucfeXC7TBzJYBywAu/8tvMufixQG6KPWWX/Lob30bW3o0NdRoxaaSxnQ/wohfHUxUoirNr15lpz8EVrv7G2Z2JXAn8PFCDd19FbAKNGXUzPLzBS9O/ag++FOgWKnqxtW38Jt71iqv0OZCVBntBs7IeX46byaPAXD3A+7+RvT0NuCDAdYrKaVS0uai/SVZIQLCZmCmmb3TzE4CFgHrchuY2dScpxcDzwVYr6RI7jVzVEraXEqVqOpaSO0j8ZSRux8zs6uBH5EpO73d3Z8xs28AXe6+DviimV0MHAN6gKVJ1yvVK1Qd0rt/L1u+tZiOSZNPeL3cS1HkJpBVStpcSpWoVpJoLnSpi979e7ERo4Z9s1mVR+mTuOy0lpRDqI24SpBqKoqypYwr54/lCw8cUSlpiwi1X0MfbxIvSdmpvqksiZW6J7A0J+3X9qOAIIkoIdmatF/bkwKCVK2vt4cV11zK3OmDSiC3mEKJ5rnvGOTmL12ioNDCdPlrqdrmDZ1MGNjN6s1j+OHzR094Twnk5lYo0dzf18epJw3oOwotTAGhDYW4uc3xbyJf/m4lkltQ/hfYTkwwV/ZN5pA3U5LaUkBoE6Fvd6ibu7eXJPs79/jKPQ77+/uOl6KqBDUdFBDaRMjbHWZHB1+/7M2E45JOXf+mVYXc37rtZropqSwV6evtYeU1lzJ/xpASyW2iUIJ5/owhVijB3HI0QpCKbN7QycCBbu564jf452d+fcJ7SiS3pkIJ5oEj/Rx943VNFbYYBQQpW3bq4N4r36NEchsJmWCWdNOUkZRN31wV0HHQyjRCaHHZqo7e/Xv5+Y2XHX99hI2gY9Lkskv/lEgWSH4cZEtQDx14jSEfOv66+RDLl85XtVGDKSC0uFC3xoy7RLLmkNtH0uMg+2GvW22mkwKClGXHlsfYvOcIKzfuZuLECYwcORJQIrnd5CaYjw0O0nuwl4kTJ9Ch46AlKCBIWa686QdsXH0Lv/zJ/2L63Mv1n79N5SaYdTy0HiWVpSzZuePvLJymq16KjocWpYAgZVFlieTS8dCaNGXU4kJeyE4VRgJhjgdd8C6dgowQzOwCM3vBzHaa2bUF3n+LmXVG7//MzM4MsV6JF+qCdps3dDJ/xhDe+wpDg4O6VEWby600GhwcxHtfYf6MoYqOh+tWrC744d/f38cNVy8O2V2pQOIRgpmNBFYC5wPdwGYzW+fuz+Y0uwI46O5nmdki4FvAZcOXJiGFupDYji2P8dP/6OH2Tf2MGvMrxowdB6jCqF3lVhoNHOnn2EA/o8aMY/L+yo4HXegufUJMGc0Gdrr7LgAzWwMsAHIDwgLgr6LH9wIrzMzc3QOsX2psyVe/H12qYLouWSHHK43evIRF5rj4k+XDP9yluYSYMpoGvJzzvDt6rWAbdz8GHAImFVqYmS0zsy4z69q0Tt9YTAMlEKUQHRetJ3VVRu6+yt1nufusORdrLrHRdLN1KUTHRWsKERB2A2fkPD89eq1gGzMbBXQABwKsW2os7lIF0r50XLSmEDmEzcBMM3snmQ/+RcCSvDbrgE8DPwU+BWxU/qD2QpT25SYQh4aGOHL4IGNPnsjJSii3tRCXMlHpafpYiM9lM5sHfBcYCdzu7teb2TeALndfZ2ZjgP8NfADoARZlk9Bxbt20S0EjoZD3Un7zUgWfUTCQRMdD6Ht8y5s+N2eGVftvg3wxzd3XA+vzXvtazuMB4JIQ65LKhCrty84Zr1w4TTdFkcTHg0pO0yl1SWVJJ1WUSC4dD61JAUFKUkWJ5NLx0LoUEKSk3IqSA0eO8uV7djF3+qDOCtvU5g2dzH3HIF++Zxc9R46qwqiF6OJ2UlJupVF/Xx+njH6dLXuHmNKjSqN2tGPLYzz6Ug+njH6duTfvZNz4TFWQLmXS/BQQWlyI0r7hlyoYq0sVtLE3L2UytupLmajkNJ00ZdTirluxmuvveGDYf7T+/j6WL51f0ZUllUgUSHYc3HD1YpYvnT+s5HTcuPFcf8cDKjltMI0Q2kTSMj/dE0Eg+XGgctN00whBylLoUgXzZwyx4kuXqLqkTfT19rDymkuZP2NIl6xoURohSFlyE8tZA0f6OfrG6zyxfo2SiW1g84ZOBg50c9cTv8E/P/PrE95TQrk1KCBIWbKJ5awTE8yaOmp12amie698j+6J0cI0ZSRVUYK5vWh/tweNENpEbplf7/69uGXOBUbYCJYvnX+8TTlVHkowt5ek+zv3Qna9+/fy8xszd88dYSPomDQZULlpWiggtIncD/rlS+cnqvQolGCe+45Bbv7SJfz5d+9RUGgh2UTyn/xW4XsflJM3iKssuv6OB4L3WaqngCAVK5Rg7u/r49STBpRgbjFKJLcXBQSpmBLM7UGJ5PajpLIkpoRja9J+bT8KCJKILoXcmrRf25OmjNpQoQuL9e7fi40YdbziKLdtXOVR3M3WP3ThZaz59pdZ/JW/0VRDE+jr7Tm+v+L2a1zeoNCtMQ8deI0nb7iECadMOeF1VRalT6KAYGZvAzqBM4FfAJe6+7BTCDMbBLZHT//T3S9Osl5JptAHfLWVR4USzJBJOAKMenW7Es1NYvOGzuP7K26/xu1LVRQ1t6QjhGuBn7j7jWZ2bfT8fxRo9yt3f3/CdUkK5SeYs44nmnUP5qaQf49kJZDbU9IcwgLgzujxncAfJVyetAglJJuL9pdA8oBwmrvviR7vBU4r0m6MmXWZ2eNmFhs0zGxZ1LZr0zpdG70ZxSUk+3p7uHX5FUpONljuflACWbJKThmZ2UPAlAJvLc994u5uZl5kMdPdfbeZzQA2mtl2d3+pUEN3XwWsArh1065iy5MUi0tIgvIKaZCbLwCqSiBL6ykZENz9vGLvmdmrZjbV3feY2VRgX5Fl7I5+7zKzR4APAAUDgjRGocqjQwdew4eOVVx5VCwhOab7EUb86qDyCg2Wny8YGjORLQcrTyCroqj1JE0qrwM+DdwY/b4/v4GZTQRed/c3zGwy8PvATQnXK4GFrDwqlmjeuPoWfnPP2mie+ojOQBvkxHzBEV6cem5V+0EVRa0naQ7hRuB8M9sBnBc9x8xmmdltUZv3AF1mthV4GLjR3Z9NuF5pMqXmqZVbqI387ap8gcRJFBDc/YC7z3X3me5+nrv3RK93uftno8f/7u6/4+7vi37/Y4iOS3MplVfIn9OWMPK3a6n9IO1N31SWuoj7otOHLrzshDlt5RbCyM8VzJ63qOovnEl7UECQqhRKKELxhHOxvAJkcgu5c9r5uYXcSyooUAxXbPvk5wqeWL8mdj8UErefpfUoIEhRhSqPsq/HJRQrUc7duHKnPXQWO1yh7RPqrnZx+znu+JDmpIAgRcWVluaXolar1EXUCk175H6gtcPoIe5vLLZ9qr04XSXKud2qNBdd/loaaseWx+jcNsAfrOw+/tO5bYAdWzIXxyt1SYV2SEbH/Y3Ftk+p7SpSiEYI0lBxc9qlpj1KjR6yy2iGEUSxfsb9jXHbp9JcgQgoIEiNVJp0LqTUtEehpGn+dEiz5B+K9TPubwwxLRRiP0nrUECQqpRKKIZIOpdTqhqXNE3TCKKaPECpEVKIEtJS+0mJ4/aigCBVqcfZYzmlqnFnx6FGEKWCRjlBJW49xfpZagRQj2khjRLai5LK0pRKJU3LuURDts13Fk6LvXxDqcR1qffj1hPXTyWGpd40QpCGSDp3XersuJz59XJGEOWUvZaalqo2DxBiBKAcgVRCAUEaItQX24opNb9e7he3SgWNUu/XIw8Qp9bbWVqLAoLURKOTkSFGEOWWvZb6lnWj8wBxGr2fJF0UEKQmQkxH1HK6o5wz83LLXuOCSi1HACG2j6aNJJcCgqRWLac7yjkzL/VhXs6HfS1HAJoOktAUEESKKPVh3ujpHpHQFBCkIULOXbdaJU3Iv0c5AqmEAoI0RMgP6labOgn59zRjQJTGSRQQzOwS4K/I3Dd5trt3FWl3AfA9YCRwm7vfmGS9ItWo5My73La1WKZIoyQdITwNfBL4h2INzGwksBI4H+gGNpvZOnd/NuG6pcWFnu6o5My73La1WGa5NB0koSUKCO7+HICZxTWbDex0911R2zXAAkABQWLprDmeto+EVo9rGU0DXs553h29VpCZLTOzLjPr2rROB7yISL2UHCGY2UPAlAJvLXf3+0N3yN1XAasAbt20y0MvX1pPq02dtNrfI82jZEBw9/MSrmM3cEbO89Oj10SCaLWpk1b7e6R51KPsdDMw08zeSSYQLAKW1GG9Iieo5My73La1WKZIo5h79bMyZrYQuBk4BegFnnL3PzSzt5MpL50XtZsHfJdM2ent7n59OcvXlJGISGU+N2dGbJVPnEQBodYUEEREKpMkIOiOaSIiAiggiIhIRAFBREQABQQREYkoIIiICKCAICIiEQUEEREBFBBERCSigCAiIoACgoiIRBQQREQEUEAQEZGIAoKIiAAKCCIiElFAEBERQAFBREQiCggiIgIoIIiISEQBQUREgIQBwcwuMbNnzGzIzGbFtPuFmW03s6fMrCvJOkVEpDZGJfz3TwOfBP6hjLYfc/fXEq5PRERqJFFAcPfnAMwsTG9ERKRh6pVDcODHZvZzM1sW19DMlplZl5l1bVq3uk7dExGRkiMEM3sImFLgreXufn+Z6/mIu+82s1OBB83seXffVKihu68CVgHcummXl7l8ERFJqGRAcPfzkq7E3XdHv/eZ2VpgNlAwIIiISGPUfMrIzMaa2fjsY+ATZJLRIiKSIknLTheaWTdwDvAvZvaj6PW3m9n6qNlpwL+Z2VbgCeBf3P3/JVmviIiEl7TKaC2wtsDrrwDzose7gPclWY+IiNSevqksIiKAAoKIiEQUEEREBFBAEBGRiAKCiIgACggiIhJRQBAREUABQUREIgoIIiICKCCIiEhEAUFERAAFBBERiSggiIgIoIAgIiIRBQQREQEUEEREJKKAICIigAKCiIhEFBBERARQQBARkcioRncgzuTxJzW6CyIibcPcvdF9KMrMlrn7qkb3I04z9BHUz9DUz7DUz3CS9DHtU0bLGt2BMjRDH0H9DE39DEv9DKfqPqY9IIiISJ0oIIiICJD+gJDqubpIM/QR1M/Q1M+w1M9wqu5jqpPKIiJSP2kfIYiISJ0oIIiICJCygGBm3zaz581sm5mtNbMJRdpdYGYvmNlOM7u2zn28xMyeMbMhM5sV0+4XZrbdzJ4ys6569jFaf7n9bNi2jNb/NjN70Mx2RL8nFmk3GG3Lp8xsXR37F7t9zOwtZtYZvf8zMzuzXn3L60epfi41s/052/CzDejj7Wa2z8yeLvK+mdn3o79hm5mdXe8+Rv0o1c9zzexQzrb8WgP6eIaZPWxmz0b/z/+iQJvKt6e7p+YH+AQwKnr8LeBbBdqMBF4CZgAnAVuB36pjH98DvAt4BJgV0+4XwOQGbsuS/Wz0toz6cBNwbfT42kL7PHqvvwHbsOT2Af4M+Pvo8SKgM6X9XAqsqHff8vowBzgbeLrI+/OADYABHwZ+ltJ+ngs80OBtORU4O3o8HnixwD6veHumaoTg7j9292PR08eB0ws0mw3sdPdd7v5rYA2woI59fM7dX6jX+qpVZj8bui0jC4A7o8d3An9U5/XHKWf75Pb/XmCumVkd+wjp2I8lufsmoCemyQLgLs94HJhgZlPr07s3ldHPhnP3Pe7+ZPS4D3gOmJbXrOLtmaqAkOe/kYlu+aYBL+c872b4hkgDB35sZj83s7R+uzEN2/I0d98TPd4LnFak3Rgz6zKzx82sXkGjnO1zvE10MnMImFSX3hXoQ6TYfvzjaOrgXjM7oz5dq0gajsdynWNmW81sg5n9diM7Ek1TfgD4Wd5bFW/Pul/czsweAqYUeGu5u98ftVkOHAPurmffssrpYxk+4u67zexU4EEzez468wgmUD9rLq6fuU/c3c2sWB309Gh7zgA2mtl2d38pdF9b2A+B1e7+hpldSWZU8/EG96lZPUnmeOw3s3nAfcDMRnTEzMYB/wf4krsfTrq8ugcEdz8v7n0zWwrMB+Z6NBGWZzeQe3ZzevRaMKX6WOYydke/95nZWjLD+qABIUA/a74tIb6fZvaqmU119z3RcHZfkWVkt+cuM3uEzBlRrQNCOdsn26bbzEYBHcCBGvcrX8l+untun24jk7tJm7ocj0nlfvC6+3oz+zszm+zur9WzH2Y2mkwwuNvd/2+BJhVvz1RNGZnZBcBXgIvd/fUizTYDM83snWZ2EplEXt2qTsphZmPNbHz2MZlkecGKhQZLw7ZcB3w6evxpYNjIxswmmtlboseTgd8Hnq1D38rZPrn9/xSwsciJTC2V7Gfe3PHFZOac02Yd8KdRdcyHgUM504mpYWZTsnkiM5tN5nO0ricB0fr/EXjO3f+2SLPKt2cjM+UFMuc7ycx5PRX9ZKs33g6sz8uev0jmDHF5nfu4kMxc3BvAq8CP8vtIptpja/TzTL37WG4/G70to/VPAn4C7AAeAt4WvT4LuC16/HvA9mh7bgeuqGP/hm0f4BtkTloAxgD3RMfuE8CMem/DMvt5Q3QsbgUeBt7dgD6uBvYAR6Nj8wrgKuCq6H0DVkZ/w3Ziqvga3M+rc7bl48DvNaCPHyGTp9yW83k5L+n21KUrREQESNmUkYiINI4CgoiIAAoIIiISUUAQERFAAUFERCIKCCIiAiggiIhI5P8DfQEqGjHqV58AAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "from sklearn.svm import SVC\n", + "\n", + "svc = SVC().fit(X, y)\n", + "plot_decision_regions(X, y, clf = svc)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 337 + }, + "id": "--5elonaX62y", + "outputId": "a4774feb-99e4-4dad-fbd0-53397d0f3a27" + }, + "execution_count": 5, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.7/dist-packages/mlxtend/plotting/decision_regions.py:244: MatplotlibDeprecationWarning: Passing unsupported keyword arguments to axis() will raise a TypeError in 3.3.\n", + " ax.axis(xmin=xx.min(), xmax=xx.max(), y_min=yy.min(), y_max=yy.max())\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 5 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXxU9bnH8c+TBAgQSGQLO4KAoigKiOLComCBUqharbhitSyKdbnV63K1XqsV21tbKxbEHaW4tBURtC5VBEEERBGUVdQCghAggQAJWX73j0ziJJktmZOZSfJ9v168mDnnxznPnHOY55zf85tzzDmHiIhIUrwDEBGRxKCEICIigBKCiIj4KCGIiAighCAiIj4p8Q4glPfX79IQKBGRKhh6XBur7r9N6ISweVduvEMQEalVhh7Xptr/Vl1GIiICKCGIiIiPEoKIiAAJXkMQEYkHw5HeoJjUZDCrdo22xjjnyCuCnIIkHN7Fp4QgIlJBeoNiMpqmUmwpkIAJAedIdYVwMI/sgmTPFqsuIxGRClKTSdxkAGBGsaWQ6l0uAJQQREQqMbPETQalzDzvzlJCEBERQAlBRCRhrfzwPa75yVlcPWogLz35aI2vTwlBRCQBFRUV8dgDd3L/X2cz87UPWPjmXL79akONrlOjjEREonDjleeTs39/penpzZvzyKxXq73cDWs+pV3no2nXqQsAg0eO5aP336LLMcdWe5nhKCGIiEQhZ/9+ekyYVmn6pplTolrunl07ad22Q9n7Vpnt2PD5p1EtMxx1GYmICKCEICKSkFq2acvundvL3md9v4OWmW1rdJ1KCCIiCejY3ifz3bdfs3PbfygoOMIHb77G6UN+VKPrVA1BRCQBJaekcN2dv+OuSeMoLirivPMv4ejuNVdQBiUEEZGopDdvHrCAnN68edTLHjDoXAYMOjfq5URKCUFEJArRDC1NNKohiIgIoIQgIiI+SggiIgIoIYiIiI8nCcHMnjazXWa2Nsj8IWaWY2af+f7c48V6RUTEO15dITwLjAjTZrFz7mTfn/s8Wq+ISJ308N038/PBvZl4/pCYrdOThOCcWwTs9WJZIiICw8dezP3T/xbTdcayhjDQzFab2ZtmdkKwRmY2wcxWmtnKRfPmxDA8EZHqy9m3hwd+dTn7s705Nz6x/0CapR/lybIiFauEsAro4pzrAzwKzA3W0Dk30znX3znXf9CYcTEKT0QkOu/NnU3xd6v596svxDuUaotJQnDO7XfO5fpevwE0MLNWsVi3iEhNy9m3h0/f+Tt/vqAjn77zd8+uEmItJgnBzNqamfleD/Ctd08s1i0iUtPemzubn3SHHpmN+Ul3au1VglfDTucAHwHHmtk2M7vGzCaZ2SRfk58Ba81sNfAX4BLnnPNi3SIi8VR6dXBpv3QALu2XXmuvEjy5uZ1zLmRnv3NuGlD5GXMiIrVc6dVBy7QGQMnfpVcJ51/9q2ov98HbJvP5iqXsz97L5ef25fLrf82ICy71KuyAdLdTEZEorFm+mMU78pjz+bZy0zN2L44qIdzx++nRhlZlSggiIlG4Z/or8Q7BM7qXkYiIAEoIIiKVOOcg0ce9OIfXY3OUEEREKsgrgiRXmLhJwTmSXCF5Rd4uVjUEEZEKcgqS4GAeqcng+wlVQnHOkVfki9NDSggiIhU4jOyCZCiIdySxpS4jEREBlBBERMRHCUFERAAlBBER8VFCEBERQAlBRER8lBBERARQQhARER8lBBERAZQQRETERwlBREQAJQQREfHx5OZ2ZvY0MBrY5ZzrHWC+AY8Ao4BDwHjn3Cov1i1SEx6cMo7c3AOVpqelNeOOaXOq3E6kNvDqbqfPAtOAWUHmjwR6+P6cBkz3/S0SM1X58s7NPUC3ax+t1HbLkzdUq11V1y8SD54kBOfcIjM7OkSTscAsV/J4n2VmlmFm7ZxzO7xYv9RvkX7RVuXLuyZEun4lDomXWD0PoQOw1e/9Nt+0SgnBzCYAEwAu/6/7GTRmXEwClNor3l/0Xqtrn0dqj4R7QI5zbiYwE+CJRVsS9Pl1IiJ1T6wSwnagk9/7jr5pIkGp6yQ0bR/xWqwSwjxgipm9SEkxOUf1Awknnl0naWnNAq4nLa1ZtdrVBHUtide8GnY6BxgCtDKzbcBvgAYAzrkZwBuUDDndTMmw06u9WK9IVVTlyzvSM+yqnInHM3mIRMKrUUYhK7++0UXXe7EuqRu87O6I9Is22HLXL36dFbN+i1mVVhsx56B5zwERfy4vE4e6laQqEq6oLPWDl90dob7YDmTv5VBuDgAHc/ax9f1ZZKY3KdemX9ejuPQXfau83qp49t1PWfP8B+Wm7cw+TNfzfkFq0zQA0pofRdPmGZ5+UatbSapCCUHqlP98uZI9364HoCA/j0a71tK/RxsAGiQZ9005hwYpyTGPa/ywEytNy8sv4JVF8ymiZDDdsg3fU9zhZFJSGgDQ5pjedOh5ckzjlPpNCUESViRdJ8XFxaz851/hUDbFxcUc36KICWf2AMAslQ6th2Eh+oKysnOZOPUFZt5xBS3Tm1arTXWXkdqoAVcMP6mszZXnFrN9d07Z++cX/oOPP5qHWRJJaa3od/7Ecp9FNQnxmhKC1Agv+q4DtSssLGD/3t1sXPEe+z6ZT+OGKdww7FhO6ta1WnHOWrCUfTu38tz8Jdxy2XnVauPFMgCSkpLolHlU2fs7f3562euP123jhWdvJ/fwEdoMvJAWHbpx25+fJzkluv/CqjGIPyUEqRFe911/s/Zj9n+/lV1ffMTgnukc07wJF15/Tsizfwh99p6Vncv8D1Yw/YJWTJ6/gqtGn1nlNl4sI1ycAKf16shpvTrinOPFhUvY+8l7vP/VAdr0Oo2j2nejU6/q1UBUYxB/SggSF5F0d+zfl8XquTOw4gIGtE9i/MmdaXvWGTRrmhrxekKdmc9asJTR3ZM4tk0jRnfPq1YbL5YRLk5/Zsa4oSU3FL489zC79h3g9RVzWfLR67jkBpxywfU0bZZe1l7dSlIVSggSF8G6Iw7lHiBnz25Wz/0rbZIP8tfLTietSaOgy6nuFUDpvJcvLvlivLJvUy5+uWptvFhGuDhDfcb0tMakpzXmlk4lRfPsA4e498X72UsGfX46kQYNG6nbR6pED8iRhJC14z98/OoTfP3SPSQtncb9Y7vxx2sHh0wGUP7MOtC8H87Mk8q1KZ3XKq3knKhVWkqV23ixjHBxhvuM/jKaNeHPvxzC/4zsiH34KJv+djfL5z3Lvl26S4xERlcIUi1eFSMP7s9m1avTaVG0h/8eeQI9Og2r1CbYGXI0VwALV23ku135/G3NrnLrav/9xrIum3BtvFhGpFchVak/9OzYils6tgJgw7ff8+i8h/miURv6XXAdjZtWratIRef6RQlBqiVcMTJc3/Xhgwf45JVHSS/ex6OXnkZ62kmV2pYK1r8eqm8+1Jn5LZedx7w/Tgn7GcO18WIZ4eKMtv5wbJdMpk3KJCs7l3tf/F8ONmpD3wuuJ7VJSVIJt59UdK5flBCkRoQ6e/z4HzNofegr/mdEb3p07BNyOcHOkL24AkgEoeK88sdnRF1/KNUqI41pE4fyxTe7eO6V33CgZW/6jh6vs3wpRwlBYmbLJ++zZdlbjD+jHSNPHRLRvwl2huzFFUAiCBXnw7PfDvkZIbIRTP5OOLoNv7+mDf/4cD0vT7+T7mf+hKNPGujth5JaS0VlqXE7v9nAksf/m857lvDSjWcz8tTuldpkZedy4e0z2JNzsNy0+R+s4Mq+JWe8V/ZtyvwPVrAn5yALV23kb2vy6f/YrrI/f1uTz8JVG2P2uWpauM8YavuUCrRdAS486zheuuFMWm99h8UzbmP3tq9j98EkYekKQYIKVVCMxKED+9n06Yckb/o3T00aQnJy8POPQP3goa4CassVQDSirT+Utgn1+4abxvajoLCIGx5/hJ29f0yPUwaS2iQtovhUcK57lBAkqFAFxXDFyAPZe1g16z4mD+vOwCFDSEoKngyC9YPXljpAvEQ6gilcfaFBSjLTJp7D0rVfMv3JBZx29f+W/bgt1H5WwbnuUUKQagl2BlhYcIQlzz1Is8K9zJhU+XcEgYaQBusHrw9XAdGI9AoiUH2h4n5ISUlm0MndOemY9tzxwn3kN85kwCW3hDzTv2v8aE8/j8SfagjimYL8fBbOvJvfjOrAoxOHBPxRWcUfWUXSDy5VF267BvuxW0azJkyffA63Dm3NoqfupbCwIOaxS/woIYgnjuTnsejJu/m/S06ka7uWAdv4d2GUfjlF8kteqbpQ2zXQfqioV5c23De2Ox/MvJvCgiOxDl/ixKtnKo8AHgGSgSedc1MrzB8P/AEo/Q39NOfck16sW+Iv//Ahljx1Dw9f1pf2rdODtgvUhaE6Qc0ItV2BiIaqdu/YmgcvSuL2mXcz+Nr7aNAo9G1EpPazkscdR7EAs2RgIzAc2AasAMY55770azMe6O+cq1Kn8BOLtkQXnEQs0IiRnD1ZuOJCMlq3LTe9dBRJcXExWzd9wea3nuGR8aeS2aJ5uXb+/dTOOS6+7RFevrgZrdJSyMot5OKXD/DKH24K+lAZ8V5Wdm7Q/eCcC3iLkK3f7+PWFz+n53nj6di9V9ktx6tzzEjN++WgbtV+OrgXVwgDgM3OuS0AZvYiMBb4MuS/koQSasTIA8/OrzS9uLiYxc8+wI+6JnPzNacH/FKv2E8dboik1LxwXXSBhqh2yjyKR644hQXL/8EHyxpx5uW3YmYBv+DvGj9aI49qMS8SQgdgq9/7bcBpAdpdaGaDKLmauNk5tzVAG8xsAjAB4PL/up9BY8Z5EKJ4bfEzD3DrsHb0OaZdwPkVhzw2apzG7r3qGoq3YF1JrbevI/9wbtAhqpktmvOLEX05ft02pr/we8664r9jHbrEQKyGnb4OzHHO5ZvZROA54JxADZ1zM4GZoC6jRJWbs4/OjXKDJgOoXC+gQy998SeAYENVH579Nmz/JGxd4fReHfn70q84lHuAJnrITp3jxSij7UAnv/cd+aF4DIBzbo9zLt/39kmgnwfrlTjYvy+LT567l9svOjVoGw0lrV2qur/uvKg/y56+m4MHcmIZpsSAFwlhBdDDzLqaWUPgEmCefwMz8z+VHAOs82C9EmPZe3axevZvmTFpMM2bNi43z/+eORpKWruEG6Ja8V5ILZo3Zfovz2T5M/eQm7MvXmFLDYi6y8g5V2hmU4C3KBl2+rRz7gszuw9Y6ZybB/zKzMYAhcBeYHy065XqCzQ6JHv3Tj59aBzpLVuVm156K4p9u3bw5ctTmTFpCE1SG1Zapn8BWUNJa5dwQ1QDFZozmjVhxsSzue7xeznlirtpflTJcRPoVhfZu3diSSmVftmskUeJJ+phpzVJNYSaEWokSKARRQALp93CU5MHkdqoQaV5pUMZp49uwuT5hzSUtI6IZL/mHspn0lMfM3jyQ0GXU53jTaovmmGn+qWyhLX5k4WcfkyLgMkAwj8TWGqnSPZrWpNGnNQulW/XLItDhOI1JQQJaesXK8j49l1u+MkpAeergFw3VWW/3nrhqSStnct3m9bEOkzxmBKCBOWcY8Pi17lu1MkB52dl53LeDX9maGdUQK5jAhWah3SC4VP+VCkpmBnXjerDxiUL4hGqeEi3v5agvvt6I0OOTiY9rXHA+bMWLCUpbx/PrEzhtQ3l74qpAnLtFqjQvPfAYVo0KAz4G4W2LZtzUvMDZO3YRqt2HWMdrnhECaEeCvdwGyi5Yd36N55g8pWBfzJS2qUw+4qOKiTXQRV/wFa+wBz4YTvjBvfi1hcfrXQjvEiON0kMGmVUT1T1cYeLn7qXP1x0bKUb1pUq/WXrLYPSeXhRDnTopyuCOizS/b31+33cPX8rZ151R8Dl6LGbNS/eN7eTWqCqjztMa+CCJoPSq4OXLy45w7uyb1Mufjn4IxqldqvK/u6UeRSp9lXQZemxm4lNRWWp5KuV73NiZuAhplnZuZz3qz8zspupkFxPBCowj+wGw2+oXGAG6J5RrGGotZSuEKQc5xwbP5zP1F8HvPcgsxYsZXfWHp5Y3oiXvij/JC0VkuumQAXm/QfzOJyXH7DAfOOYfoybNpfOvU8re3aC1A5KCFLOxlUfcsVpmQHnlXYdvDupswrJ9UjwAnNmwAJzg5RkRvdqyoZ1q+l2fOAhy5KY1GUk5eTn5tCpVeDRH/pFskBkx0GXVmkcztXdUGsbXSHUcaWjOrJ37+STqT8vm55kSaS3bFVu6N+R/Dz2r36Tkwf/qNJyVEgWiPw4OPOkbjzxyMv06ncWScnJZdNLh6Dm7Mmi2BWXTTdXzF3jR2u0UZwpIdRxVXk0ZkF+Hr07tyQlJblS+1C3SFbdoP6I9Dho2CCFbm2aUeyKSeKH46n0y16P2kxMSghS5vMFT3P9aZ0Czlu4aiP/2XGYh97Lol2LpqQkl/Q2qpBcv/gXmAuLitmx9yDtWjSlc4DjYES/o3l+3pP0v2BynKKVqlJCkDLphXvp1/PYgPPm/XEKD89+m/nvfMDo4WcpCdRT/gXmcMfDWSd04uXlH8cyPImSisoSkdK+4+kXtNLdTEXHQx2lhCAR0Qgj8afjoW5Sl1Ed58WNxTTCSPx5cTzohneJyZMrBDMbYWYbzGyzmd0eYH4jM3vJN/9jMzvai/VKaF7dSGzWgqWM7AbZ2fsoLCrWrSrqOf+RRgWFxWRn72NkN6vS8XDHtDkBv/xzcw/w4JRxXoYrVRD1FYKZJQOPAcOBbcAKM5vnnPvSr9k1wD7nXHczuwR4CPh55aWJl6pyI7FNy9+hV7smAZezcNVG1n99gL98kEfjxodp3jQV0Aij+sp/pNH+g3kcPpxH48apHLe78vHQrUUKX3+2mK4nn11pObrRXeLx4gphALDZObfFOXcEeBEYW6HNWOA53+u/A+eabnKSUPau/5gJI/oEnPf03ePp2KoZ707uQsdWzXhr2q2sfP7eSrc0kPph3h+nsPL5e/nXo78ud1w8c8/VldreNLYfOz9fHIcopTq8SAgdgK1+77f5pgVs45wrBHKAloEWZmYTzGylma1cNE+/WIyVUOlZBUQJRMdF3ZNwo4ycczOdc/2dc/0HjVFfYqw0btud1z7aVGl6VR62LvVHpMfFnA/WkdHlhHiEKNXgRULYDvj/vLWjb1rANmaWAqQDezxYt3jkxOGX8P763ZWmh7pVgdRfkR4XS7fk0GtwxR5kSVReDDtdAfQws66UfPFfAlxaoc084CrgI+BnwHsukZ/dWUdUdWifUbnfyL+AWFzs2JNzkJbpTemognK9FumtTAIdU6U09DTxRJ0QnHOFZjYFeAtIBp52zn1hZvcBK51z84CngOfNbDOwl5KkITXsjmlzAg49LR3aF8nQ08C3KjhTyaCei/ZWJnq2cmLy5Idpzrk3gDcqTLvH73UecJEX65Kq8Wpon/+tCgI9FEXql2iPBw05TUwJV1SWxKQRJeJPx0PdpIQgZXbnJfHNzr2VpmukkfiL9HjYsHU3+4sbxyNEqSYlBCnT96IbeeXDykNP/UeUZOUWMvGVHQztjM4K66lZC5YypBNMfGUHew4WBR1h9MLC9Qy45JY4RSnVoZvbSZkGDVPZ/H12pen+I432HjhMRsoRPv2+mN77NNKoPlq4aiNrv9pPRsoRTn10Gy2alVwF+I8wcs6xbfcBOqboK6Y20d6q46oytC+1SVMKOw9k9abt9Onxw4/NS0caZWXncvFtjzB9dBMmzz8U8FYFUvc9fff4csfBK3+4qVJBecnnW2hy0ohyz1P2pyGniUldRnXcHdPm8MCz8yv9R8vNPcBd40dXurNk06PasPfAoYDLUiFRILLjYM+BPJoe1bbS9AenjOOu8aMrDTlNS2vGA8/O15DTONMVQj0R6TC/Hn3P4rFprzG0b49y0/VMBIHIjoPCwiJmLdvJ8CmnVPr3Gm6a2HSFIOU0aNiIDn0GMe+jjeWmB7pVwchuMPyGP2m0UT2RlZ3Leb/6MyO7WchbVrzy4Qa69D+XZNUPah3tMamk97k/441n/ocxA3+Y5l9YLrX/YB6H8/J5bv4SFZfrgVkLlrI7aw9PLG/ES18cKTfPv6D83qYDDLj6x/EIUaKkhCABHTpSzOH8IzRu1BCg0rMPfigwZ+qXy/VAaVfRu5M6By0kAxw4mEd+cRwCFE+oy0gCOvHCG5k0fSEHD+cHnK8Cc/0Syf7OyT3MpMcXc/KFN8UhQvGCrhDqCf9hftm7d+Ks5FwgyZK4a/zosjalozwyWmXS/pyree2jN7n0nJPKLUsF5vol0v09Z+GX9BxzPc0yWpT79/43ssvevZNPppY8PTfJkkhv2QrQcNNEoYRQT/gP57tr/OiIRnp06dmbV/89m7ED82nauFHZ9EAF5iGdYPiUP/HOtJuVFOqQ0kLyuOMDP/ugtG6wJ+cg73+dzznnHVNpGaFGFj3w7Pya/QBSJUoIElRySgpdT/sRry5dweXn/nCVEKjAvPfAYVo0KFSBuY6JtJD8yuL1dDtjNElJ6oWuzZQQJKQeA4bx0b++p8Gi9fx80HFAqAJzExWY65BIC8nPvruGdQ1PoHefgQGWIrWJ0rmEdfKIy3jz0+0UFwcePqICc90UyX4tKirm/XV76H3OhXGIULymhCAROXr4eP7rqQ8qJQXdGrtuimS/FhYWccPj79Fj1LXxClM8pi6jeijQjcWyd+/EklLKRhz5t71j2hw69DwJS/kFNz3xJH+6dijJvmfohnrY+pU/PoOJU19g5h1XqAupFsjKzi3bX6H26y2XnUeBLxl0HDmFzM7dy5YR6NGYOXuyWPXgRWS0Ln9vI40sSjxRJQQzawG8BBwNfANc7JzbF6BdEbDG9/Y/zrkx0axXohPoBmKRjDxq3+14kpMncsPjM/jLhKGkpCQHLDBDScERYN/OrSo01xKzFiwt21+h9uuUi8/huhnv0W3MzbTucHS5+RpRVLtFe4VwO/Bv59xUM7vd9/6/A7Q77Jw7Ocp1SQLI7HIsjLie3//9Ge685IxKBeZSZYVmPYO5Vqj4jORgBWSAe174kO4//TUt23WKcZRS06KtIYwFnvO9fg74aZTLk1ogs3N3Pt95hB1ZOUHbqNBcu0S6v77duZfNOaZkUEdFmxAynXM7fK93AplB2qWa2UozW2ZmIZOGmU3wtV25aJ7ujZ6ozrr2Pm5+fhWfbdzGkYLCcvNCFSSzsnO58PYZKjrHmf9+iKSAnH+kgOXrvuW2l9Zy1tW/iVfYUsPCdhmZ2btA5SddwF3+b5xzzsxckMV0cc5tN7NuwHtmtsY591Wghs65mcBMgCcWbQm2PImzRqmNOXvC/Tyx6HUOvvEe0ycPKbsRXqiCJKiukAj86wVAyALygYN5XPf4ItJ7D2HIhGtJadAwnqFLDQqbEJxzw4LNM7Pvzaydc26HmbUDdgVq55zb7vt7i5ktBE4BAiYEiY9AI49y9mThiguDjjxq2CiVk4dfRPYpg5g0/Xf8deJgmjZuFLQg2Xr7OvIP56quEGcV6wUNU9PI2he4gHzN2LO57okP6XflPTTLaFluvkYU1T3RFpXnAVcBU31/v1axgZkdBRxyzuWbWSvgTOD3Ua5XPFbdkUdQciO8ky69m8kz7uexCWcHLTQ/PPtt2P6Jr586T1cJcVK+XpAHHXoF3A/79h9i8swPGTD+Xpo2z6g0XyOK6p5oawhTgeFmtgkY5nuPmfU3syd9bXoBK81sNfA+MNU592WU65UE07xFK06+4h4mzVxMTu7hSvPD9VOrtlAzKm7XSH9ImJWdy3VPLeW0q+8LmAykbooqITjn9jjnznXO9XDODXPO7fVNX+mcu9b3eqlz7kTnXB/f3095EbgknmYZLTj1qnuZ/NQy7n/pI4qKfvhVc7i6QsU+bfFGxe0abj8UFBZx7+wl3DhrFQN/cR9NmjWPW+wSe/qlsniqafMMhl7/f+z8ZiM3zJzOby8dSMv0piF/6HTlj88o16et2oI3KtYKrhp9Zsj9cMWogdz5wjK6jb2ZIe27xClqiSclBKmWQAVF+KHg3PboniSP+hW3vDaX3k2zg9YVoKS24N+nXbG24H9LBSWKyoJtn4q1gufmLwm4H5xz3DdnKbct2MVxF9xKi8wOZfNC7Wepe5QQJKhAI49Kp4cqKJZq3aErrS+9mc0r3+faR+dy4enHMPLU8g9QieRpXP7dHipCVxZo+0T6lLO5H23kteXf0P7scZxx0umVlh1qP4c6PqR2UkKQoAKNPCpVcShqKN37D6V7/6Es+NdsXnx0IbeOPo7eXUuGJYa7iVqgbg//L7T6cPUQ6jMG2z7htuvKjd8x7e1NZPTozxnX31ytuEIdH1I7KSFIzPQZcRnFRZfwu6d/y+hjdzHq1O4h+7Rvuey8gN0e/lcJ9eHqIdRnDLZ9gm3XltvW0apNG975NomzJz6EmcXyo0iCU0KQmEpKTmbwNfewdsMa5j05i9NP7cdtPxtASkpypbbhuj3CXT2ULqM2XEEEizPUZwy1fSrWCvKPFDD1leWsyypkY/sxnD2kt5KBVKKEIDUiXNG5a68+dO31R3Zt+5prZj7BSe0actOYfmXPWYDw3Unhrh5Kl1EbriCCxRnqM4bbPlDyRLOH/rmc9buLOX7sFM7NbF9uveH2k9QvSghSLeEKipEUnQHadOxKmwm/49u1y7jksdc5t2sDerZP59TjOkc0VDVU0TSRriCqUwcId4UU6hYhfY7twhfbsvlwm+O4wedz9vl9A8YVbj+pcFy/KCFItXh99til9+l06X06325cy6bcA8yc8SKDBvbn5vMHlLtqKFU6VDXU2bFXVxDhkkYkSaU6dYBwVwAVu4UKCov4v38s57PtB3mTM2lyXHOGj+4VMJ5I6SqhflFCkITSpWdvAI7rO5Dvv93ANTOeoVFKEhcNaM+wU7qWtQtXjI5k2GUkVxAQPmmEm1/dOkC4z1jq9WWbWLAmi0NHCjlu9CSGVXiKmUiklBAkLiLpu87sciyZE6cCMPetOTz/6Rps/w5+eU53pk65kOO7tgu6/Ej61yO5gohk2Gu4pFLdOkCwH/Ot+eo7Plz9FW51aekAAAo1SURBVDP+vZnkjPZkdOxBv6tvqvZ2FimlhCBxEWmNoVSfH40r+Xc5+/jHxs/JXr+BtLfeoWWzJkwaeSKZLcrfc8eLKwgInzTCza9uHaDiVcDW7/fx1LtfkJVzmLy2p9CsXU9OvXp82HsNVXU7S/2mhCA1oqaKkWnpR9Hr1MFw6mAKC46Qn3eYW196mIxGjqKiYoYf35KfntEz5K0yILIriEiHvYb7lXVV6gD+5nywjiWbc0hKMrILUuj/8zvJbNjI0wfUqGgs/pQQpEZ40R0RrrsjpUFDUho05Oxr/7ds3sL3/8ncpz8HoOBIPn1bFzO0d8lQy5TkJE48pj1mFtGZeaTDXkMllVDrufnS4azetJ1iV/JgwH99upV1+1NJTilZXstuJ9LnquC/CPeiO0jdRuJPCUESVnW6O04YekG59//ZuIZZO78D4PCBffDm23Rtm84Zp/cvazO4d0cG9upYaVnhkkYkSaX0CuCDNf/ho/XflWv3y7+8RcOeg2nYpORsPOOUQQw65vign60idQeJ15QQpE7r3PNE6Hli2fv8vLEUFRSUa/PsO39j9pIlJCeX/7V019796UpgNz6zLOz8Us45jmR0pdewW8u1OaVhQxo2So34s4jUNCUEiQsv+66r0nXSKLUxpDYuN63/BZOqvM6a5OXIINUIpCqUECQuvOy7rmtdJ15+HtUIpCqiSghmdhFwLyXPTR7gnFsZpN0I4BEgGXjSOTc1mvWKVEdVzrwjbVsTyxSJl2ivENYCFwCPB2tgZsnAY8BwYBuwwszmOee+jHLdUsd53d1RlTPvSNvWxDIjpe4g8VpUCcE5tw4IdxvdAcBm59wWX9sXgbGAEoKEpLPm0LR9xGuV7xrmvQ7AVr/323zTAjKzCWa20sxWLpqnA15EJFbCXiGY2btA2wCz7nLOveZ1QM65mcBMgCcWbXFeL1/qnrrWdVLXPo/UHmETgnNuWJTr2A508nvf0TdNxBN1reukrn0eqT1iMex0BdDDzLpSkgguAS6NwXpFyqnKmXekbWtimSLxYs5Vv1fGzM4HHgVaA9nAZ865H5lZe0qGl47ytRsF/JmSYadPO+ceiGT56jISEamaXw7qVu2HZUeVEGqaEoKISNVEkxBiMcpIRERqASUEEREBlBBERMRHCUFERAAlBBER8VFCEBERQAlBRER8lBBERARQQhARER8lBBERAZQQRETERwlBREQAJQQREfFRQhAREUAJQUREfJQQREQEUEIQEREfJQQREQGUEERExCeqhGBmF5nZF2ZWbGb9Q7T7xszWmNlnZrYymnWKiEjNSIny368FLgAej6DtUOdcVpTrExGRGhJVQnDOrQMwM2+iERGRuIlVDcEBb5vZJ2Y2IVRDM5tgZivNbOWieXNiFJ6IiIS9QjCzd4G2AWbd5Zx7LcL1nOWc225mbYB3zGy9c25RoIbOuZnATIAnFm1xES5fRESiFDYhOOeGRbsS59x239+7zOxVYAAQMCGIiEh81HiXkZk1NbNmpa+B8ygpRouISAKJdtjp+Wa2DRgILDCzt3zT25vZG75mmcCHZrYaWA4scM79K5r1ioiI96IdZfQq8GqA6d8Bo3yvtwB9olmPiIjUPP1SWUREACUEERHxUUIQERFACUFERHyUEEREBFBCEBERHyUEEREBlBBERMRHCUFERAAlBBER8VFCEBERQAlBRER8lBBERARQQhARER8lBBERAZQQRETERwlBREQAJQQREfFRQhAREUAJQUREfFLiHUAorZo1jHcIIiL1hjnn4h1DUGY2wTk3M95xhFIbYgTF6TXF6S3F6Z1oYkz0LqMJ8Q4gArUhRlCcXlOc3lKc3ql2jImeEEREJEaUEEREBEj8hJDQfXU+tSFGUJxeU5zeUpzeqXaMCV1UFhGR2En0KwQREYkRJQQREQESLCGY2R/MbL2ZfW5mr5pZRpB2I8xsg5ltNrPbYxzjRWb2hZkVm1n/EO2+MbM1ZvaZma2MZYy+9UcaZ9y2pW/9LczsHTPb5Pv7qCDtinzb8jMzmxfD+EJuHzNrZGYv+eZ/bGZHxyq2CnGEi3O8me3224bXxiHGp81sl5mtDTLfzOwvvs/wuZn1jXWMvjjCxTnEzHL8tuU9cYixk5m9b2Zf+v6f3xigTdW3p3MuYf4A5wEpvtcPAQ8FaJMMfAV0AxoCq4HjYxhjL+BYYCHQP0S7b4BWcdyWYeOM97b0xfB74Hbf69sD7XPfvNw4bMOw2we4Dpjhe30J8FKCxjkemBbr2CrEMAjoC6wNMn8U8CZgwOnAxwka5xBgfpy3ZTugr+91M2BjgH1e5e2ZUFcIzrm3nXOFvrfLgI4Bmg0ANjvntjjnjgAvAmNjGOM659yGWK2vuiKMM67b0mcs8Jzv9XPAT2O8/lAi2T7+8f8dONfMLIYxQmLsx7Ccc4uAvSGajAVmuRLLgAwzaxeb6H4QQZxx55zb4Zxb5Xt9AFgHdKjQrMrbM6ESQgW/oCS7VdQB2Or3fhuVN0QicMDbZvaJmSXqrxsTYVtmOud2+F7vBDKDtEs1s5VmtszMYpU0Itk+ZW18JzM5QMuYRBcgBp9g+/FCX9fB382sU2xCq5JEOB4jNdDMVpvZm2Z2QjwD8XVTngJ8XGFWlbdnzG9uZ2bvAm0DzLrLOfear81dQCEwO5axlYokxgic5ZzbbmZtgHfMbL3vzMMzHsVZ40LF6f/GOefMLNg46C6+7dkNeM/M1jjnvvI61jrsdWCOcy7fzCZSclVzTpxjqq1WUXI85prZKGAu0CMegZhZGvAP4Cbn3P5olxfzhOCcGxZqvpmNB0YD5zpfR1gF2wH/s5uOvmmeCRdjhMvY7vt7l5m9SsllvacJwYM4a3xbQug4zex7M2vnnNvhu5zdFWQZpdtzi5ktpOSMqKYTQiTbp7TNNjNLAdKBPTUcV0Vh43TO+cf0JCW1m0QTk+MxWv5fvM65N8zsr2bWyjmXFcs4zKwBJclgtnPunwGaVHl7JlSXkZmNAG4DxjjnDgVptgLoYWZdzawhJYW8mI06iYSZNTWzZqWvKSmWBxyxEGeJsC3nAVf5Xl8FVLqyMbOjzKyR73Ur4EzgyxjEFsn28Y//Z8B7QU5kalLYOCv0HY+hpM850cwDrvSNjjkdyPHrTkwYZta2tE5kZgMo+R6N6UmAb/1PAeuccw8HaVb17RnPSnmAyvlmSvq8PvP9KR290R54o0L1fCMlZ4h3xTjG8ynpi8sHvgfeqhgjJaM9Vvv+fBHrGCONM97b0rf+lsC/gU3Au0AL3/T+wJO+12cAa3zbcw1wTQzjq7R9gPsoOWkBSAVe8R27y4Fusd6GEcb5oO9YXA28DxwXhxjnADuAAt+xeQ0wCZjkm2/AY77PsIYQo/jiHOcUv225DDgjDjGeRUmd8nO/78tR0W5P3bpCRESABOsyEhGR+FFCEBERQAlBRER8lBBERARQQhARER8lBBERAZQQRETE5/8BuqpHiAg47AcAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "x1 = np.arange(10)\n", + "x2 = np.arange(10)-2\n", + "X = np.dstack([x1, x2])[0]\n", + "\n", + "y = np.ones(10).astype('int8')\n", + "y[:5]=0\n", + "\n", + "plt.scatter(X[:, 0], X[:, 1], c=y)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 282 + }, + "id": "w2yOb5ymYPGn", + "outputId": "df84de71-1a39-42aa-9bb0-acd8b37e3141" + }, + "execution_count": 12, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 12 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD4CAYAAADxeG0DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAARx0lEQVR4nO3de5BedX3H8fd379kECJKAmgBBLGImFsEFMSAXYQYtN2/1QnW8Z0BFdKyOyFBF26qDVWlLrSmoKBRUQEVFBUeoooJsuIiIICBXpS4VzG3vz7d/7CokWSDJc3YPv33erxlm8pyz+Z3PnOH57MnvOc/5RWYiSSpXW90BJEnNscglqXAWuSQVziKXpMJZ5JJUuI46DrpgwYJcsmRJHYeWpGKtWrXqwcxcuPH2Wop8yZIl9Pf313FoSSpWRNw91XanViSpcBa5JBXOIpekwlnkklQ4i1ySZkCOD5Aj15LjD1Q+di13rUhSq8gcI1efCoPfguiGHCG7DyXmf5KIrkqO4RW5JE2jXPc5GPwOMAK5BhiG4SvINadXdgyLXJKm07ovA0MbbRyG9V+lqseIW+SSNJ1y7WPsGALGKzmERS5J06lr76m3d+xJRDUfU1rkkjSNYptTIHp55N6SdmAOse2HKjuGd61I0jSKzj1hh0vIdWfD6C+hcw9i7luJjt0rO4ZFLknTLDp2IbY7bdrGd2pFkgpnkUtS4SxySSqcRS5JhbPIJalwFrkkFc4il6TCWeSSVDiLXJIKZ5FLUuEsckkqnEUuSYWzyCWpcD79UNKslo2HJh4f27ZgcjGHqDtS5Sop8oiYD5wFLAMSeHNm/qyKsSVpazXW/husXQnRBYxB+y6w/dlE+451R6tUVVMrZwDfy8w9gb2AWyoaV5K2Sg5dDmvPAoYnVq/PQRi7nXzo7XVHq1zTRR4R2wEHAWcDZOZIZj7c7LiS1Ixc90VgcKOt4zB2Kzl2Xw2Jpk8VV+S7AQPAFyLi+og4KyLmbvxDEbEiIvojon9gYKCCw0rS42g8xvVkdECuntks06yKIu8A9gE+m5l7A+uAD2z8Q5m5MjP7MrNv4cKFFRxWkh5Hz+FA1xQ72qDjmTOdZlpVUeT3Afdl5jWTry9kotglqTYx900Td6rQPbmlDeiBbT9MxFQFX66m71rJzAci4t6IeFZm3gocBvyq+WiStPWibT4s+Ba5/nwY/hG0P42Y+waic1nd0SpX1X3kJwLnxcSvuTuBN1U0riRttWjbhpi3AuatqDvKtKqkyDPzBqCvirEkSVvGr+hLUuEsckkqnEUuSYWzyCWpcBa5JBXOIpekwlnkklQ4i1ySCmeRS1LhLHJJKpxFLkmFs8glqXBVPf1QkjaQjbUwcu3Ewsdd+xHRWXekWcsil1S5xvqLYPVpE8uqAdAB268kup5ba67ZyqkVSZXKsdsnSpwhyLWT/z1MPvQWMofrjjcrWeSSKpXrLwJGp9jTmFipR5WzyCVVK1cD41PtgFwz02lagkUuqVLR/SKgd9MdOQ5dy2c8TyuwyCVVq/sQ6NoH4s9lHsAcmPs2ov2pNQabvbxrRVKlItph+5Uw9H1y6DsQvUTvq4iu/eqONmtZ5JIqF9EBc44k5hxZd5SW4NSKJBXOIpekwlnkklQ4i1ySCmeRS1LhLHJJKpxFLkmFs8glqXAWuSQVziKXpMJZ5JJUOItckgpnkUtS4Xz6oTTLZA7B8E+AEehaTrRtV3ckTbPKijwi2oF+4P7MPKqqcSVtvhz+Gfnw25lYzCEhx8htP0Rb7yvrjqZpVOXUyknALRWOJ2kLZGMt+fAJkOsmV65fBwzD6o+QY3fWHU/TqJIij4jFwJHAWVWMJ2krDF/BxJX4xsbIwW/MdBrNoKquyD8DvB9oPNYPRMSKiOiPiP6BgYGKDivpL3I95FRvwTForJ/xOJo5TRd5RBwF/CEzVz3ez2Xmyszsy8y+hQsXNntYSRvrPpApr6Wil+g5bMbjaOZUcUV+AHBMRNwFXAC8KCLOrWBcSVsg2hfBvBVAD3+ZYok50HUwdO1fZzRNs6bvWsnMk4GTASLiEODvM/N1zY4racu1zTuR7DqAHLwYcpjo+RvoPpiIqebONVt4H7k0y0TXPkTXPnXH0AyqtMgz80rgyirHlCQ9Pr+iL0mFs8glqXAWuSQVziKXpMJZ5JJUOItckgpnkUtS4SxySSqcRS5JhbPIJalwFrkkFc4il6TC+fRDqSKZIzB8FTT+CF37Eh271h1JLcIilyqQo78h//h6YHhyubUGOedlxLan+SxwTTunVqQmZSb58PGQf5xcuX4QGIbBb8LQd+uOpxZgkUvNGrsNGg9OsWOQXH/+jMdR67HIpaYN85hvpRyc0SRqTRa51KyOZzP1x009MOfomU6jFmSRS02K6CTmn87E6vWdkxt7oXMPovc1dUZTi/CuFakC0X0ILLiUHLwQGgNE94HQfTgRnXVHUwuwyKWKRMdiYpt31x1DLcipFUkqnEUuSYWzyCWpcBa5JBXOIpekwlnkklQ4i1ySCmeRS1LhLHJJKpxFLkmFs8glqXAWuSQVziKXpML59EMVb3x8nFWX/YLf3f4Az9hrV57zwme74LFaStNFHhE7A18CdgISWJmZZzQ7rrQ5/vjAQ7znhafy0B/+xPjoOG0d7ey6dDGn/+AfmDNvTt3xpBlRxdTKGPDezFwK7A+8IyKWVjCu9IQ+9bb/5H/vfpDBNUOMDI0ytHaIO2+8my+e+pW6o0kzpukiz8zfZ+Z1k39eA9wCLGp2XOmJjI6M0n/ZjYyPjW+4fXiUy7/8PzWlkmZepR92RsQSYG/gmin2rYiI/ojoHxgYqPKwalHZSLKRU+4bH2vMcBqpPpUVeUTMAy4C3p2Zqzfen5krM7MvM/sWLlxY1WHVwrp6uli6fI9NPths72jnwJftV1MqaeZVUuQxscLsRcB5mXlxFWNKm+O9/3UC2zxlLt293QD0zOthh0Xb89ZPvK7mZNLMqeKulQDOBm7JzE81H0nafIv3eDpfuuNMfnjej7nn1/ezx/N25+BXvYCunq66o0kzpor7yA8AXg/cFBE3TG77YGZeWsHY0hOau20vR59wRN0xpNo0XeSZeRXgty8kqSZ+RV+SCmeRS1LhLHJJKpxFLkmFs8glqXAWuSQVziKXpMJZ5JJUOItckgpnkUtS4SxySSqcRS5Jhavi6YdqUZnJDVf8ktv672SnXRew/Nh9fXysVAOLXFtleHCY9x3+Ee666R5GhkbpmtPJmSd9gc9c9VEWPfNpdceTWopTK9oq53/8G9xx/W8ZXDvE+Ng4g2uG+NODq/nY6/617mhSy7HItVUu/+KVjAyNbrAtG8kdN9zF6v9bU1MqqTVZ5NoqjZx6lfoAGg1XsJdmkkWurXLYcS+ks7tzg20RsMvSxcxfuF1NqaTWZJFrqxx3yivY+VlPZ868HgB65nYzb/t5nHzuu2pOJrUe71rRVundZg7/0f8Jrrn0Om79+e3stGRHDnn1cnq3mVN3NKnlWOTaau0d7Sw/Zl+WH7Nv3VGklubUiiQVziKXpMJZ5JJUOItckgpnkUtS4SxySSqcRS5JhbPIJalwFrkkFc4il6TCWeSSVDiLXJIKZ5FLUuF8+mGBMpNbrvkN113+C+bNn8vBr17O9ju6mIPUqiop8oh4MXAG0A6clZkfr2JcbarRaPCxvzuDq7+9iuHBETq7Ojjr5HP50EXvY98jnlt3PEk1aHpqJSLagTOBlwBLgddGxNJmx9XUfvL1n3P1t1cxtG6YbCQjQ6MMrx/hn179aUZHRp94AEmzThVz5PsBt2fmnZk5AlwAHFvBuJrCZedcydC64U22J8lNP/51DYkk1a2KIl8E3Puo1/dNbttARKyIiP6I6B8YGKjgsC0qHmfX4+yTNHvN2F0rmbkyM/sys2/hwoUzddhZ54g3HkrP3O5Ntre1tbHswD1rSCSpblUU+f3Azo96vXhym6bBAS/djwNf/ny6e7to72inu7eb7t5uTv3ae+ns6qw7nqQaRGY2N0BEB3AbcBgTBX4tcFxm3vxYf6evry/7+/ubOm6ru23VHVz3g5uYN38uB/3t/mz7lG3qjiRpmkXEqszs23h707cfZuZYRLwT+D4Ttx9+/vFKXNXY43m7s8fzdq87hqQngUruI8/MS4FLqxhLkrRl/Iq+JBXOIpekwlnkklQ4i1ySCmeRS1LhLHJJKpxFLkmFs8glqXAWuSQVziKXpMJZ5JJUOItckgpXyUOzWskdN97Fjy+8GgIOftVydlu2S92RJLU4i3wLnPPhr/C10y9hdGQMgAv/5Vscd8rLOe6Dr6g5maRW5tTKZrrr5nv56umXMDw4QmO8QWO8wfDgCOf940Xcf/vv644nqYVZ5Jvpp9+8lvHR8U22ZyY//aarHUmqj0W+mdo72om2TZepjwg6OttrSCRJEyzyzXTQK/enbYoiBzjw5c+f4TSS9AiLfDM97Rk7cfyn3kBXTyfdc7ro7u2iq6eTE898KwsX71B3PEktzLtWtsDRxx/BC47u42eX9BNtbSw/to+nPHX7umNJanEW+RZasGgHjj7hiLpjSNJfOLUiSYWzyCWpcBa5JBXOIpekwlnkklQ4i1ySCmeRS1LhLHJJKpxFLkmFs8glqXAWuSQVziKXpMJZ5JJUuGKefnjfbb/jsnOuZO2f1rP/kc+j74i9aGvz95AkNVXkEXE6cDQwAtwBvCkzH64i2KP94Lwf8ekVn2N8dJzxsXEuP+dK9jp0Gad9/X20t7vMmqTW1uwl7eXAssz8a+A24OTmI21o/ZpBPrPic4wMjjA+NrH48dC6YW684mZ+8vWfV304SSpOU0WemZdl5tjky6uBxc1H2tCNV95M+xSLGw+tG+KH/31V1YeTpOJUOcn8ZuC7j7UzIlZERH9E9A8MDGz2oJ3dnY+5r7u3e4sCStJs9IRz5BHxA+CpU+w6JTO/OfkzpwBjwHmPNU5mrgRWAvT19eXmBtzrkKW0tW/6+6ZnbjcvecuLNncYSZq1nrDIM/Pwx9sfEW8EjgIOy8zNLujN1dnVyUcv+QCnHPnPZEKON2g0Grz0xJfw3EOXVX04SSpOs3etvBh4P3BwZq6vJtKmlh2wJxfcv5Kff+c61q0eZJ/Dn8NTl+w4XYeTpKI0ex/5vwPdwOURAXB1Zh7fdKopzJnbw8GvWj4dQ0tS0Zoq8sx8ZlVBJElbx69GSlLhLHJJKpxFLkmFs8glqXAxDbd+P/FBIwaAu7fyry8AHqwwTuk8H4/wXGzI87Gh2XA+ds3MhRtvrKXImxER/ZnZV3eOJwvPxyM8FxvyfGxoNp8Pp1YkqXAWuSQVrsQiX1l3gCcZz8cjPBcb8nxsaNaej+LmyCVJGyrxilyS9CgWuSQVrqgij4gXR8StEXF7RHyg7jx1iYidI+KKiPhVRNwcESfVnenJICLaI+L6iPh23VnqFhHzI+LCiPh1RNwSES+oO1NdIuI9k++TX0bE+RHRU3emqhVT5BHRDpwJvARYCrw2IpbWm6o2Y8B7M3MpsD/wjhY+F492EnBL3SGeJM4AvpeZewJ70aLnJSIWAe8C+jJzGdAOvKbeVNUrpsiB/YDbM/POzBwBLgCOrTlTLTLz95l53eSf1zDxJl1Ub6p6RcRi4EjgrLqz1C0itgMOAs4GyMyRzHy43lS16gDmREQH0Av8ruY8lSupyBcB9z7q9X20eHkBRMQSYG/gmnqT1O4zTKxW1ag7yJPAbsAA8IXJqaazImJu3aHqkJn3A58E7gF+D/wpMy+rN1X1SipybSQi5gEXAe/OzNV156lLRBwF/CEzV9Wd5UmiA9gH+Gxm7g2sA1ryM6WI2J6Jf7nvBjwdmBsRr6s3VfVKKvL7gZ0f9Xrx5LaWFBGdTJT4eZl5cd15anYAcExE3MXElNuLIuLceiPV6j7gvsz887/SLmSi2FvR4cBvM3MgM0eBi4FZt2ZkSUV+LfBXEbFbRHQx8YHFJTVnqkVMLJB6NnBLZn6q7jx1y8yTM3NxZi5h4v+LH2bmrLvq2lyZ+QBwb0Q8a3LTYcCvaoxUp3uA/SOid/J9cxiz8IPfZhdfnjGZORYR7wS+z8Qnz5/PzJtrjlWXA4DXAzdFxA2T2z6YmZfWmElPLicC501e9NwJvKnmPLXIzGsi4kLgOibu9rqeWfhVfb+iL0mFK2lqRZI0BYtckgpnkUtS4SxySSqcRS5JhbPIJalwFrkkFe7/ATE8fE9uny3uAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "from sklearn.linear_model import LogisticRegression\n", + "\n", + "log = LogisticRegression().fit(X, y)\n", + "plot_decision_regions(X, y, clf = log)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 341 + }, + "id": "LcCSWFtrYPDr", + "outputId": "c172d007-5fd0-4cb1-99f9-6f4369458b3c" + }, + "execution_count": 13, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.7/dist-packages/mlxtend/plotting/decision_regions.py:244: MatplotlibDeprecationWarning: Passing unsupported keyword arguments to axis() will raise a TypeError in 3.3.\n", + " ax.axis(xmin=xx.min(), xmax=xx.max(), y_min=yy.min(), y_max=yy.max())\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 13 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAD8CAYAAACSCdTiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAASjUlEQVR4nO3daZRdVZmH8edNVchUIQwRJAm2SLJAZEkjgygaFVARQxxoERQntGPToqjYKLJc2N24HFtltS4lAW1okKEDthhBoEWMoiZhFCEidFQIEEKAjJCp8vaHqtgBMlXdc8+t2vf5fUndU3X3+55F+GfXPueeHZmJJKlMQ1rdgCSpeQx5SSqYIS9JBTPkJalghrwkFcyQl6SCVRLyEfGJiLg7In4fEZdGxPAqxpUkNabhkI+I8cDHgIMzc3+gAzih0XElSY2rarmmExgREZ3ASODhisaVJDWgs9EBMvOhiPga8ADwNHB9Zl7/7J+LiGnANIBjjp160Itf+PxGSw8au4wewRnvfiOdnR2tbkXSYDVyF5hwcPT1bdHoYw0iYmfgSuCdwFLgv4CZmXnxlt4zY/aCtnqWwp03/pBpL3qMl04c3+pWJA1WO46D/Y/rc8hXsVxzFPCnzHwsM9cBVwGvrGDcYnQM3aHVLUhqU1WE/APAYRExMiICOBKYX8G4kqQGNRzymTkHmAncBtzVO+b0RseVJDWu4QuvAJl5NnB2FWNJUrNsIFjVsQvdncOBPi9v1yTpWL+aUd1PMITGL19WEvKSNBis6tiFoV070RXdxADN+ExYk8NZtRJGdz/e8Hg+1kBS2+juHM6wARzwABEwLLp7f9tonCEvqY3EgA74jXp6rKZRQ16SCmbIS1LNfvrLW9nnmFOY+MZpfGnGzKbWMuQlqUbd3d185JzzuPa8s7nnx9/m0mtmc8/9DzStnnfXSNJmHHrSWSxZ9vRzjo8dM4K5F3+h3+POves+Jr5gD160Z8/zu05406v50Y1z2G/iC/o95tYY8pK0GUuWPc1LPvyN5xy/+7xPNDTuQ48+zp7PH/vX1xOeP5Y5v7u3oTG3xuUaSSqYIS9JNRq/+648uGjJX18vXLSE8bvt2rR6hrwk1eiQ/Sdx318e5k8LF7F27Touu/aXTH3dy5tWzzV5SdpO3Rs2sGzV0yx/ag07jhzWrzE6Ozv41lkf5o1//3m6N2zg5LcdxUsmNeeiKxjykrRZY8eMeM5F1qdWr2X4kOTGuffw1tce2O+xj3nNwRzzmoMbbXG7GPI1aXADLkk1e/ZtkstXrebL37+aUw4dxnfm3scRh+7X79l8nQz5Gkx48cF8/b9/y4hfPVJr3bVr1vLuw/bgyL/dq9a6UolunDefQ8YNYcKYoRwybl3Ds/m6GPI12Gns7rzqQ/9ae911a9cw+6rPG/JSg5avWs2839/Hp189EoAj9h7Ol385OGbz3l0jSduwcRa/4/CeyNxx+BAOGTeEG+fe0+LOts2ZvCRtw10LHuaJpev4xZ+XPeP4LksfHvBLNoa8JG3D505+c6tb6DeXaySpZiefdS67veo97D/11KbXMuQlqWbvf9uR/HT652upZchL0lYseXI5x536Lzy+dHllY04+eH92GdNV2XhbY8hL0lZcdNV1PPnQ/Vx45XWtbqVfDHlJ2oIlTy5n1g0/5ztv351ZN/y80tl8XQx5SdqCi666jil7B/vsPpwpe8egnM0b8pK0GRtn8e89aEcA3nvQjoNyNm/IS9JmbJzFj+3q+TjR2K7OymbzJ37qq7zixDO4988PMeF1H+CCK69veMwt8cNQkrQZN829k4cfWcMP7nrmgwXHLbmTT37wHQ2NfenX/qmh9/eFIS9Jm3H1eee0uoVKuFwjSQUz5CW1kRwUG/j09FhNo5WEfETsFBEzI+IPETE/Il5RxbiStDlLlq7kuM98l8eXrerT+zrWr2ZNdgzooM+ENdlBx/rVlYxX1Zr8ucBPM/PvImIHYGRF40rSc1z0k1/z5KIHuXDWzXzy3W/Y7veN6n6CVSthdedwIJrXYEOSjvUrGNX9RCWjNRzyETEGmAy8HyAz1wJrGx1XjYsIHlu6kgcffbL22s/bqYvhw4bWXlflW7J0JbN+MY/vvH0sp8yax/umHM6uY0Zt13uHkIzufhy6m9zkAFLFTH4v4DHg+xFxAHArcFpmPuP3qIiYBkwDOOn0c5g89cQKSmtrOofuwOhD38EX5z5Qe+0NC3/Jd085ova6Kt9FP/k1UyYOYZ/dhjFl4uo+z+bbTRUh3wm8DPhoZs6JiHOBzwCf2/SHMnM6MB1gxuwFA3hFrCwTXza5JXXv+M/7W1JXZds4i7/i+NEAvPdlozj+ir7N5ttNFRdeFwILM3NO7+uZ9IS+JFVq4yz+GZ9CnTiEC2fd3OLOBq6GZ/KZuSgiHoyIfTLzXuBIYODvbitp0Lnptj/y8OI1/OCuxc84Pu7RP7pkswVV3V3zUeCS3jtrFgAfqGhcSfqrq/+t+dvllaaSkM/MO4CDqxhLklQdP/EqSQUz5CWpYIa8JBXMkJekghnyklQwQ16SCmbIS1LBDHlJKpghL0kFM+QlqWCGvCQVzJCX1C/93WdV9TLkJfXLpvusauCq6lHD0jOsWBd8/aq5RNS7WfLfPG80b3/VvrXWbEeN7LOqehnyaopXvPezPLViGXXv83jFD2dw1IFPs+OoETVXbi/uszp4GPJqis7Ooey489ja644esxMbNriFcDO5z+rg4pq8pD5xn9XBxZm8pD5xn9XBxZCX1Cfuszq4uFwjSQUz5CWpYIa8JBXMkJekghnyklQwQ16SCmbIS1LBDHlJKpghL0kFM+QlqWCGvCQVrLKQj4iOiLg9ImZVNaakbXMbPm1NlTP504D5FY4naTu4DZ+2ppKQj4gJwJuB86sYT9L22XQbvlm/mOdsXs9R1aOGvwmcAYze0g9ExDRgGsBJp5/D5KknVlRa+n/j9j+MT118OSOGD6u/+Lqn+Mr7XsmIYTvUVtJt+LQtDYd8REwBFmfmrRHx2i39XGZOB6YDzJi9wP3Z1BQT9jmQCfsc2JLad1x/BQ8/toy9Jzyvlnpuw6ftUcVyzeHA1Ij4M3AZcEREXFzBuNKgEhG11nMbPm2PhmfymXkmcCZA70z+U5l5UqPjSto6t+HT9nD7P2mQchs+bY9KQz4zbwJuqnJMSVL/+YlXSSqYIS9JBTPkJalghrwkFcyQl6SCGfKSVDBDXpIKZshLUsEMeUkqmCEvSQUz5CWpYIa8VJGnn1rFP371Undn0oBiyEsV+eOdc1n+2CM+z10Dio8aliqwYukTLPzDbXzzDWP4xk1zedfRh9W6O9PQzo7aamlwMeSlCsy79nLeeUAXty9eR+eGdUz9wo/Z74CDaqn91MoVvPOA0Rz3qn1rqafBxZCXGrRi6RPcO/uHnP3Ondl11FBOOHQd77p8CQdMOZmuMTs3vf6q5UtZcOPXm15Hg5Nr8lKD5l17OcdOgl1HDQV6/jx2Esy95rIWdyY5k5cadt/tN3P74tVc/ruFzzjetehmjjjxlBZ1JfUw5KUGffgrF7e6BWmLXK6RpIIZ8pJUMENekgpmyEtSwQx5SSqYIS9JBTPkJalghrwkFcyQl6SCGfKSVDBDXpIKZshLUsEafkBZROwJXATsDiQwPTPPbXRcqS++eOqJrFy54jnHu7pGc+a3Lm1BR9LAUMVTKNcDp2fmbRExGrg1Im7IzHsqGFvaLitXruBFH/r35xxfcP5HW9CNNHA0HPKZ+QjwSO/XKyJiPjAeMOSlGnR0DuWWBYu44hd31177sH3H8YLdm7/7lfqv0ufJR8QLgQOBOZv53jRgGsBJp5/D5KknVllaalvDR47ipSf9M3evWFZr3czkhpkXMOMjr6u1rvqmspCPiC7gSuDjmbn82d/PzOnAdIAZsxdkVXUlwc677cHOu+1Re90nfzOq9prqm0ruromIofQE/CWZeVUVY0qSGlfF3TUBXADMz0y3jFdLdHWN3uxF1q6u0S3oRho4qliuORx4D3BXRNzRe+yzmXlNBWNL28XbJKXNq+Luml8BUUEvkqSK+YlXSSqYIS9JBTPkJalghrwkFcyQl6SCGfKSVDBDXpIKZshLUsEMeUkqmCEvSQUz5CWpYJVuGiK516o0sBjyqpR7rUoDiyEvqd/WDNuFT37/5trr7jqqg8++4+X0bGehrTHkJfXbIcef1pK6v7r4a6zv3sDQzo6W1B9MvPAqadBxBr/9DHlJKpjLNaqUe61KA4shr0p5m6Q0sLhcI0kFM+QlqWCGvCQVzJCXpIIZ8pJUMENekgpmyEtSwQx5SSqYIS9JBTPkJalghrwkFaySZ9dExNHAuUAHcH5mfqmKcdU/bsEnaaOGQz4iOoBvA68HFgLzIuLqzLyn0bHVP27BJ2mjKpZrDgXuz8wFmbkWuAx4SwXjSpIaVEXIjwce3OT1wt5jzxAR0yLiloi4ZfbVLhlIUh1qe558Zk4HpgPMmL0g66orSe2sipn8Q8Cem7ye0HtMktRiVczk5wGTImIvesL9BOBdFYyrfnILPkkbNRzymbk+Ik4FrqPnFsrvZebdDXemfvM2SUkbVbImn5nXANdUMZYkqTp+4lWSCmbIS1LBDHlJKpghL0kFM+QlqWCGvCQVzJCXpIIZ8pJUMENekgpmyEtSwQx5SSpYbc+Tb0futSqp1Qz5JnKvVUmtZshLGnQ6ho3kxlv/yOiRw2qtu0NnJwftuycRUWvdRhjykgadg6aezHV3zoGV9e4kuvgv93HSyvs5+pBJtdZthCEvadAZusMwXnzI5Nrrdu28Gyse/XHtdRvh3TWSVDBn8k3kXquSWs2QbyJvk5TUai7XSFLBDHlJKpghL0kFM+QlqWCGvCQVzJCXpIIZ8pJUMENekgpmyEtSwQx5SSqYIS9JBTPkJalgDT2gLCK+ChwLrAX+F/hAZi6torGquM+qpHbW6FMobwDOzMz1EfFl4Ezg0423VR33WZXUzhparsnM6zNzfe/L3wITGm9JklSVKtfkTwau3dI3I2JaRNwSEbfMvtplEkmqwzaXayLif4Dnb+ZbZ2Xmj3p/5ixgPXDJlsbJzOnAdIAZsxfUu/uuJLWpbYZ8Zh61te9HxPuBKcCRmWl4S9IA0ujdNUcDZwCvycynqmmpWu6zKqmdNXp3zbeAYcANEQHw28z8h4a7qpC3SUpqZw2FfGZOrKoRSVL1/MSrJBXMkJekghnyklQwQ16SCmbIS1LBDHlJKpghL0kFM+QlqWCGvCQVzJCXpIIZ8pJUMENekgpmyEtSHwy2bTMafdRwv4wdvUMrykpSQ7r2ncTPfrOeXy+8o9a6G7o3cOzk5PX79/29Mdj+VWpEREzr3YawbXjO7cFzbg/9Oed2W66Z1uoGWsBzbg+ec3vo8zm3W8hLUlsx5CWpYO0W8m21ftfLc24PnnN76PM5t9WFV0lqN+02k5ektmLIS1LB2ibkI+LoiLg3Iu6PiM+0up9mi4g9I+LnEXFPRNwdEae1uqc6RERHRNweEbNa3UtdImKniJgZEX+IiPkR8YpW99RMEfGJ3r/Tv4+ISyNieKt7aoaI+F5ELI6I329ybJeIuCEi7uv9c+dtjdMWIR8RHcC3gTcB+wEnRsR+re2q6dYDp2fmfsBhwEfa4JwBTgPmt7qJmp0L/DQz9wUOoODzj4jxwMeAgzNzf6ADOKG1XTXNfwBHP+vYZ4CfZeYk4Ge9r7eqLUIeOBS4PzMXZOZa4DLgLS3uqaky85HMvK336xX0/I8/vrVdNVdETADeDJzf6l7qEhFjgMnABQCZuTYzl7a2q6brBEZERCcwEni4xf00RWbOBp541uG3ABf2fn0h8NZtjdMuIT8eeHCT1wspPPA2FREvBA4E5rS2k6b7JnAGsKHVjdRoL+Ax4Pu9y1TnR8SoVjfVLJn5EPA14AHgEWBZZl7f2q5qtXtmPtL79SJg9229oV1Cvm1FRBdwJfDxzFze6n6aJSKmAIsz89ZW91KzTuBlwHcy80BgFdvxK/xg1bsG/RZ6/nEbB4yKiJNa21VrZM/979u8B75dQv4hYM9NXk/oPVa0iBhKT8BfkplXtbqfJjscmBoRf6ZnOe6IiLi4tS3VYiGwMDM3/pY2k57QL9VRwJ8y87HMXAdcBbyyxT3V6dGI2AOg98/F23pDu4T8PGBSROwVETvQc6Hm6hb31FQREfSs087PzK+3up9my8wzM3NCZr6Qnv++N2Zm8TO8zFwEPBgR+/QeOhK4p4UtNdsDwGERMbL37/iRFHyheTOuBt7X+/X7gB9t6w0teZ583TJzfUScClxHz9X472Xm3S1uq9kOB94D3BURGx9+/dnMvKaFPak5Pgpc0juBWQB8oMX9NE1mzomImcBt9NxBdjuFPt4gIi4FXguMjYiFwNnAl4ArIuKDwF+A47c5jo81kKRytctyjSS1JUNekgpmyEtSwQx5SSqYIS9JBTPkJalghrwkFez/APOWHoVcbP+WAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "from sklearn.svm import SVC\n", + "\n", + "svc = SVC().fit(X, y)\n", + "plot_decision_regions(X, y, clf = svc)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 341 + }, + "id": "0sV0S-6qZEVW", + "outputId": "3d71453c-482a-4062-a09c-4fde824c72a9" + }, + "execution_count": 14, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.7/dist-packages/mlxtend/plotting/decision_regions.py:244: MatplotlibDeprecationWarning: Passing unsupported keyword arguments to axis() will raise a TypeError in 3.3.\n", + " ax.axis(xmin=xx.min(), xmax=xx.max(), y_min=yy.min(), y_max=yy.max())\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 14 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAD8CAYAAACSCdTiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAASN0lEQVR4nO3de5RdZXnH8e+TmZCQTAiEKAhBuYoirQUBQUpUQEUNAS+wiEUQbKMsuYhYBGkXri66qpWqrKpIQCkUBBFYS4xcFRDEGiI3gUSERoSESwgQcoEkZPL0j5nQBEImM2efs2fe8/38kzl7znnf56wkv3nn3fvsJzITSVKZhtVdgCSpeQx5SSqYIS9JBTPkJalghrwkFcyQl6SCVRLyEXFyRDwYEQ9ExGURMbKKcSVJjWk45CNia+BEYI/M3BXoAI5odFxJUuOq2q7pBDaOiE5gFPBEReNKkhrQ2egAmTkvIs4GHgNeAm7MzBtf/byImApMBfjaiUe/68wvfKrRqSWpfYwaBxP2iP6+rOGQj4jNgEOA7YCFwE8j4sjMvGTN52XmNGAawBeP/WSy4KFGp5ak9rHJVjBhj36/rIrtmgOBP2fmM5n5MnA18J71vaCjo6OCaSVJfaki5B8D9o6IURERwAHA7ArGlSQ1qOGQz8wZwJXA3cD9vWNOa3RcSVLjGt6TB8jMM4EzqxhLkpplFcHSjnF0d44E+n0Os0WSjpXLGN39HMNo/FbwlYS8JA0FSzvGMbxrU7qimxikGZ8Jy3MkS5fAmO5nGx7P2xpIahvdnSMZMYgDHiACRkR3728bjTPkJbWRGNQBv1pPjdUUashLUsEMeUlqsetvv4udP3IcO35oKl8//8qmzmXIS1ILdXd384WzzuO6885k1s+/x2XX3sasRx5r2nxeXSNJ67DXkWew4IWXXnN8/NiNufOSfx3wuHfe/zA7vvlNbL/NlgAc8eH9+NnNM9hlxzcPeMz1MeQlaR0WvPAS7/jct19z/MHzTm5o3HlPP8s2W45/5fGELccz4w/Nu5eX2zWSVDBDXpJaaOstNufxpxa88njuUwvY+o2bN20+Q16SWmjPXXfi4b88wZ/nPsWKFS9z+XW3M/n9727afO7JS9IG6l61iheWvsSiF5ezyagRAxqjs7OD757xOT70D1+je9Uqjv3Ygbxjp+acdAVDXpLWafzYjV9zkvXFZSsYOSy5+c5ZHPq+3QY89kfeuwcfeW//G4AMRC0h3/h91SSpuV59meSipcv4xoXXcNxeIzj3zofZf69dBryab6VaQv6lMW/h8xf+vo6pa7Fs0Qt8+5h92GyTUXWXImmAbp45mz23GsaEscPZc6uXG17Nt0otIb/7oZ+vY9raPHD7L3h8/jxDXhqiFi1dxswHHuYr+/X8H95/h5F84/ahsZr36hpJ6sPqVfwmI3sic5ORw9hzq2HcfOesmivrmydeJakP9895gucWvsyvH31hrePjFj4x6LdsDHlJ6sM/H/vRuksYMLdrJKnFjj3jHN74t59m18nHN30uQ16SWuwzHzuA66d9rSVzGfKStB4Lnl/EJ47/F55duKiyMSfusSvjxnZVNt76GPKStB4XX30Dz897hIuuuqHuUgbEkJek17Hg+UVMv+kWzv34Fky/6ZZKV/OtYshL0uu4+OobmLRDsPMWI5m0QwzJ1bwhL0nrsHoVf9S7NgHgqHdtMiRX84a8JK3D6lX8+K6ejxON7+qsbDU/5cvfZJ8pp/LQo/OY8P5j+OFVNzY85uvxw1CStA633nkfTzy5nB/f/+Rax7dacB9f+uxhDY192dn/2NDr+8OQl6R1uOa8s+ouoRJu10hSwQx5SW0kySHQtainxmoKrSTkI2LTiLgyIv4YEbMjYp8qxpWkdVmwcAmfOO0HPPvC0n69rmPlMpZnx6AO+kxYnh10rFxWyXhV7cmfA1yfmZ+MiI0Au2NIapqLf/Fbnn/qcS6afgdf+rsPbvDrRnc/x9IlsKxzJBDNK7AhScfKxYzufq6S0RoO+YgYC0wEPgOQmSuAFY2OW5KIDh596jk2G9M+P/vesGkXI0cMr7sMFWjBwiVM//VMzv34eI6bPpOjJ+3L5mNHb9Brh5GM6X4Wuptc5CBSxUp+O+AZ4MKIeCdwF3BSZq71e1RETAWmAhx5yllMnDylgqmHhp33PoAbblnM9Xcur7uUllk193Z+cNz+dZehAl38i98yacdh7PzGEUzacVm/V/PtpoqQ7wR2B07IzBkRcQ5wGvDPaz4pM6cB0wDOv23OIN4Rq15n53D+5gONXVc71Nz734/UXYIKtHoVf8XhYwA4avfRHH5F/1bz7aaKE69zgbmZOaP38ZX0hL4kVWr1Kn6tT6HuOIyLpt9Rc2WDV8Mr+cx8KiIej4idM/Mh4ABg8He3lTTk3Hr3n3hi/nJ+fP/8tY5v9fSf3LJ5HVVdXXMCcGnvlTVzgGMqGleSXnHNfzS/XV5pKgn5zLwX2KOKsSRJ1fETr5JUMENekgpmyEtSwQx5SSqYIS9JBTPkJalghrwkFcyQl6SCGfKSVDBDXpIKZshLUsEMeUkDMtA+q2otQ17SgKzZZ1WDlyEvqd/W7LM6/dczXc0PYoa8pH5bu8+qnZkGM0NeUr+sXsUftXtPT9Wjdh/tan4QM+Ql9Yt9VoeWqtr/SWoT9lkdWgx5Sf1in9Whxe0aSSqYIS9JBTPkJalghrwkFcyQl6SCGfKSVDBDXpIKZshLUsEMeUkqmCEvSQUz5CWpYJWFfER0RMQ9ETG9qjEl9c02fFqfKlfyJwGzKxxP0gawDZ/Wp5KQj4gJwEeBC6oYT9KGsQ2f+lLVrYa/A5wKjHm9J0TEVGAqwJGnnMXEyVMqmlqD0bDx23P8hTMIoqXzdna/yNnHTKSjoz1ON63dhm8ZF02/w3u6ay0Nh3xETALmZ+ZdEfG+13teZk4DpgGcf9ucbHReDW5//eGjapl3xpXfZ/GLy9h0zKha5m+l1av4Kw7vWVsdtftoDr9iJkdP2pfNx46uuToNFlUsd/YFJkfEo8DlwP4RcUkF40r9FtHa3xzqZBs+bYiGV/KZeTpwOkDvSv7LmXlko+NKWj/b8GlD2P5PGqJsw6cNUWnIZ+atwK1VjilJGrj2uARBktqUIS9JBTPkJalghrwkFcyQl6SCGfKSVDBDXpIKZshLUsEMeUkqmCEvSQUz5CWpYIa8VBF7rWowMuSlithrVYORtxpWWWIYS15azuiNR7R02gULl/DzW+/kBx8fz3HT7c6kwcOQV1Hevv9h/NN1F8Gqp1s676z77mLl4qWMHz32le5MNu7QYGDIqyhjNh3HvlNObumcixc+xx9+cwNT9hzPwpe67bWqQcU9ealBM6/7CQfvBF0jOgB7rWpwcSUvNejhe+7gnvnLWLzkRb4/chUjhveEvb1WNRgY8lKDPvfvlwBw300/5eS/WsoOE95Qc0XS/3O7RpIKZshLUsEMeUkqmCEvSQUz5CWpYIa8JBXMkJekghnyklQwQ16SCmbIS1LBDHlJKpghL0kFa/gGZRGxDXAxsAWQwLTMPKfRcaX++Lfjp7BkyeLXHO/qGsPp372shoqkwaGKu1CuBE7JzLsjYgxwV0TclJmzKhhb2iBLlixm+7//z9ccn3PBCTVUIw0eDYd8Zj4JPNn79eKImA1sDRjyaisbdW3C1XfczVu2nN/SeTsCJu39VkZsNLyl82poqPR+8hGxLbAbMGMd35sKTAU48pSzmDh5SpVTS7V7294f5Mm/bM+D3d0tnXfx8wuYd+0vOfHQPVs6r4aGykI+IrqAq4AvZuaiV38/M6cB0wDOv21OVjWvNFhEBFttu1PL5126aCHL597Y8nk1NFRydU1EDKcn4C/NzKurGFOS1Lgqrq4J4IfA7Mz8VuMlSf3X1TVmnSdZu7rG1FCNNHhUsV2zL/Bp4P6IuLf32Fcz89oKxpY2iJdJSutWxdU1vwGiglokSRXzE6+SVDBDXpIKZshLUsEMeUkqmCEvSQUz5CWpYIa8JBXMkJekghnyklQwQ16SCmbIS1LBKm0aItlrVRpcDHlVyl6r0uBiyEtD3IiNR/G7x5bwpQvvqLuUltl8dAdfPezd9LSz0PoY8tIQ1zl8Iw44sb369fzmkrNZ2b2K4Z0ddZcy6HniVdKQ4wp+wxnyklQwt2tUKXutSoOLIa9KeZmkNLi4XSNJBTPkJalghrwkFcyQl6SCGfKSVDBDXpIKZshLUsEMeUkqmCEvSQUz5CWpYIa8JBWsknvXRMRBwDlAB3BBZn69inE1MLbgk7RawyEfER3A94APAHOBmRFxTWbOanRsDYwt+CStVsV2zV7AI5k5JzNXAJcDh1QwriSpQVWE/NbA42s8ntt7bC0RMTUifh8Rv7/tGrcMJKkVWnY/+cycBkwDOP+2OdmqeSWpnVWxkp8HbLPG4wm9xyRJNatiJT8T2CkitqMn3I8APlXBuBogW/BJWq3hkM/MlRFxPHADPZdQ/igzH2y4Mg2Yl0lKWq2SPfnMvBa4toqxJEnV8ROvklQwQ16SCmbIS1LBDHlJKpghL0kFM+QlqWCGvCQVzJCXpIIZ8pJUMENekgpmyEtSwVp2P/l2ZK9VSXUz5JvIXquS6uZ2jSQVzJCXpIIZ8pJUMENekgrmidcmsteqpLoZ8k3kZZKS6uZ2jSQVzJCXpIIZ8pJUMENekgpmyEtSwQx5SSqYIS9JBTPkJalghrwkFcyQl6SCGfKSVDBDXpIK1tANyiLim8DBwArgf4FjMnNhFYVVxT6rktpZo3ehvAk4PTNXRsQ3gNOBrzReVnXssyqpnTUU8pl54xoPfwd8srFyJKlv4978Vk654GZGjtiopfNu1AFf+cRejBk9sqXzNqLK+8kfC/zk9b4ZEVOBqQBHnnIWEydPqXBqSe3k7fsdDPsd3PJ5H539B66/63oOm/iOls89UH2GfET8EthyHd86IzN/1vucM4CVwKWvN05mTgOmAZx/25wcULWSVKOO4cNhiKVXnyGfmQeu7/sR8RlgEnBAZg6xty9JZWv06pqDgFOB92bmi9WUVC37rEpqZ43uyX8XGAHcFBEAv8vMzzdcVYW8TFJSO2v06podqypEklQ9P/EqSQUz5CWpYIa8JBXMkJekghnyklQwQ16SCmbIS1LBDHlJKpghL0kFM+QlqWCGvCQVzJCXpIIZ8pLUD0OtbUaV7f822Pgxre3LKElV6HrbTvzqf1by27n3tnTeVd2rOHhi8oFd+//aGGo/lRoREVN72xC2Dd9ze/A9t4eBvOd2266ZWncBNfA9twffc3vo93tut5CXpLZiyEtSwdot5Ntq/66X77k9+J7bQ7/fc1udeJWkdtNuK3lJaiuGvCQVrG1CPiIOioiHIuKRiDit7nqaLSK2iYhbImJWRDwYESfVXVMrRERHRNwTEdPrrqVVImLTiLgyIv4YEbMjYp+6a2qmiDi599/0AxFxWUSMrLumZoiIH0XE/Ih4YI1j4yLipoh4uPfPzfoapy1CPiI6gO8BHwZ2AaZExC71VtV0K4FTMnMXYG/gC23wngFOAmbXXUSLnQNcn5lvA95Jwe8/IrYGTgT2yMxdgQ7giHqrapr/Ag561bHTgF9l5k7Ar3ofr1dbhDywF/BIZs7JzBXA5cAhNdfUVJn5ZGbe3fv1Ynr+429db1XNFRETgI8CF9RdS6tExFhgIvBDgMxckZkL662q6TqBjSOiExgFPFFzPU2RmbcBz73q8CHARb1fXwQc2tc47RLyWwOPr/F4LoUH3poiYltgN2BGvZU03XeAU4FVdRfSQtsBzwAX9m5TXRARo+suqlkycx5wNvAY8CTwQmbeWG9VLbVFZj7Z+/VTwBZ9vaBdQr5tRUQXcBXwxcxcVHc9zRIRk4D5mXlX3bW0WCewO3BuZu4GLGUDfoUfqnr3oA+h54fbVsDoiDiy3qrqkT3Xv/d5DXy7hPw8YJs1Hk/oPVa0iBhOT8BfmplX111Pk+0LTI6IR+nZjts/Ii6pt6SWmAvMzczVv6VdSU/ol+pA4M+Z+UxmvgxcDbyn5ppa6emIeBNA75/z+3pBu4T8TGCniNguIjai50TNNTXX1FQREfTs087OzG/VXU+zZebpmTkhM7el5+/35swsfoWXmU8Bj0fEzr2HDgBm1VhSsz0G7B0Ro3r/jR9AwSea1+Ea4Ojer48GftbXC2q5n3yrZebKiDgeuIGes/E/yswHay6r2fYFPg3cHxGrb3791cy8tsaa1BwnAJf2LmDmAMfUXE/TZOaMiLgSuJueK8juodDbG0TEZcD7gPERMRc4E/g6cEVEfBb4C3B4n+N4WwNJKle7bNdIUlsy5CWpYIa8JBXMkJekghnyklQwQ16SCmbIS1LB/g8tdwl/uFqJoAAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "# Primal" + ], + "metadata": { + "id": "_97j99DWyGYf" + } + }, + { + "cell_type": "code", + "source": [ + "from sklearn.svm import LinearSVC" + ], + "metadata": { + "id": "i8dUVoqpyFPS" + }, + "execution_count": 15, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "x1 = np.arange(50)\n", + "x2 = np.random.rand(50)*50\n", + "X = np.dstack([x1, x2])[0]\n", + "\n", + "plt.scatter(x1, x2)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 282 + }, + "id": "us4XI7TpyFL5", + "outputId": "1cfd0f02-1492-4751-a55a-b658740f8cb7" + }, + "execution_count": 18, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 18 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAT0ElEQVR4nO3db6wcV3nH8d+vxohboLr5c2s517RORWQUKSWuVlGQURUMIQEiYkUIgSjyCyS/4QWoNOD0TUsFihESf15UrSyC8AtKiCA4EZEaItsRBVWh6zppEtIoEAU1Fye+FCxAskIcnr7YubV9vXt3dnd25pyZ70ey7s7ctffMZPLsmec854wjQgCA/PxB0w0AAEyHAA4AmSKAA0CmCOAAkCkCOABk6lV1ftjll18e27dvr/MjASB7x48f/0VELK3fX2sA3759u/r9fp0fCQDZs/2zYftJoQBApgjgAJApAjgAZKpUDtz2c5J+I+kVSWcjomf7UknflLRd0nOS3h8Rv5pPMwEA603SA39bRFwbEb1ie7+kIxFxlaQjxTYAoCazVKHcKumG4vUhSQ9L+tSM7QGA1jh8YkWff/Bp/fz0GV2xuKDbb9qhPTuXK/v3y/bAQ9L3bB+3va/YtyUiThavX5C0ZdhftL3Pdt92f3V1dcbmAkAeDp9Y0R33Pq6V02cUklZOn9Ed9z6uwydWKvuMsgH8rRHxF5LeJemjtv/y/F/GYE3aoevSRsTBiOhFRG9p6aI6dABopc8/+LTOvPzKBfvOvPyKPv/g05V9RqkAHhErxc9Tkr4j6TpJL9reKknFz1OVtQoAMvfz02cm2j+NsQHc9mttv37ttaR3SnpC0v2S9hZv2yvpvspaBQCZu2JxYaL90yjTA98i6Qe2H5P0I0kPRMS/Sjog6Ubbz0h6R7ENAJB0+007tLB50wX7FjZv0u037ajsM8ZWoUTEs5LePGT//0p6e2UtAYAWWas2mWcVSq2LWQFAl+zZuVxpwF6PqfQAkCkCOABkigAOAJkigANApgjgAJApqlCAlpn3AkpIBwEcaJG1BZTW1uBYW0BJEkG8hQjgQItstIBSkwGcu4L5IIADLVLHAkqT4q5gfhjEBFqkjgWUJlXHsqpdRQAHWqSOBZQmleJdQVuQQkHntDkfW8cCSpO6YnFBK0OCdZN3BW1BAEendCEfO+8FlCZ1+007LjjnUvN3BW1BAEenjMvHptRzbYsU7wrawoPHWdaj1+tFv9+v7fOA9a7c/8Dwh7dq0Ctc30u887ZrCDRonO3jEdFbv58eeGY2yt+2ObdblVH52E12kvXTqeJaSwMBPCMb5W8ltT63W4VR+dj1wXsNlRIX68I4Qi4oI8zIRvlbam3L2bNzWXfedo2WFxdkScuLC/+/PQyVEhfjWksHPfCMTFNPSw/yYqOqNKiUKKfpum7SN+fQA8/IRrPsUpyBl5NRPfOuBoaNNHmtraVvVk6fUehc+ubwiZW5f3aK6IFnZFw9LT3I2aRWP52qJuu6U12sqykE8IyUqafl1hLz1mRdd9Ppm9RQBw4gG7sOHB1aBrq8uKAf7t/dQIvqMaoOnBw4gGykuFhXk0ihIClUGGAjTMu/EAEcyWCCCMpgsPkcUihIBhNEgMnQA8dcTZISocIAqcgllUcAx9xMmhJh4X+kIKdUHikUzM2kKREqDJCCnFJ59MAxN5OmRKgwQApySuURwDE306REqDBA03JK5ZFCwdyQEkGOcrpuS/fAbW+S1Je0EhG32L5S0t2SLpN0XNKHI+J382kmUjDpyDwpEeQop+u29Footv9aUk/SHxUB/B5J90bE3bb/WdJjEfFPG/0brIWSr/Uj8xLPjATqMtNaKLa3SXqPpK8U25a0W9K3ircckrSnmqYiRTmNzANdUTYH/iVJn5T0+2L7MkmnI+Jssf28JLphLZbTyDzQFWMDuO1bJJ2KiOPTfIDtfbb7tvurq6vT/BNIAE/8AdJTpge+S9J7bT+nwaDlbklflrRoe20QdJukoc80ioiDEdGLiN7S0lIFTUYTchqZR3MOn1jRrgNHdeX+B7TrwNHOPuqsLmMDeETcERHbImK7pA9IOhoRH5J0TNL7irftlXTf3FqJxvHMSIzD8yrrN8tEnk9Jutv2ZySdkHRXNU1CqlKdZJPLwkNVS+24eV5l/SYK4BHxsKSHi9fPSrqu+iYB5eW08FCVUjxuBrrrx0xMZK2r5Y0pHjcD3fUjgCNrXe31pXjcDHTXL9vFrFLL/+WoDecwp4WHqpTicec0Bb0tsgzgKeb/ctOWc3j7TTuGTvFve68v1eNOdaC7rbIM4Ix2T2ZYT7st57Crvb6uHjculGUATzH/l6pRPe31wXtNjuewq72+rh43zslyEJPR7vJG9bQ32UPfzzkE8pFlAGe0u7xRPepXIjiHQOayDOBM6y5vVI967ZxxDoF8lX6gQxV4oEP9eBADkL9RD3TIchAT5VGtALQXAbwDqFYA2inLHDgAgAAOANnqVAqlDWt/AMCazgTwtqz9AQBrOpNCSXH9ZACYRWcCOOunAGibzgRw1k8B0DadCeCsnwKgbToziMmMRABt05kALjEjsWsoG0XbdSqAozsoG0UXdCYHjm6hbBRdQABHK1E2ii4ghZIo8rezuWJxQStDgjVlo2gTeuAJWsvfrpw+o9C5/O3hEytNNy0blI2iCwjgCSJ/Ozseu4cuIIWSIPK31aBsFG1HDzxBTPsHUAYBPEHkbwGUQQolQUz7B1AGATxR5G8BjEMAB9BqbZ5TkXwAb/PJBzBfbV8TZ+wgpu3X2P6R7cdsP2n708X+K20/Yvsntr9p+9VVN44JLQBm0fY5FWWqUF6StDsi3izpWkk3275e0uckfTEi3ijpV5I+UnXj2n7yAcxX2+dUjA3gMfDbYnNz8Sck7Zb0rWL/IUl7qm5c208+gPlq+5yKUnXgtjfZflTSKUkPSfqppNMRcbZ4y/OShiaUbO+z3bfdX11dnahxbT/5AOar7XMqSgXwiHglIq6VtE3SdZLeVPYDIuJgRPQiore0tDRR49p+8gHMV9vXxJmoCiUiTts+JuktkhZtv6rohW+TVPnIYl0TWqh0AdqrzXMqxgZw20uSXi6C94KkGzUYwDwm6X2S7pa0V9J982jgvE/+RmVGErMhAaSrTA98q6RDtjdpkHK5JyK+a/vHku62/RlJJyTdNcd2zs2oSpe/v/9JvXT2962tHwWQv7EBPCL+S9LOIfuf1SAfnrVRFS2nz7x80b61EkYCOIAUdH41wkkrWihhBJCKzgfwUZUul/zh5qHvp4QRQCqSXwtl3kZVuki6YHBTooQRQFo6H8CljStdqEIBkCoC+AbaXD8KIH8EcFSCyVBA/QjgmFnb11wGUtX5KhTMjmV/gWYQwDEzlv0FmkEAx8xY9hdoBgEcM+vysr+HT6xo14GjunL/A9p14CiP+0OtGMTEzOpa9jc1DN6iaQRwVKKLNfMbDd527VygGaRQgCkxeIumEcCBKTF4i6YRwIEpdXnwFmkgBw5MqauDt0gHARyYQRcHb5EOUigAkCl64BVjVT4AdSGAV4iJHeXxRVc/znn7kEKpEKvylbP2Rbdy+oxC577omIY+P5zzdiKAV4iJHeXwRVc/znk7EcArxMSOcviiqx/nvJ0I4BViYkc5fNHVj3PeTgTwCu3Zuaw7b7tGy4sLsqTlxQXdeds1DBSt04UvutSWme3COe8iqlAqxsSO8do+gzHFaqS2n/OuckTU9mG9Xi/6/X5tnwc0YdeBo1oZklteXlzQD/fvbqBFyJ3t4xHRW7+fFApQMQYMURcCOFAxBgxRF3LgNWEWXHfcftOOC3Lg0vgBQ64PTIMAXoMUB7UwP5MOGHJ9YFoE8Brw7MTumaQaiesD0yIHXgMGtbARrg9Mix54Da5YXBhaVsagFqTx1wf5cYwytgdu+w22j9n+se0nbX+s2H+p7YdsP1P8vGT+zc0Ts+CwkY2uD1YRxEbKpFDOSvpERFwt6XpJH7V9taT9ko5ExFWSjhTbGIIp9tjIRtcHqwhiI2NTKBFxUtLJ4vVvbD8laVnSrZJuKN52SNLDkj41l1ZOINXbTabYYyOjrg/y49jIRIOYtrdL2inpEUlbiuAuSS9I2jLi7+yz3bfdX11dnaGp43G7ibZhUhA2UjqA236dpG9L+nhE/Pr838VgQZWhi6pExMGI6EVEb2lpaabGjsPtJtqG8ZPyUlsBsg6lqlBsb9YgeH89Iu4tdr9oe2tEnLS9VdKpeTWyLG430TasIlhOVydDjQ3gti3pLklPRcQXzvvV/ZL2SjpQ/LxvLi2cAOV6aCPGT8br6mSoMimUXZI+LGm37UeLP+/WIHDfaPsZSe8othvF7WY1ungrirx19e67TBXKDyR5xK/fXm1zZsPt5uy6eiuKvHX17rt1MzG53ZxNV29FkbdpVoBsg9YFcMymq7eiyFtX774J4LhAV29F0ZyqJt918e6b1QhxAQaCUScm382GAI4LsG4L6sTku9mQQsFFungrimY0PeaS6tpJZdEDB9CYJtd6aUP6hgA+BSa6ANVocsylyvRNUzGBFMqEmOgCVKfJ8r+q0jdNxgQC+ISY6AJUq6kxl6pKZpuMCaRQJtT0oAuAalSVvmkyJhDAJ8QC+0A7VFUy22RMIIUyoa6uuQC0URXpmyZjAgF8Ql1dcwHAcE3GBA+ehlaPXq8X/X6/ts8DgDawfTwieuv3kwMHgEwRwAEgUwRwAMgUARwAMkUAB4BMEcABIFPUgQNASamtH04AB4ASUlyJlBQKAJSQ4uPfCOAAUEKKK5ESwAGghBRXIiWAA0AJTT7+bRQGMQGghBRXIiWAA0BJTT3+bRRSKACQKQI4AGSKAA4AmSKAA0CmCOAAkKmxAdz2V22fsv3Eefsutf2Q7WeKn5fMt5kAgPXK9MC/Junmdfv2SzoSEVdJOlJsAwBqNDaAR8T3Jf1y3e5bJR0qXh+StKfidgEAxpg2B74lIk4Wr1+QtGXUG23vs9233V9dXZ3y4wAA6808EzMiwnZs8PuDkg5KUq/XG/k+oAtSeyBAyjhX400bwF+0vTUiTtreKulUlY0C2ijFBwKkinNVzrQplPsl7S1e75V0XzXNAdorxQcCpIpzVU6ZMsJvSPp3STtsP2/7I5IOSLrR9jOS3lFsA9hAig8ESBXnqpyxKZSI+OCIX7294rYArXbF4oJWhgSgJh8IkCrOVTnMxARqkuIDAVLFuSqH9cCBmqT4QIBUca7KcUR9lX29Xi/6/X5tnwcAbWD7eET01u+nBw6UQE0yUkQAB8agJhmpYhATGIOaZKSKAA6MQU0yUkUAB8YYVXtMTTKaRgBv2OETK9p14Kiu3P+Adh04qsMnVppuEtahJhmpYhCzQQyO5YGaZKSKAN6gjQbHCA5p2bNzmf8mSA4BvEEMjpVHHfb8cG7zRQBvEAv2lEOqaX44t3ljELNBDI6VQx32/HBu80YPvEEMjpVDqml+OLd5I4A3jMGx8Ug1zQ/nNm+kUJA8Uk3zw7nNGz1wJI9U0/yMO7dUqKSN9cABDLW+QkUa9M7vvO0agnjNRq0HTgoFwFBUqKSPAA5gKCpU0kcABzAUqzCmjwAOYCgqVNJHFQqAoaj+SR8BHMBITDRLGykUAMgUARwAMkUAB4BMEcABIFMEcADIVK1rodhelfSzKf/65ZJ+UWFzcsFxd0tXj1vq7rGXOe4/jYil9TtrDeCzsN0ftphL23Hc3dLV45a6e+yzHDcpFADIFAEcADKVUwA/2HQDGsJxd0tXj1vq7rFPfdzZ5MABABfKqQcOADgPARwAMpVFALd9s+2nbf/E9v6m2zMvtr9q+5TtJ87bd6nth2w/U/y8pMk2zoPtN9g+ZvvHtp+0/bFif6uP3fZrbP/I9mPFcX+62H+l7UeK6/2btl/ddFvnwfYm2ydsf7fYbv1x237O9uO2H7XdL/ZNfZ0nH8Btb5L0j5LeJelqSR+0fXWzrZqbr0m6ed2+/ZKORMRVko4U221zVtInIuJqSddL+mjx37jtx/6SpN0R8WZJ10q62fb1kj4n6YsR8UZJv5L0kQbbOE8fk/TUedtdOe63RcS159V+T32dJx/AJV0n6ScR8WxE/E7S3ZJubbhNcxER35f0y3W7b5V0qHh9SNKeWhtVg4g4GRH/Wbz+jQb/Uy+r5cceA78tNjcXf0LSbknfKva37rglyfY2Se+R9JVi2+rAcY8w9XWeQwBflvQ/520/X+zrii0RcbJ4/YKkLU02Zt5sb5e0U9Ij6sCxF2mERyWdkvSQpJ9KOh0RZ4u3tPV6/5KkT0r6fbF9mbpx3CHpe7aP295X7Jv6OueJPBmJiLDd2rpP26+T9G1JH4+IXw86ZQNtPfaIeEXStbYXJX1H0psabtLc2b5F0qmIOG77hqbbU7O3RsSK7T+W9JDt/z7/l5Ne5zn0wFckveG87W3Fvq540fZWSSp+nmq4PXNhe7MGwfvrEXFvsbsTxy5JEXFa0jFJb5G0aHutc9XG632XpPfafk6DlOhuSV9W+49bEbFS/DylwRf2dZrhOs8hgP+HpKuKEepXS/qApPsbblOd7pe0t3i9V9J9DbZlLor8512SnoqIL5z3q1Yfu+2louct2wuSbtQg/39M0vuKt7XuuCPijojYFhHbNfj/+WhEfEgtP27br7X9+rXXkt4p6QnNcJ1nMRPT9rs1yJltkvTViPhsw02aC9vfkHSDBstLvijp7yQdlnSPpD/RYCne90fE+oHOrNl+q6R/k/S4zuVE/1aDPHhrj932n2swaLVJg87UPRHxD7b/TIOe6aWSTkj6q4h4qbmWzk+RQvmbiLil7cddHN93is1XSfqXiPis7cs05XWeRQAHAFwshxQKAGAIAjgAZIoADgCZIoADQKYI4ACQKQI4AGSKAA4Amfo/C0QXCfeByHwAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "y = np.where(x1+x2 <= 45, 0, 1)\n", + "\n", + "plt.scatter(x1, x2, c = y)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 282 + }, + "id": "kZk3j3z1yFI6", + "outputId": "3163d336-f622-4530-c812-f8b5683dab22" + }, + "execution_count": 19, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 19 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dd5xU5dn/8c81fbbQERGCiA2NEdTV2GLBAsQCxhJjCeYxP6JJbLGbGDTRxxZNNOYxUTDqo4moWHiMHTViB2yIaEBEBemw7LI7fa7fH2couzvLLuzMnCnX+/XitTP3mdnzPTB7cfY+97lvUVWMMcaUHo/bAYwxxmwdK+DGGFOirIAbY0yJsgJujDElygq4McaUKF8hd9anTx8dPHhwIXdpjDElb9asWStVtW/r9oIW8MGDBzNz5sxC7tIYY0qeiHyZrd26UIwxpkRZATfGmBJlBdwYY0pUp/rARWQh0AikgKSq1olIL2AyMBhYCJyiqmvyE9MYY0xrW3IGfriqDlfVuszzK4BpqrozMC3z3BhjzCY0tRiNz0DTq3P+vbsyCmUMcFjm8f3Aq8DlXcxjjDFlQdPNaP0FEH8bJAAaR6tOQWp/jUhueq87+10UeEFEZonI+ExbP1Vdknm8FOiX7Y0iMl5EZorIzBUrVnQxrjHGlAZtmADxt4AYaKPztfkxtPmfOdtHZwv4waq6NzAa+IWIHNIiqDMnbdZ5aVX1blWtU9W6vn3bjEM3xpiyoxqD6LNAvNWWCDTfm7P9dKqAq+rizNflwBPAfsAyEekPkPm6PGepjDGmlGkz7ZzTQrohZ7vpsICLSLWI1K5/DBwNfAxMBcZlXjYOeCpnqYwxppRJD/Bm61X2QGD/nO2mM2fg/YDXReRD4F3gX6r6HHAjcJSIzAOOzDw3xpiKJyJIt98DITaWWR9INVJ7cc720+EoFFVdAAzL0r4KOCJnSYwxpoxI8CDo/QjaNAmSX0BgL6T6bMS7bc72UdDJrIwxppKIfyjS45a8fX+7ld4YY0qUFXBjjClRVsCNMaZEWQE3xpgSZRcxjSkzmpyPRp4D0khoJOLf1e1IJk+sgBtTRtLrJsK6O4AEoGjTRLT6bDy1F7gdzeSBdaEYUyY0+RWsux2I4kzdn3YeN01CE/PcDQdoajma+BTV1vODmK1lZ+DGlIvYy2SffyOBRl9A/DsXOhEAmm5A6y+E+Lsgfqet5nI81ae6kqec2Bm4MWXDA0iWdkHEvXM1p3i/A8RBm5w/jTegsTdcy1QurIAbUy5CR7ezwQuhUQWNsp6mljpn3iRabYmgTRPdiFRWrICbiqPJr0mv+xvpxj+i8Q/djpMz4t0Wuk0AgjiTKIWcx7WXIr7t3QmVXu2sRpNNamlhs5Qh6wM3FSXd/CQ0XI1zgS+JNt+Hho5Ful2HSLbuh9LiqToJDX4PYtNA0xA6AvH2dy+QbwjO33WbDRA8sNBpyo6dgZuKoem1meIdY/0wOzQC0aczS185Izk0PhNNN7oZtUvE2w+pOg2pPsPd4g2IhKDmYiC8SasPpBapHt/e20wn2Rm4qRyx10F8oLGW7RpBI0+g6/4CidmZ1yTQmvFI9S/L4szcTZ7qM1Hf9k6fd2oZBA5CasYjWRc8MFvCCngJUVU08hg03QWpleAfitRejgT2cbYnPoHEXPANAn+dFZ7WxNveBmeURHoVkNg4Em/dRPDtBKHRBQpYWlRjgAfJDA3cHAkeggQP6fB1ZstYAS8h2jQRmu50fu0HSHyArv4J2uvvsO5OiM8CyfSKebaD3g8inl7uBS42gYOdfuE2ghuLdwsRtGkSYgW8BU18iq79NSTnAF40eCTS/XeIp7vb0SqO9YGXCNU4NP3PxuK9QRTqL3OKN1FnMVVthtRCdO2VbkQtWuKpQXr8CQiBhIEAEITQmA03mLSRXl3AhMVPUyvQ1adBcjbOxckExF5CV5+FajuL+Jq8sTPwUpFe2c7ZI5BeRNs78JIQm45q1LmQZACQ0OGwzb8h+qLzn2HwUPAORJc/l+XVPgh8r+AZi5lGJkObW+ETkPoCEh9BoM3qi7nPkG6GxAzAD4F9O9WFU66sgJcKTy+y3yYNzi9SqeybNJn95rwKJp6eUHVKizbtdg2svQpnHhEFAs4CtDU/dyFhEUvOA7LNZSKQ+pIsy+fmVDryDKy9MnM9QwEf9PzrhutAlca6UEqESAiqTqflcCyAEAT2J+v/xb5dEE9NAdKVPk/4GKTXAxAcCb7vQPVZSJ9/2UiJ1nzDcG4QakVT4MvvtLWa/ArWXgFEQNdlbstfi675qXNWXoHsDLyESO0lqISg+T7QKHi2gdpfI4G90FU/gHQDEAGCIH6k+w0uJy4tEhiGBO5wO0ZRk6qT0Ka7M90o67v0gk5XRp7nHdfIE0Ay+8bYyxA+Nq/7L0ZWwEuIiBepvQCtOQ/nZpTQxqGCfZ5DI09B4kPwDUHCJyHe3m7GNWVIPN2gz+Now40Qnw4EoeokpOb8/O883UDWAq4p54y8AlkBL0EiHlp3pYinGqk+DTjNlUymcoh3O6Rn4X9TkdBhaHSKM8qqBYVAZd6Wb33gpuhoutmZ/L+9UTemMgUOgsB+IFUb2yQMVacjvkHu5XKRnYGboqHpZrThaog+Dwh4uqO1E/CEj3I7mikCIh7ocRdEn0OjTwMBpOpkp7BXKCvgpmjo2oud+UrWD1NLL4e1F6Pe/0UKML7YFD8RL4SPQcLHuB2lKFgXisk71XSHd+lpalmmeLeaaIqYM+rBmALRdDPppvtJrx5Huv5XaPx9tyO1y87ATd5ocj669reQmAUE0PDxSO1ViKe67YtTS53b2VvPFIhmbhAxJv803YSuOhFS3+Dc1CVodBpae2VRruFpZ+AmLzS1Al31w0zxViAGkafQNe3MAe0bAtp6MikAH/j3zWNSYzbS5smbFG9wPrsRZw3PIrxZyAq4yQttfjhzNr1p10kcErPRxNw2rxdPLVT/hJbDIz0gYaTm/+U5rTEZsRfZWLw3IV5nrvgiYwXc5EdyLlnnzBAvJL/I+hapuQi6/Ra8O4L0guBIpPfjiHe7/GY1Zj1Pz3Y2pMDTraBROsP6wE1++PeA2HTaXJTUlLNIQhYiglSdCFUn5j+fMVlI1Zlo/I1W0zZ7wNMffENdy9UeOwM3naapZaQb7yC95jzS6+5F0w3tvlaqTgUJ0nIqxCAE9kH8u+Q9qzFbQ4IHQPX5OPMJ1Tg3DXm/hfS8pyhXuJLOTsIuIl5gJrBYVY8VkR2Ah4HewCzgTNU2EwW3UFdXpzNnzuxiZOMGTcxBV5+RudAYB0LgqUZ6P4F4t83+nuRCtOE6Z8FgCUL4RKT2Ypuf3BQ9Ta915jf39ADfHq4XbxGZpap1rdu35Az8AmDTq083AX9U1Z2ANcDZXYtoipmuvcqZvnNDv3YU0mvQxlvafY/4BuPpNRHPtnPw9HsPT7dfW/E2JUE83ZHg9xD/d1wv3pvTqQIuIgOBY4CJmecCjAAey7zkfmBsPgIa92m6CZL/ybIlDbFXCx3HGJPR2TPwPwGXsXEC4N5Avaqun9txETAgx9lMsRA/7S7rY2fUxrimwwIuIscCy1V11tbsQETGi8hMEZm5YsWKrfkWxmUiAQiOAFqvPRiC8CnZ3mIqlKYWo02T0HV3oYnP3I5T9jpzBn4QcLyILMS5aDkCuB3oISLrhyEOBBZne7Oq3q2qdapa17dv3xxENm6Q7teBb2fnqrxUAyEIHoDUnOt2NFMk0s1T0BWj0MY/ouvuQFedTLrhZrdjlbUOx4Gr6pXAlQAichhwiaqeLiKPAifhFPVxwFN5zGlcJp4e0PsJ58p86mvwD0XaGc9dSJpejTY94EyE5e2PVP8ECeztdqyC0MQciL0JnloIjXL+jdzKkloFDdfQctx/CpofREMjbTbJPOnKjTyXAw+LyHXA+8Ck3EQyxUpEIDCMfK883lmaWomuOj6z1FYckrPR2Gtot9/hqRrjdry8UVW04QqIPAckAD803gA97kKCLq1ME/u3c5dtm1HJMTT6jBXwPNmiAq6qrwKvZh4vAPbLfSRjOkeb7ob0WpwiBhsnHvodGh7t9N2Xo9g0iD6Hs4A1QBIUtP482OYtd45byFK8128o3mF4pc7uxDSlK/YaG4v3ptLtzrdSDjTyeKtbvTdsgbhLN8oFDwNSWTYEkApcLb5QSrqAr/xmNV/M/pJEPNsPsdkc1TjpdXeTXjHK+bPub2ibubiLnKdX9nZNgqd7YbMU1Obunu7cndW5Jp5e0O16IJj543e+Vv8X4t/DlUyVoCQns2pY1cjvf3gbc978DJ/fi8fj4dw/ncXIcYe7Ha0kqCq6+ieZ6TEzU2eu+wsaexV6PZRZ9b74SfV/ofVz2NiVAM784cPbvb2/HEh4LBp7k5bHnRFwb+50T9XxaPC7mTVNExA8HPENcS1PJSiNn9RWJpxwMx9Pn0simiDSGKVpbTN//sVEPn7jU7ejFSVNfoU2P4pGn3fOsuNvQ3IOLec9jjpTwMbfcivmFpPQkVBzDhByJh4iBP7vID1vdztafgWPgtAInLnTPThnvCGkx59c7/cXbz+k+sdI9dlWvAug5M7AlyxYxn9mLSCZaNnfFo/EeezWqexxUPFN+egWVUUbb4Tmf+AsjuABvBA6FjTLpPUagcQHECydVb49NeeiVWdA8lPw9EV8g92OlHciHuh+G1R9CPHXQbpB6BjE29vtaKbASq6Ar1qyBp/fRzzScuJDVVj+1SqXUhWp2KvQ/DAbxuau7x6NTsU5a2v9K3gYPP0KlS5nxFPrateBG5whncOdP6ZilVwXypA9tyeVSLZp9wd97HP0ni4kKl4aeYSs/aSazpyNtyI+CI3Key5jTG6UXAGvqg1zxm9PIlQd3NDm83up7l7NDy604UotZB1qhlO8a64A7w6s7z/FuwPS638RT00hExpjuqDkulAATr38BAbtNpBHb51K/fIG9h01nFMvH0vPbcp56NiWk9DxaPx92p6Fp5GqsUj1D9HkIkDBO7Co5z02xrRVkgUc4MDj9+XA4yur33OLhY+DyJPO/CU04/xz+6DbjYg4v8GIb6CbCY0xXVCyBdx0TMQPvf4OsVedMd6enkj4RMS3vdvRjDE5YAW8zIl4IXQEEjrC7SjGmBwruYuYxhhjHBVzBr5y8Som3/wUH7z8MX0H9eGHl45h2GHfdjuWMcZstYoo4CsWreJnwy8h0hghmUixcM7XfPTvTzjvzrMZeZbNn2KMKU0V0YXy0HVTaG6ItLj9PtYc466L7rOZDI0xJasiCvh7L31EKtl2ruJ0Ks03ny9zIZExxnRdRRTwnttmXyswmUjRvU9tgdMYY0xuVEQB/+GlYwhWBVu0+QM+9j7yO/Toa3dvGmNKU0UU8APH7Mu4a08hWBWkqluYQMjPsMO/zZUPnu92NGOM2WqiWrglmOrq6nTmTJfW7AMiTVG+mruYXtv2oO9Amzu53Gl6bWaBigAED9owfYAxpUZEZqlqXev2ihhGuF64OsSudTu6HcMUQLp5MjRc50yRC4BAz78igf1czWVMLlVEF4qpLJqcDw3XAzHQpsyfdeia8Wi62e14xuSMFXBTdjTyOJBtfL84qxQZUyYqqgullKyrb+L1J94l0hihbuQwvrXrALcjlY50E9B23D+k21/kwpgSZAW8CL330kdMOOFmAFLJNBOvfIjjfnYUP7t1nC260AkSOhKNPgXaqrtE0yW1YLMxHbEulCITj8a55sQ/EG2KEW2KkYgliEfi/Ouel3h/2my345WGwMEQOAikKtMgQBhqzkW827qZzJicsjPwIvP+yx+T7SQ72hTjhftfZe8jbeHmjogI9Pizs5BF9F8gYWchi8BebkczJqesgBeZdCrd7rZklvlcTHYiHgiNQEIj3I5iTN5YF0qRGX74t7NOvBWqDjLiRwe7kMgYU6ysgBeZcE2YS//+SwLhAL6AD8Qp3vsfV8f+x+7jdjxjTBGxLpQidOjJB7Dbd3fi5X++zrr6ZvY/Zm++fdBQG4FijGnBCniR2mZQX069/AS3YxhT8lTTEJ8B6aXg/w7iG+J2pJwp+gKuqnz16WLSqTTb7z4Qj8d6fYwxnaOppejqMyC9ClDQFBo6Cul+CyJet+N1WVEX8AUffcmEE26mftla8AhVtWGufuRX7HHQULejGWNKgNZfCKnFtLgzNzoN9f8DqT7TtVy50uHprIiERORdEflQROaIyLWZ9h1E5B0RmS8ik0UkkMtg0eYYl4y4hqVfLCfaHCO6LsrqJWu4cvT1rF3ZkMtdGWPKkKZWQeJj2k6rEIHmf7gRKec60x8RA0ao6jBgODBKRPYHbgL+qKo7AWuAs3MZ7M2nZpCMJ9u0p5Mppj00PZe7MsaUpSjtljiNFjRJvnRYwNWxLvPUn/mjwAjgsUz7/cDYXAZbs7Q+awGPRxOs+mZ1LndljClHnu3Ak23hFj+ERhY8Tj506oqgiHhF5ANgOfAi8DlQr6rrK+wiIOt0eSIyXkRmisjMFStWdDrYHt/bDa+/7UWGcE2IPQ/9dqe/jzGmMokI0uPmzJw463t4w+DdFqk5x81oOdOpAq6qKVUdDgwE9gM6fRVRVe9W1TpVrevbt2+ng+1atyP7HD2sxWLEwXCAIcMGs++o4Z3+Ph2JNEWZfPOTnLP3pVxw8G+Y9tB0CrnMnDEmfySwL9LnWaj+KYSOhdqrkD5PI54ebkfLiS0ahaKq9SLyCnAA0ENEfJmz8IHA4lyHu/qRX/HcpJd5dtLLpJIpjjzzEI47d2TOhhIm4gkuPPg3LPrPN8QjzgIACz5cyEf/nsNFdzv/Q0ebY6SSKaq7VW3uWxljipR4+yO1F7odIy86LOAi0hdIZIp3GDgK5wLmK8BJwMPAOOCpXIfzer0cM/4ojhl/VK6/NQCvPfo238xfuqF4gzPr30sPvsaos0fw0HVTmPXChygw5DuDuOTeXzBkz+3zksUYY7ZUZ05l+wOviMhHwAzgRVV9Grgc+JWIzAd6A5PyFzM/Zr74IdGmWJt28QjX/OAWZr7wIclEilQixbz3vuCiQ66mfsVaF5IaY0xbHZ6Bq+pHQJuJlFV1AU5/eMnqO6AXPr+XZKLlOFFVWFffTKpVezKR4vm/v8IPL8vpgBtjjNkqFX1f+uifHtFmpIuI4A/48HjaThwVj8T5+rNvChXPGGM2q6ILeP8d+vHbRy+hW+9awrUhglVBBu66HZdM+jnZBqKEqoMM3W/nwgc1xpgsinoulELYb/RePLL0Hr6Y/RXBcICBu2yHiLD7Xc8z541PiUedC5xen5eantUcccb3XE5sjDGOij4DX8/r9bLT8B341q4DNsy5fd3/XcHJFx9Hr/49qO1Zw5FnHsL/zLiJcHXI5bTGGOOQQt60UldXpzNnzizY/kzhLJq3hP/MmM82g/rY4hPG5JiIzFLVutbtFd+FYromlUpx05l/5o2nZuD1eUChz8De3DJtAr3793Q7njFlzbpQTJdM/ctzvDl1JvFInEhjlMi6KN/MX8INp9/udjRjyp4VcNMlU+96gVhzy5uhUsk0c978jIZVjS6lMqYyWAE3XRLLcicrgMcjxCLxAqcxprJYATddctDY/fAF2l5K6dW/J30G9HIhUWFp8ms08gQafQXVRMdvMCaH7CKm6ZIzfnsSb06dQcOqRqJNMXwBHz6/l8vu+2VZj0RRVbTxOmh+BMQLCBCE3g8ivp3cjmcqhBVw0yXd+3Rj4se38eIDr/HRv+ew3U7bcuzPjmKbQZ2f+70kxV6AyGNAzFmfCoBmdPV46DutrP/zMsXDCrjpsnBNmON/PpLjf14ey1R1hjb/EzTSuhV0NSTngn93V3KZymJ94MZsjTbFez0PaPYLu8bkmhVwY7ZG6Fgg27QKAn5bs9UUhhVwY7aCVJ0Cvp2B9Uvt+YAQ0v0mRAKbeacxuWN94MZsBZEg9H4Yos+j8eng6YuET0Z8tuSeKRwr4MZsJRE/hI9Fwse6HcVUKCvgOfTZjPk8cM0jLJj9FYN2G8CPJ5zCtw/c1e1YxpgyZQU8R2ZPn8uVo68j1uzcPr5y0SrmvP4pEx6/lH1HDnc5XfFZsWgV0x97m2QiyYFj9mXgLtu5HamsqSbRpr9C04Og6yCwN1L7G8S/i9vRTBfYfOA58vO6y5n33oI27QN33Y6/z7WZ+Tb1/H2vcMcvJoIq6VQaj9fDqVecwJm/PdntaGUrXX85RJ8FohsbpRrp/X+Ib6BruUzntDcfuI1CyZEFs7/M2r7os29IpVJZt1WiNcvquePn9xCPxIlHEyQTKeLRBJNvepL5H3zhdryypKnlEH2GFsUbQONo099dyWRywwp4jnTv0y1re3WPKrxeb4HTFK+3/m8WHm/bj10iluDVyW+6kKgCJBdA1qGNCUh8VPA4JnesgOfIqZePIVgVbNEWrApy0kU2QqGFAnbZmQzf9qDZpvb1gt8uspcyK+A5Mva873PSxccSrAoSrgkRDAc47tyjOe3XJ7odrajsf9w+pFPpNu3+oJ/DTjnQhUT5oalv0KYH0eZ/oqkVrmYRb38IHgoEW20JINVnuxHJ5IhdxMyxaHOMlYtX03u7nraCfTuenTSNO8+bhKaVdFrx+b2cePFx/OR3p7odLSfSTfdB4604U8wCKHT7HZ6qE1zLpBpHG2+C5keBGPiGIt2uQQJ7uZbJdF57FzGtgBtXLPtyBa899jbJeJIDx+7L9ruVx0gITX6BrjweaD2hVRDpOw3xbuNGrA2cn/ekcxOSKRm2Kr0pKv2278vJFx/ndoyc08izQLZRRwKxl6DqtEJHaplCBLDiXS6sD9yYnEoCbfv4nbnCk4UOY8qcFfACSiVTFLLLyhSehI4G2pmNMHREu+/T1CrS6/5Geu2VaPMUVKPtvtaY9ayAF8Ds6XMZP+xiRgd/xPHdzuSvF99HIm4L4JYj8Q+F6rNw5gr3sH6aWWovQrwDsr5HE3PQlUfCujshMgVt+D268vtoenXhgpuSZH3gefbFx19x5ejriTU7F7WiTTGe/uuLrFm2lisfvMDldCYfPLW/QkOj0egLgAcJfx/x7dju67X+UtCmTVqaIRVHG/+MdJ+Q97ymdFkBz7PJNz1JItryJopYJM7rj7/DmmX19OzXw6VkJp/Evxvi363D12l6NaSyTcOQhNjzgBVw0z7rQsmzL2Z/RTrdtt/bH/SzZMEyFxKZ4rK5ESEBVBWNvYU2TUKjz6FZ76g0lcrOwPNsl32GsHDO123uPkzEEgzYub9LqUyxEE8tGtgH4jNoOfwwBOET0FWnQGqecyu8BEGqodfDNoOgATpxBi4i3xKRV0TkExGZIyIXZNp7iciLIjIv87Vn/uOWnh9ecQKBcMtRCcGqIEePO6zdCbBMZZHut4B3gFOcCQMhCOwHGoXkp6DNQNLpJ0+vRNde5nJiUyw6vBNTRPoD/VX1PRGpBWYBY4GzgNWqeqOIXAH0VNXLN/e9CnUnZtPaJlYsWk2/7fsQrgnnfX8dmf/+F9z1q/uY+/Z/qO5RzQ8u+D6nXDrGZik0G6imIf4WpBaDfw/Evzvp5QdDenmWV/uQbd5FPDUFz2ncsdV3YqrqEmBJ5nGjiMwFBgBjgMMyL7sfeBXYbAHPt1QyxZ3n38vz972Cz+8jlUwx9rzR/PSG0zN3oLljp7124NZXrnVt/6b4iXggeFCr1mw3BIEzx0p720wl2aKLmCIyGNgLeAfolynuAEuBfu28Z7yIzBSRmStW5HdWtvuvmcyLD/ybRDRBpDFCPBLnqTuf4/Hb/5XX/RqTF6HRtL0pSJyJqDzW/bYpTTeTXjuB9NJhpJfuRnr1WWiy/BcI6XQBF5EaYApwoao2bLpNnX6YrH0xqnq3qtapal3fvn27FHZzVJUn//zshvHW68WaYzz6h6l5268x+SI1F4L3W5m+cYAwSHekx82u5ipGuub/QWQKEAFSEH8LXXVy2d8M1alRKOJMXTYFeEhVH880LxOR/qq6JNNPnq2zrmBSyRTRddlvP25Y1VjgNMZ0nXhqoc9UiL2MJj5GvN+C0Pet77sVTXwCiY+BTYdYqrNkXPNkpOZct6LlXWdGoQgwCZirqrdtsmkqMC7zeBzwVO7jdZ7P72NAOyub77z3kAKnKW3JRJJ3nnmPlx58jeVfr3Q7TkUT8SOhkXhqL0aqTrHinU1yAUi2UhaFxCcFj1NInTkDPwg4E5gtIh9k2q4CbgQeEZGzgS+BU/ITsfN+ecd/MeGEm4lH4qiCeIRAKMA5t53ldrSSseCjL7nsqN+RiCXQtJJMpDjxwmM4+4bT3Y5mTHa+IaDZLuqGwL97weMUUtkt6PDpu/N46LopfPnJInbaewfO+M1JDNlz+7zus1yk02lO3/5cVi5u2W8Yqg5y9SMXs99oW73FFKf0qtMh8SEbu1EEpBbp+wLi6eVmtJyomAUdhu63M7+feoXbMUrSZzM+p2ltc5v2aFOMp//2ghVwU7Sk5z3OknHRJ527VgPfRbpNKIvivTllV8DN1os1xxBP9vHyzY2RAqcxlUDTa9DmRyH5Cfh2Q6pO3qqiK54qpPu10L2y7rewAm42GPrdnbOuGB+qCjLi1INdSGTKmSYXoqtOBo0BUeBltOke6P0Y4hvscrrSYLMRmg1CVUEuuuccguEAXp/z0QhVBxkybHuO/PGhLqcz5UYbrgVtwCneOF+1EW24xsVUpcXOwE0LI049mJ2G78AzE1+iftlaDjiujoNO2A+f3z4qJsfib9P2/j+F+Duoat6nv9DUcrT5fyH+Afh2RqrPQnyD8rrPXLOfStPGoKEDOOcP4zp+oTFdIQHQbNdW/Pkv3smF6KqTnBkfiUNiFhqdAj3vQwKlc7HeulC2wvQpb/PzfS/n1IE/4/of/ZHF85d0/CZjTEuhMbSd6yUA4TF537U23gjayMZhh0nQCNpw9dZ/z9QKNPkFqqmOX5wjdga+hR69dSr3T3hkw5wrrz36Fu8++z5/fe8W+g/JOp+XMSYLqb0cTc5zRqDgAdLOSJTaAgwDztp9AyQ/RzWCSOenodbUKrT+Akh8AHjBE4Zu/42ERuQsbnvsDHwLxCIxHrjmkX2tK2IAAAymSURBVBYTZqXTSrQpxkPXT3ExmTGlRzzVeHr/E+n1ENLtGqTXQ3h6P4x4qjt+c5d33t4+vGx+mbu2dM1/QeI9nLP5CKRXo/UXoon/dDFkx6yAb4Fv5i9FPG3/ytKpNLOnz3UhkTGlT/x7IOExiH+Pwu206nQg1KoxAOFjEel8x4Qm5kJqIZBstSWBNt/ftYydYAV8C/Tq35NkvPU/lKPf9vmbKtcYk1tSPR5CRwFBkFqcZezqkNot7ANPL8M5a28tBalFXQ/aAesD3wLd+3Rj/+P24Z2nZxGPJja0B6sCnHbVD1xMZozZEiI+pMetaOobSM4D7yDEt8OWfyPfHs6t+20EIXBgl3N2xM7At9Bl9/2Sg3/wXfxBP8GqILW9arjgrvEMP7yAv/4ZY3JCvNshwUO3rngD4u2T6Y7Z9KKnHzw9kKof5STjZvdfbrMRFkpTQzONq9fRd2BvvD5bnNiYSqWqEJ2KNt3n3FkaPAKp/hni7Z2zfVTMbISFUt2tiupuVW7HMMa4TEQgPAYpwPj11qwLxRhjSpQVcGOMKVFWwI0xpkRZATfGmBJlBdwYY0qUFXBjjOkETa8mXX8Z6WXDSS/bi/TaK9F0vauZbBihMcZ0QDXuLP+WWsKGeU8iU9H4B9DnaUTcuRfEzsCNMaYjsZchvZqWk1YlIL0UYq+5lcoKuDHGdEQTn4E2ZdkQhWT+p41tjxVwY4zpgPh2AMly57WEwDe44HnWswJujDEdCY0EqaHl1LFekO4QzP/KO+2xAm6MMR0QCSK9H4XAQThF3AvBQ5DekxHZshV8cslGoRhjTCeItz/Sa+KGRYvdGnmyKSvgxhizBYqhcK9nXSjGGFOirIAbY0yJsgJujDElygq4McaUKCvgxhhTojos4CJyr4gsF5GPN2nrJSIvisi8zNee+Y1pjDGmtc6cgd8HjGrVdgUwTVV3BqZlnhtjjCmgDgu4qr4GrG7VPAa4P/P4fmBsjnMZY4zpwNbeyNNPVZdkHi8F+rX3QhEZD4wHGDRo0FbuzpjysPzrlUx7aDpN9U3sO3ov9jxkd0TE7VhFSTUCyXng6Y14B7gdpyh1+U5MVVUR0c1svxu4G6Curq7d1xlT7qY//g43nXkHqVSaZDzJU395jrqRw7n6kV/h8dh4gk2lmx6AxltBvKAJ1L8n0vNOxGOX2za1tZ+aZSLSHyDzdXnuIhlTfqLNMW4e92dikTjJuLMoQLQpxsznP+CNJ2e4nK64aOx1p3gTAV0HxCDxPrrmfLejFZ2tLeBTgXGZx+OAp3ITx5jyNPu1T/B42/64RZtiTHvQvRVdipE2TQQirVqTkPgATS3J9paK1ZlhhP8E3gJ2FZFFInI2cCNwlIjMA47MPDfGtCNb8V7P5y+eyZGKQqqdX+jFD+lVhc1S5DrsA1fVH7Wz6YgcZzGmbO15aPaLlaHqICN/crgLiYpY8BBo/hJItNqQBt/ObiQqWnblxJgC8Af8XPvEZYSqg4RrQgRCfgLhACPPOpy6kcPdjldUpPqn4OkGbLpQQhhqLkck6FasoiSqhRsYUldXpzNnzizY/owpNk1rm3jjyRk0rW1mn6OHMWioDY/LRlMr0aZJEH8dPNsg1WcjwQPdjuUaEZmlqnVt2q2AG7N5X8z+kgevm8L89xYwaLeBnP6bExm6n/0qbwqnvQJuK/IYsxmfvjuPS0ZcSzwaR9PKkgXLeP/l2Vzz+GXUHT3M7XimwlkfuDGb8deLHyDWHEPTzm+qqhBrjvOX8ye5nMwYK+DGbNa8WZ9nbV88fynxWOtREsYUlhVwYzajtndt1vZQVRB/wHogjbusgLsolUrx6uQ3+M1xN3DtSbfwzr9mUciLyqZjp1xyPMGqlkPXglUBxvxilE1CZVxnpxAuUVWuPfEPvD9tNtGmGAAzn/+Qo8cdxnl3/tTldGa9E87/PquX1vPE7c/g9XtJJpIcecYhnPX7U92OZowNI3TLe9NmM2HszUSboi3aA+EAd8262cYHF5nIughLF66g78De1PSodjuOqTDtDSO0LhSXzHju/TbFGwCF9176qPCBityCj77kulP/yNnfvogbzridhXO+Luj+wzVhdthjUNkW7/oVa/ls5uesq29yO4rZAtaF4pLaXjX4Az4SmalF1/P6PGVbJLbWx6/P5YpR1xGPJtC0suizxbz55AxunjaB3b5rN9R0RSKe4Naz7+K1x97GH/SRjCc57pyjGf+HH9sc5SXA/oVccuTp38s+Q53AgWP2LXygIvbn8yYRa45vGIudTivR5hj/c+HfXU5W+u657EFef/wdErEEzQ0R4tEET9/9Ek/c8Yzb0UwnWAF3yTaD+nLFg+cTrglR1S1MVbcwtb1quP7pq6iqDbsdr2ik02kWfPhl1m3tjdE2nZNKpXhm4kvEIvEW7bHmGFNue9qlVGZLWBeKiw4+4bvsO2o4H7/+KV6flz0OHorPb/8km/J4PFR1C9Pc0HqCf6yrqYsSsSSJWDLrtobVjQVOY7aGnYG7LBgOss9Rwxh++B5WvNsx9pejCVYFWrQFq4KccMExLiUqD6GqINvtmH098t0P2LXAaczWsAJuit6PrzmFEad9j0DIT1W3MP6gn6PHHcqpV4x1O1rJO+/OnxKsCmy4Kcnj9RCqCTH+ljOJxxJMe2g6fzrnbh6+6QlWL13jclrTmo0DNyWjYVUjSxcup/+QftT2rHE7TtmY//4X/OO/H+eruYvYZd8dOe3KH9Bz2x6cf8BVLP96FdF1UQIhP16flxtfuJrd99/F7cgVx+YDN8Z02r2//geP3fY0iVYTdm27wzY8MP9Om0agwOxGHmNMp73y8BttijfAmqX1LPtyhQuJTDZWwI0xbfiD/qzt6bS2u80UnhVwY0wbx4w/ss3IH49H2OE7g+jdv6dLqUxrVsCNMW2M/eVo9jlqGMGqAMGqAFW1YXpt15PfTL7I7WhmEzbw2BjThtfn5donLuPzDxfy6Tvz6DOgF3Ujh+P1ed2OZjZhBdwY064dhw1mx2GD3Y5h2mFdKMYYU6KsgBtjTImyAm6MMSXKCrgxxpQoK+DGGFOiCjoXioisALLPzt+xPsDKHMYpFXbclaVSjxsq99g7c9zbq2rf1o0FLeBdISIzs03mUu7suCtLpR43VO6xd+W4rQvFGGNKlBVwY4wpUaVUwO92O4BL7LgrS6UeN1TusW/1cZdMH7gxxpiWSukM3BhjzCasgBtjTIkqiQIuIqNE5DMRmS8iV7idJ19E5F4RWS4iH2/S1ktEXhSReZmvZTebvoh8S0ReEZFPRGSOiFyQaS/rYxeRkIi8KyIfZo772kz7DiLyTubzPllEAh19r1IkIl4ReV9Ens48L/vjFpGFIjJbRD4QkZmZtq3+nBd9ARcRL/AXYDSwO/AjEdnd3VR5cx8wqlXbFcA0Vd0ZmJZ5Xm6SwMWqujuwP/CLzL9xuR97DBihqsOA4cAoEdkfuAn4o6ruBKwBznYxYz5dAMzd5HmlHPfhqjp8k7HfW/05L/oCDuwHzFfVBaoaBx4GxricKS9U9TVgdavmMcD9mcf3A2MLGqoAVHWJqr6XedyI80M9gDI/dnWsyzz1Z/4oMAJ4LNNedscNICIDgWOAiZnnQgUcdzu2+nNeCgV8APD1Js8XZdoqRT9VXZJ5vBTo52aYfBORwcBewDtUwLFnuhE+AJYDLwKfA/Wqmsy8pFw/738CLgPSmee9qYzjVuAFEZklIuMzbVv9ObcVeUqIqqqIlO24TxGpAaYAF6pqg3NS5ijXY1fVFDBcRHoATwBDXY6UdyJyLLBcVWeJyGFu5ymwg1V1sYhsA7woIp9uunFLP+elcAa+GPjWJs8HZtoqxTIR6Q+Q+brc5Tx5ISJ+nOL9kKo+nmmuiGMHUNV64BXgAKCHiKw/uSrHz/tBwPEishCnS3QEcDvlf9yo6uLM1+U4/2HvRxc+56VQwGcAO2euUAeAU4GpLmcqpKnAuMzjccBTLmbJi0z/5yRgrqretsmmsj52EembOfNGRMLAUTj9/68AJ2VeVnbHrapXqupAVR2M8/P8sqqeTpkft4hUi0jt+sfA0cDHdOFzXhJ3YorI93H6zLzAvap6vcuR8kJE/gkchjO95DJgAvAk8AgwCGcq3lNUtfWFzpImIgcD04HZbOwTvQqnH7xsj11E9sS5aOXFOZl6RFV/JyJDcM5MewHvA2eoasy9pPmT6UK5RFWPLffjzhzfE5mnPuAfqnq9iPRmKz/nJVHAjTHGtFUKXSjGGGOysAJujDElygq4McaUKCvgxhhToqyAG2NMibICbowxJcoKuDHGlKj/D/Bo6W31kzQnAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "model = LinearSVC().fit(X, y)\n", + "\n", + "plot_decision_regions(X, y, clf = model)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 374 + }, + "id": "nVtAYXsayU69", + "outputId": "07f22b5a-49be-420a-f860-0ca461933a09" + }, + "execution_count": 20, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.7/dist-packages/sklearn/svm/_base.py:1208: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.\n", + " ConvergenceWarning,\n", + "/usr/local/lib/python3.7/dist-packages/mlxtend/plotting/decision_regions.py:244: MatplotlibDeprecationWarning: Passing unsupported keyword arguments to axis() will raise a TypeError in 3.3.\n", + " ax.axis(xmin=xx.min(), xmax=xx.max(), y_min=yy.min(), y_max=yy.max())\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 20 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD6CAYAAABamQdMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dd3xUVfrH8c9JIUACARJKIPTQIjWE3ouKihVEWKQLiGDfXdvu2ldXF9SfIIplBRUBC8pGUVmqgiJNBUUBEVZqCBAglECS8/sjg4tASCaZmTvl+369eGXmZubex2vmyclzzn2usdYiIiLBJczpAERExPOU3EVEgpCSu4hIEFJyFxEJQkruIiJBSMldRCQIRRTlRcaYbcARIBfIsdamGmMqAbOBOsA2YIC19qB3whQREXeYoqxzdyX3VGttxhnbngIOWGufNMbcC1S01t5zwR1t+kyL6kVE3FG+OlRratx9W5FG7gW4GujuejwdWAJcOLln/FSCw4mIhCATBtWauv22otbcLfCZMWaNMWaMa1tVa+1u1+M9QFW3jy4iImRkZtHv3hfZf+iox/ZZ1OTe2VqbAlwGjDfGdD3zmza/tnPekosxZowxZrUxZvW0D5eXLFoRkSA046MVHNzzK9PTPJcji5TcrbU7XV/TgblAW2CvMSYBwPU1vYD3TrPWplprU8dc3ckzUYuIBImMzCzSlq5i6nXxpC1d5bHRe6E1d2NMNBBmrT3ienwJ8AgwDxgGPOn6+qFHIhIR8bA8DEfDK5EbURpwe27Sq5Zs38gtg6+halIUw/O2M2P+Su4c2LPE+y3KhGpVYK4x5vTrZ1prPzHGrALmGGNGAduBASWORkTEC46GVyIypgIxJhfjR7n98NETrNuwkXu6lKVc5Ekua5vEwx9uYv+ho8TFRpdo34Umd2vtVqDFebbvB3qV6OgiIj6QG1Ha7xI7wKJVG2lTPYzypfMr5PERR+nWpBrT05Zz1+BLSrTvkiyFFBEJEMbvEjvA+q27OJB5iqXbDv22rVTpsmxcu0nJXUQkUP115BXnbMs8lkOFQecUS9ym3jIiIj7yyedraHT5OJIuHcOTL7/r1WMpuYuI+EBubi7jH3uJ+S89yA//nsLbHy/jhy3/9drxVJYRETlD2xsfIOPQ8XO2x8eW4es3Hy/2fr9ev5mkWgnUq1kNgIGXdeHDRStJTqpV7H1eiJK7iMgZMg4d56Kxz5yz/fuX7izRfnfu3U/NavG/PU+sFs/K77zXb0tlGRGRIKTkLhLkvNGUStxXo2ocv+75rWs6O/ZkUKNKnNeOp+QuEuS80ZRK3NemaQM2b9/FLzv2cPLkKWbN/5yrerTz2vGU3EWCmLeaUon7IiLCmfzAWC4d/RBNrhzPgEs7c1ED70ymgiZURYLajI9W0DcpjEZVouibdMIjl7V7UkZmFmOffJNp9w0pcS8VT4mPLXPeydP42DIl3vfl3VK5vFtqifdTFEruIkHq9Kh9zoByAAxNiWbAnFUM69vJbxLpmSUjf/mlU5Lljv5EZRmRIHV61B4fkz+Gi4+JoG9SmN/U3lUy8i6N3EWC1JK1m9iVns3M9b+/j071vSVvSuUJ/l4yCnRK7hKS/LHW62nzJk5wOoQCBULJKNCpLCMhScsDneXvJaNgoOQuIaewWq8u+vG+JWs3MXN9NqlT0n/7N3N9NkvWbnI6tKChskwACIUSgi8VVuv1xxUcwcafS0beMvKB50hbupoqlWLZMG+y14+nkXsAKKiEoBGm+06P2oem5P+SHJoS/bvRu1ZwFJ9+Hi9s+LW9+GTaQz47npK7n7tQslHd2H2F1Xp/P6pXDdgdwfbzmHHwMP0mPML+zMMe2V/X1KZUio3xyL6KQsndzxWUbDTCLJ4L1XoLG9VLwYLx53HG+59ycOcWpr/3qdOhFIuSux+7ULLRCLN45k2cwOo3Hjrn37yJE7SCowT85efRU6WhjIOHSVuwmKnXVSVtwWKPjd59ScndjxWUbKa8s1gjTC/QCo7i8ae/eDxVGprx/qf0rW9oVLU0feubgBy9a7WMHyvoCsOcvDUMbVHqvCNMre4ovlBcweEJF/qLx5c/j2eWhsalFf+CqNOj9jkDYgEY2ro8A+YsZli/S4mrUN7TYXuNsdb67mgrnvfhwYLXVXdPZld6xjnbq1eJV4ISn/OXn8dJb30GO9dwV9dYJi07BDVa//bLJTMqkQplizaWnfTqO7B1CXd1q/S/bUsPQL3u3DXq+mLHN+iPT7Pk6w1kZB6malwFHp4wiFH9zv3ll3kshwrZO/63oXITaNDbuHs8JXcRCXgZmVkM+PNzzBlQjviYCDKychgw5wjvPH0HcbHRbiX3q8b+hV2795yzvXpCNea99JinQz+Hp5K7T8symUeOUaFcWV8eUkRCgCdLQ75I4L7g0+Q+/vU1JFUK5683tCMiItyXhxaRIObvHTCd4NOyzMvLtto92zezacGbtKpquOvaNj47tgQGtVoQb8iMqkFsmUiM28UN37IWDh0/RYXsnf/bWMyyjM+XQlar3YCuNz3M3mpduOvlRaz44VdfhyB+LNiuchT/EJ5zgmwbji+nGN1lLWTbcMJzTnhkf44thUxq04ushim8vuhd3lq2mPGXJZNcu6pT4Ygf8NRSNpGzRece4GgWnIgoDZR8+J51PJu3Pv2awX3aEVO6VMkDBMASnnOE6NwDHtmbo+vcY2Ir0uba0eTl5jLp3cnkfriBScM7ULG8Jl2DgbslFt2ZR7wlDEu53P2Q65n9vfb2Z3y6YCmRBzb77c+oX1yhGhYeTrsbbqflkIe45dUVzFy0npwcD/1fEMe4U2Lxp6scRS4kUPro+EVyP61sufJ0HvME6ytdzIjnF/HS/G+dDkmKyd0PgPq6SKDwlz46hfGr5A5QKqo09Zq2puutz7KtUgeGvbCceV+qt0egcfcDoL4uEggC6S9Mny+FLM771vz7NZJyt3JthwbUrxHv6bDEwwq7WlAkUJ3Z4uC3bWe1OvC4QLhCtbhaXzmS9B3beOijN6gW8T339U+lUnklCX/lL42kRDwtkC6WKvLI3RgTDqwGdlpr+xpj6gKzgDhgDTDEWnvyQvso7sj9TMeyjrB2zjPEh2fx4MC2lI8uU9JdSiHcXfXiL42kRIKCtxuHGWPuAlKB8q7kPgd431o7yxjzIvCttXbqhfbhieR+2r6d29i46B0uijnMvde399Ru5TwmvfUZaQuW0vfibn43OhEJet68QtUYkwhcAbziem6AnsC7rpdMB65x9+AlUblGHboO+ROZtXtz03OfMn/Vz748fMgIlGVfIvJ7RV0t8yzwZyDP9TwOyLTW5rie7wBqnO+NxpgxxpjVxpjVy+a9XaJgz6d+Sjfajf8/Ptobx4jJS/hmy27y8vIKf6MUSaAs+xKR3ys0uRtj+gLp1to1xTmAtXaatTbVWpva9apBxdlFkbToM5j2o5/khe/C+MOkBRphekAgLfsSkd8rysi9E3CVMWYb+ROoPYHngArGmNOrbRKBned/u++EhYfT5qqRdBz9OONf/Yq/z1rBKV3pWmy6sEg8xVM3rpaiKzS5W2vvs9YmWmvrAAOBRdbawcBioL/rZcOAD70WpZvKRJej122ToMNoRr20gklzVzsdUkDShUXiKer26XtuXcRkjOkO/NG1WqYe+SP5SsA64EZrbfaF3u/J1TLu2L7hK35aNo8bWsXRv0tjJ0IQL1IPeP8+B6cvapvatyzj0o7pYjZ3+aKfu7V2ibW2r+vxVmttW2ttkrX2+sISu5NqN23PJbf8nUUHK3PntIVs+GWv0yGJB2lU6N/nQJPyzvC73jLe1OryoTQc8iSTPj/ALS8uISMzy+mQpIS0VNO/z4Em5Z0TUskdICKyFB3+8Eea/OFB7v7gV8ZNXahJ1wCmUaF/nwNNyjsn5JL7aaXLxtD5xj9S64rbGfHcZ7y5aIPTIflEMK1a0KjQ/8+BJuWd45ddIZ+YMIisrCPnbI+JKcd9kz1/IVTOqZNsW/8V+1elcVnLqvTrFLyTrsHUSsCRDn1+RucgBARTV8isrCPUu+n5c7ZvfeVWrxwvIrIUSSldSUrpyhdL5jJn0iLuu6oJLZMSvHI8pwTbPUoDqUOft+gcSEH8Mrk7Kbn7tTTuejUTp/+d5t9sY3ivplSuWM7psNx2vqVxwXaPUnWY1DmQgoVszf1CwsLC6DL8AWzH8dw5cz33z/iCk6dyCn+jHzl7aZy/12ZFxLOU3AtgjKFilQS6jX2c8j1u4aZ/fctjs7/El3MUxXW+pXFatSASWlSWKYK4hJp0Gfk3fvl2Bbe9OId+nRrSvXltp8Mq0PnKL6rNioQWv0zuMTHlzjt5GhPjbO27bouOHK2bzKzPP2TOiiWM6tmQ1g2rOxrT2U6P2ucMyD9XQ1OiGTBnlS75FgkxfrkUMhDk5eWxZu6LnNizmfuubkqDxMpERIQ7HZaWxokEm2BaChkIwsLCaNPvFk4cO8r/Lf2AU/MWMuXmHkSVinQ0LpVfRAQ0cveYA3t28N27E2lXryK3XplC/p0IRURKyBddIaVglaol0n3CM6TXvIThU7/kjYXrOXrcbxtlikiQU3L3sNrN2tN5zONsKNuG4S99zepNu5wOSURCUNCUZXzdj6YorLUsf/Mp4nMz+NO1KVSLK+9IHCISwEJ9QtXX/WiKwhhD5yH3kH38GPfMnkQFe4iHB7alQrmyjsUkIqEhaJK7P4sqU5bOw//CwfSd3Pb+bOqG7+OhwZ006SoiXqOauw9VrFKDLoPvIrfpNYx49lM+WKGe1iLiHUruDqjdtB2dbn2exUcSGTFlKV9t3EFeXp7TYYlIEFFyd1DTXtfTYcw/mL65DIMm/YfdGYecDklEgkTQ1Nz9tR9NYYwxpFw+lOye13Pnqw+SHB/On/u3o3SUs1e6ikhgC5qlkMHiQPoufpj7PI0qR3Lf9W016SoS6nSFanCoVKU6ncc+wYnkaxg4ZSUzFobGjbu9IZhuBi7iLiV3P1WzcQq9b36UVafqcduLC1i9abfTIQWcs+9GJRJKlNz9XPPe19Nk+NO8tPoYY6cuZtc+TboWxfnuRiUSSpTcA0BERCRtB9xG86GPcf/8vdz0/AJOZJ9yOiy/9vu7Uel2ghJ6gma1TKBypydOqajSdPrDnRzct4dRkx+nV9MERlzSXJOuZynoblTD+nbS3agkZCi5O6w4PXEqVq5G5/GT2LJxDaNeeI+eTSpzY8+LvBlmQLnQzcB1wxIJFUruASoiIpK6zdpTt1l71n3xEfOeWcyQ9gl0bVab2JgyTofnKN2NSkTJPSg07nwFjTpdzpKVi3jr5Y+ZeGMKNSpXcDosx8ybOMHpEEQcp+QeJIwxNG7fi3qtOnHvjL+TUDqbh//QnjJRpZwOTUQcoOQeZEpFlabr6EfIzNjL2OkvUavMccb1aRrSI3mRUKTk7jBv9cSpEF+VLiP/xp5tP3H/J/PpXnU7Iy5pUaJ9ikjgUG+ZELFh0Xtk//wlQ7sl0TG5ptPhiEhRqbeMXEjTnv1IuelpZmwMZ8iz/2HD1l2cysl1OiwRxwVrDyLHyjL+eEPrYGeMofXVozmVnc2Uxe9zfN5CXri5O2VLa9JVQteZPYiCaalsocndGFMaWAZEuV7/rrX2QWNMXWAWEAesAYZYa08W9cD+eEPrUBEZFUVKn0Fk7u/F6KlP0rJWOf54XRtd6Soh58weROPSgusq5qKUZbKBntbaFkBLoI8xpj3wD+AZa20ScBAY5b0wxRsqxFWh+62TyGp8DcNf/Ipp89eRdSzb6bBEfCaYexAVmtxtvizX00jXPwv0BN51bZ8OXOOVCMXrEhu1ovPox/glvhsjX13Lsg3/dTokEa87PWofmpI/Uh+aEh1UHUSLNKFqjAk3xnwDpAMLgJ+BTGttjuslO4AaBbx3jDFmtTFm9bJ5qqX7s3qtutD75kd5fV02d768mF/3HnQ6JBGvuVAPomBQpAlVa20u0NIYUwGYCzQu6gGstdOAaaClkIHAGEOHQXdw6mQ2f501ieiT3/DwwDbExUarJi9BJdh7ELm1WsZam2mMWQx0ACoYYyJco/dEYKc7+/LlDa21Msd9kaWi6DT0Pg7t38ef0mYSf3InT43oqgQvQSPYexAVZbVMZeCUK7GXAS4mfzJ1MdCf/BUzw4AP3TmwL5OqVuYUX2xcZToOvJ2dm75j6DPT6Jtahxu6NnE6LBEpRFFG7gnAdGNMOPk1+jnW2jRjzA/ALGPMY8A64FUvxukVmfv28MDwvuds14j+XDUaNqdGw8ms/PzffPrCMoZ2qkXXZrUIC9N1cCL+qNDkbq39Dmh1nu1bgbbeCMpXrAnTiN5NTbpcie3cl3c+m8Xkz/7DP4ekUqdaJafDEpGzqHGYuM0YQ8tLB3Gqx3Xc9+pDNKhguad/W6LLRDkdmoi4KLlLsUWWiqLnuCc4fCCDm1+bRFKlMP56QzuVakT8QEgk94JW5oQZJSFPKF8pnq5j/87un7/nD1PnkFo1l/6dGlInIc7p0ERCVkgk94ImR883mSrFl1D/IhLqP8yOLT/wwEfzuCn1CD1a1nE6LJGQFBLJvSC+XGsfShKTkqlRvwlvz32RWSuWcO+1zairUbyIT+lmHeJVOadOsuq9qdj9v3Brn8a0apioC6FE3FHMm3UouUuxuHvVb9ahg2xZtYjSO77k6ZHdNOkqUlTFTO4hXZaR4nP3qt+Y2Iq07N2PXVsaMXLK63RpFM+oS5p5O0yRkKXhk/hU9aSmdBr3T36Kac3A55bx7rLvOXj4mNNhiQQdJXdxRIO2F9Pzlif5KrItN/9rNVt37Xc6JJGgouQujjHG0KhNd7qPeZSH0rZx1ytLOXL0hNNhiQQFJXdxXERkKbqM/BuJ19zDhLc38qfXlgbcjUIyMrPod++LQXMXHwl8mlCVYvHGNQLlKsTRefhf2Pvrz/z1P/NpU/4Xxl+ZUpIwfWbGRys4uOdXpqctD4obPUjg01JI8Vs/Lv+YI98vZECHuvRuVdfpcAqUkZnFgD8/x9S+ZRmXdox3nr6DuNhop8OSYFHMpZAqy4jfatzpctqMmcjcX8sx+NmFrN30KydP5RT+Rh87fS/ORlWiguoenBLYlNzF77W8fBidb/4Hr26pxMjJizh89LjTIf0mIzOLtKWrGJqSP1IfmhJN2tJVqr2L45TcJSBERETS8pIBtB76EDe//CV/n/0VeXl5Tof126g9PiZ/+io+JkKjd/ELqrlLQNr9y4/8vPBNUqtHMrxXU8pFl3Ykjqvunsyu9IxztlevEh/0N2AWH1FvGQlF29d/xeblHzOyQ2UubV3P6XBEPE8TqhKKajdrT++bH+G9nyO47aVFbN6xz+mQRPyC1rm7yd1uiOIbba4bR07OKZ6Y/SyRR9fzyMBUqlQsp/bCErKU3N3kbjdE8Z2IiEg6DP4TWYcOcu/8tyh7aCWDuzagY9M6TofmtzIysxj75JtMu2+I1uYHGSV38Rlf/dUTE1uRjjdMIHN/OjNWLWLVz6u5/epUj+0/mOjK2uCl5C4+4+u/eirEVaF1n4FsXrmAkS8spH9qAn1S6+lGIS6n1+hPvS6ecWmrGNa3k0bvQUQ/5RL0GrS7mA5jnuTTzEQGTFrEvOXfk3Us2+mwHKcra4ObkruEjKY9+9F7wtMsK9WVsS8u41CW/1zp6mu6sjb4qSzjJm90QxTfCY+IoFGr9iTWb8yENyZSMzqHRwd3JDw8tMY5F7qyVrX34KDk7iYtdwwO0eUr0HX0o+zZvpkbX55J0wrZ3NC5IUmJlT16HH9djbJk7SZ2pWczc33677ZX37tJyT1IKLmLz/jjXz3Vajeg2k0PsuuXTTyyMI0bGh/iinZJHtu/v65GUWuE4Kf2AyJnWPvv18jdvZE7r0imSe0qJdqX+ryLR6j9gEjJpVw5kpSRTzDxy+Pc+MxnrNq4ndzc4nWf1GoUcZKSu8hZwiMiaNf/FtoMf5TXdyRy27TF5OTkurUPrUYRpym5ixSgbLnytOxxFQmX3sLIqct44aN1RX5vSfq862bb4gmaUPUgNRULTlVrJVF13D/5Ze1SBj3/CX2Ty9Mntf4F6+clWY3ir5OwEliU3D1ITcWCW92UbtRN6ca3az9n3vSPePDqhiTXrnre1xZ3NYpaAoinqCwj4qYGKV3oOfZxnlq4lzteXsLBw8c8tm9NwoqnKLmLFENYeDidht5H3f5/5Y53NnP7tMX8d8+BEu1Tk7DiSYUmd2NMTWPMYmPMD8aY740xt7u2VzLGLDDGbHZ9rej9cEX8S9ly5ek87H6qXXYbDy05ylPvriz2vooyCavJVimqoozcc4C7rbXJQHtgvDEmGbgXWGitbQAsdD0XCUnxCbXo0P9m9if2YPSURXy0covb+1iydhMz12eTOiX9t38z12ezZO2m315z5mSryIUUOqFqrd0N7HY9PmKM2QjUAK4GurteNh1YAtzjlSgDhD9eXi++lZTaA1J78OmCWcx8bjETetejVVJ1SkdFFvrewiZhNdkq7nCr/YAxpg6wDGgK/NdaW8G13QAHTz8/6z1jgDEAN979WOuuVw0qUcBabiiBIi83l/WL3+fAD8u5OiWB/l2SS9R9ctJbn8HONdzVNZZJyw5BjdZaKhkKitl+oMhLIY0xMcB7wB3W2sNn3njYWmuNMef9LWGtnQZMA8/0ltFyQwkUYeHhtOh9Pdmd+7J203qWvPg2z4/tQUREuNv7Oj1qnzMg/6/AoSnRDJij0bs7/LVDp7cUaRhhjIkkP7G/Za1937V5rzEmwfX9BCC9oPeLhLKo0mVIat6WmlfcxshXVvHUu19z+Kh7NwopyRWvki/U5isKHbm7Si6vAhuttZPO+NY8YBjwpOvrh16JUCRIVE6sS+WbHuW/P6xm7BvzaVPlJNd2aEDdhLhC36v+6yUTivMVRSnLdAKGAOuNMd+4tt1PflKfY4wZBWwHBngnRJHgUis5lVrJqez99RcemPsv7u1ziub1ql3wPeq/XjK/vzjsREi0dijKapkvgIKK+b08G444QZPUzqhasy6VRz3I/737PHz8PQ/f0Jrq8bGcOZ8lJReq8xUB11tGyw09T5PUzgkLD6fdDXdw/OgR/jb/TcL2rWJI1/p0bVHP6dCCRqjeLzbgkrtGkhKMykSXo33/cRw+mMHstcv44sevuP+G9k6HFRRCdb4i4JK7SDArXzGelr2uY+u6yoyc+hGXN63MdZ0aEhamNlDFFarzFfqJEfFD9Vp1ocPoJ1mR05D+kxbz/rINHMpyb/lkoFMfnZJRchfxY026XMmlt/2Tr6J7cvPLy8nIzHI6JJ8JtXXpnqayjGiS2s+FhYXRoEUbajZowl0zn6Za1AkeH9KJyGJc6RooQnFduqe51VumpDzRfkAk1GXs2s76+W+QVDaLG7s1omGtKk6H5HH+0kfHL1oWFLO3jMoyIgEmvnpteoz6C5Edb+Lvn2fxzucbnQ7Jo/zppiWBXBpSWaYAurBH/F212klUq30rSz95iwVTl3LLxQ1pmZTgdFgl5i/r0gO9NKTkXgBd2COBokWfweTlDeKFD18la95n3H5pQ1o3qlms7pP+wF/WpXu6ZYGvSzxK7iJBICwsjDbXjubEsaO8uWoxryz6D1Nu7kGpyMD7iPvDunRvtCw4s8Tji19SqrmLBJHSZaNp3q0v9a+5m1EvfsGkuavx5aKJYOHpFstnlnh8NX8QeL/WRaRQcQk16Truabav/4rBL6TRq35prmqXROWKWt5aFJ4uDTnRlVLJXSSI1W7WntrN2rPl2y+5debHpFaFERc3C6iJQSd4sjTkVFdKJfcC6MIeCSb1WnSgbvP2HEjfzfhX/8lzw9tQtVJ5p8MKCU6t/tFFTCIhJvv4MVa/+zxlT6Tzp6tbULd64XeCkuK76u7J7ErPOGd79SrxRfsLoZgXMSm5i4Sog+m72LTiY6L3/0D/Tkl0aVrb6ZDkfIqZ3FWWEQlRFatUp901N5F16CBvLvuAHRk/MKh7stNhiYdoKaRIiIuJrUjqlSP4+lQ9Bj+3hCXf/MLx7JNOhyUlpLKMiPzGWsv6xR+wb8MyrmxRheu7JgfkhVBBRY3DRKSkjDE073ktXcc+yfeV+zBu6iKyT55yOiwpBv1KFpFzREZFUTe5FeXjqjLmXy/SIDaP265sSfnoMk6HJkWksoyIFGrnpm/Z9EUaLSsc59qOSTRIrOx0SKFDZRkR8ZYaDVvQY+QDnGw7ioc+3sHXP+50OiS/5S/3flVyF5Eiq5pYl24jHuDlb04y8vlFbN9zgLy8PKfD8iv+coMPJXcRcYsxhrb9J5Ay4jEeWXqUmyYvZPG6Leo+iTPdHwui5C4ixRJVugzt+91Ms8EP8v6B+vztzS9CPsH/vvtj8VsEe4KSu4iUSExsRZp364tt3o+RU5fzxqIN5OaGXqnGn+79CkruIuIhtS9qQ8cxT/BtZEsGPLuU2Yu/c3xS0Zc8fYOPktJSSBHxOGstW79fy/YlbzNxcArVK8c6HZLXlbj7Y0HUFVJE/M3J7BOsfOsp4sKyeGJIR0pHRTodUuBRchcRf3Vw3x6+S3uNxIiDDOvRmCZ1qjkdUuBQchcRf5e+Yxs/r/yUcpk/MqznRaQ0SHA6JP+nfu4i4u+qJNahSuJYTp3M5pm3n2HcqRw6Jtd0OqygpNUyIuJzkaWi6DL0Hmb8VJqBEz9j+Xdb1X3Sw1SWERFHncw+wY9fL+bA2o/p3bw6w3s3wxi3qxDBS43DRCQQlYoqTfMul9H5lon8VKkb90//POSvdPWEQpO7MeY1Y0y6MWbDGdsqGWMWGGM2u75W9G6YIhLsIiJLUb9FR0q1GciNU1fywr9Xs/fAYafDClhFGbm/DvQ5a9u9wEJrbQNgoeu5iEiJJTZqRfcxj7Kz5uXcMfsnnnrnS3ZnHHI6rIBTaHK31i4DDpy1+WpguuvxdOAaD8clIiGuTtM29LjpQeg8gTveXMeO9INOhxRQiltzr2qt3e16vAeoWtALjTFjjDGrjTGrl817u5iHE5FQZIyhYuVqdBv9GH+dv5sxUxby8459qskXQZFWyxhj6gBp1ifajcsAAAiPSURBVNqmrueZ1toKZ3z/oLW20Lq7VsuIwBMTBpGVdeSc7TEx5bhvsgZAF3Jo/z42LU8jZ9vXbNm0mbn/GENcbLTTYXmXjy9i2muMSbDW7jbGJADpxdyPSMjJyjpCvZueP2f71ldudSCawBIbV5k2V41g/r8Osmvvcm6Z9B6zHx7qdFh+qbhlmXnAMNfjYcCHnglHROTCjmQeYNvXn/DG8Pqs+elXrv/nAj5dvYVjJ046HZpfKcpSyLeBL4FGxpgdxphRwJPAxcaYzUBv13MREa9bNX82VzaApCplGJwSQ3iVhsw/Up8RL3zBGwu+5Xi2kjwUbbXMIGttgrU20lqbaK191Vq731rby1rbwFrb21p79moaERGPO5J5gJ+WzWVQSn5/+EEpsWz6/ANqN+9E93FP8FP1K7l56hKN4tEVqiISQE6P2uOi8/vCx0VHcmUD+PrjWURElqJ2o2Y0G/QXxk3/hr+8uZxDWccdjtg56gop4mMxMeXOO3kaE1POgWgCy+Z1y1mXfoLZ3+343faYPcvpOWgckD/p2nnUw+zZupHxsz+kcZlDXNepAcm1C1yxHZTUOExEgtq+Xf/lx4WzGNk6hu7Nazsdjvt0sw4R79C69MBnrWXdvJc5vvMn7r+2KUk14gkLC5CqtG7WIeIdWpce+IwxpFw9hlMns3n6oxlk7/gPQ7rUpXfrpKBtL6zkLiIhI7JUFG2vHc3RI4dI++4r3njm31zZpi7Xd2nsdGgeFyB/l4iIeE50uViadrqULrdNZnl2faZ+tI68vDynw/IoJXcRCWkXdb+G7ZU6cv1znzNjwTrSD547vxKIVJYRkZBXv01P6qX2YOMP3/DRjFkkxxv+1K8dZUuXcjq0YlNy9wGttghsWpceGowx1LuoFXWTW3LowD7GTn2MqWO7E1M2yunQikXJ3Qe02iKw6RdwaDHGUCGuCi1v/Bvj3n6FynkZjOrVmIvqJTgdmltUcxcROY/yFePpOuxeKve5nUlrw7h16gK+2rij8Df6CY3cxa+ppOVbOt/nik+oSfw1Izl1Mptp70/laPYv9GpZ1+mwCqXkLn5NJS3f0vkuWGSpKDoMvIO5n7zFSwsXML5XXdo2qUWZKP+cdFVZRkTEDS36DKbHLU/x/qHGjJy8mJfnr/PLe7pq5O4DWm0hElwiIkvRtNOl5LTryfZN67nrlZlMHNXNr/rVKLn7QKjWKkWCXUREJLWTU9hdugxDX5pFSlXLoK6NSYiPdTo0JXcRkZJKqNeEhHoP8+vGddw9dz7JMVkM6dGE2tUqORaTkrv4NZW0fOtC51sraQpXs0krajZpxaH9+7hn9kQeu64xSYmVHYlF/dxFpEgeGN63wJU0j7+e5kBE/i0n5xSr352CPbCde69pTlJiMXvIq5+7iIj/iIiIpP3AO8g6dJCJX6TBh//h2g716JOa5JPj+8/UrohIEIqJrUjqFUNIvvFR0vYn8vy81T45rpK7iIgPlC1Xnha9+vFrfEeGTPmCD1b8yNHj2V47npK7iIgPNWh7MV3HPsGyU8mMePFLXv/0G44cPeHx46jmLiJFopVLntWk02U0bHcxW3/ZxNhpr9A8MYY/92vjsQuhfLpaZu66HVotIyJyHv/d9D3mhzRuu67z779RsQ7Uauf2ahmfJvcCgzBmjLV2mtNxOE3nIZ/Og87BaToP+YpzHvyl5j7G6QD8hM5DPp0HnYPTdB7yuX0e/CW5i4iIBym5i4gEIX9J7iFfU3PRecin86BzcJrOQz63z4NfTKiKiIhn+cvIXUREPMjx5G6M6WOM+ckYs8UYc6/T8fiKMeY1Y0y6MWbDGdsqGWMWGGM2u75WdDJGbzPG1DTGLDbG/GCM+d4Yc7tre6idh9LGmK+NMd+6zsPDru11jTErXZ+N2cYY/7xZpwcZY8KNMeuMMWmu56F4DrYZY9YbY74xxqx2bXP7M+FocjfGhANTgMuAZGCQMSbZyZh86HWgz1nb7gUWWmsbAAtdz4NZDnC3tTYZaA+Md/3/D7XzkA30tNa2AFoCfYwx7YF/AM9Ya5OAg8AoB2P0lduBjWc8D8VzANDDWtvSWpvqeu72Z8LpkXtbYIu1dqu19iQwC7ja4Zh8wlq7DDhw1uargemux9OBa3walI9Za3dba9e6Hh8h/0Ndg9A7D9Zam+V6Gun6Z4GewLuu7UF/HowxicAVwCuu54YQOwcX4PZnwunkXgP49YznO1zbQlVVa+1u1+M9QFUng/ElY0wdoBWwkhA8D65yxDdAOrAA+BnItNbmuF4SCp+NZ4E/A3mu53GE3jmA/F/snxlj1hhjTl+85PZnQo3D/JS11hpjQmIpkzEmBngPuMNaezh/wJYvVM6DtTYXaGmMqQDMBRo7HJJPGWP6AunW2jXGmO5Ox+OwztbancaYKsACY8yPZ36zqJ8Jp0fuO4GaZzxPdG0LVXuNMQkArq/pDsfjdcaYSPIT+1vW2vddm0PuPJxmrc0EFgMdgArGmNMDsGD/bHQCrjLGbCO/PNsTeI7QOgcAWGt3ur6mk/+Lvi3F+Ew4ndxXAQ1cM+KlgIHAPIdjctI8YJjr8TDgQwdj8TpXTfVVYKO1dtIZ3wq181DZNWLHGFMGuJj8+YfFQH/Xy4L6PFhr77PWJlpr65CfBxZZawcTQucAwBgTbYwpd/oxcAmwgWJ8Jhy/iMkYczn5tbZw4DVr7eOOBuQjxpi3ge5APLAXeBD4AJgD1AK2AwOstWdPugYNY0xn4HNgPf+rs95Pft09lM5Dc/InycLJH3DNsdY+YoypR/4othKwDrjRWuu9W/f4CVdZ5o/W2r6hdg5c/71zXU8jgJnW2seNMXG4+ZlwPLmLiIjnOV2WERERL1ByFxEJQkruIiJBSMldRCQIKbmLiAQhJXcRkSCk5C4iEoSU3EVEgtD/A13UxjnuD8fmAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "def plot_svc_decision_function(model, ax=None, plot_support=True):\n", + " \"\"\"Plot the decision function for a two-dimensional SVC\"\"\"\n", + " if ax is None:\n", + " ax = plt.gca()\n", + " xlim = ax.get_xlim()\n", + " ylim = ax.get_ylim()\n", + " # create grid to evaluate model\n", + " x = np.linspace(xlim[0], xlim[1], 30)\n", + " y = np.linspace(ylim[0], ylim[1], 30)\n", + " Y, X = np.meshgrid(y, x)\n", + " xy = np.vstack([X.ravel(), Y.ravel()]).T\n", + " P = model.decision_function(xy).reshape(X.shape)\n", + " # plot decision boundary and margins\n", + " ax.contour(X, Y, P, colors='k',\n", + " levels=[-1, 0, 1], alpha=0.5,\n", + " linestyles=['--', '-', '--'])\n", + " # plot support vectors\n", + " # if plot_support:\n", + " # ax.scatter(model.support_vectors_[:, 0],\n", + " # model.support_vectors_[:, 1],\n", + " # s=300, linewidth=1, facecolors='none');\n", + " ax.set_xlim(xlim)\n", + " ax.set_ylim(ylim)" + ], + "metadata": { + "id": "sIR-MqlGyiXe" + }, + "execution_count": 24, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "model = LinearSVC(C=20).fit(X, y)\n", + "plt.scatter(x1, x2, c = y)\n", + "\n", + "plot_svc_decision_function(model)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 300 + }, + "id": "ZHnsk7cNysk4", + "outputId": "b25d53e8-9952-4881-db62-568dba59c50c" + }, + "execution_count": 34, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.7/dist-packages/sklearn/svm/_base.py:1208: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.\n", + " ConvergenceWarning,\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3hTV7b4/e+WJUtuYBtM7wkhENN7CS10TLFJBkJISAXM3Oklc2fu3Mw75c7cub/pGUwLJYUEEsumQyhO6KGGXk0x1TbuVZZ09vuHbANGgMEqlrU/z8MDSNY5CzBLW7usJaSUKIqiKL5H5+0AFEVRlCejEriiKIqPUglcURTFR6kEriiK4qNUAlcURfFRek/erGHDhrJNmzaevKVPKCoqorCwkPDwcIxGo7fDURSlljl06NBtKWVU1cc9msDbtGnDwYMHPXlLn5Cenk5iYiIZGRn06dOHkSNHYjAYvB2Woii1hBDiirPH1RRKLdC4cWNmzZpF//792b9/Px999BFqf76iKI/i0RG48mB6vZ7Ro0fTvn17rFYrQgiklEgp0enU+6yiKPdTCbyWadeuXeWv9+3bx9mzZ4mNjaV+/fpejEpRlNqoWkM7IcRlIcRxIcS3QoiD5Y9FCiG2CCHOl/8c4d5Q/U9wcDA3btwgISGB48ePezscRVFqmcf5bD5MStlNStmr/Pe/ALZJKdsD28p/r7hQ165diY+PJyoqisTERBITEyktLfV2WIqiPAZpv44sO4DUsl1+7ZpMrk4Clpf/ejkwuebhKFVFRETwxhtvMHz4cE6dOkV6erq3Q1IUpRqkVoyW/Q4ycwwyZw4yYwha/u+QUnPZPUR1djsIIS4BOYAEFkgpFwohcqWU4eXPCyCn4vdVXjsLmAXQqlWrnleuON0No1RDQUEBYWFhAJw/f5527doREBDg5agURXFGy/0ZlG4Eyu56NAjCfo4u5JXHupYQ4tBdsx+VqjsCHySl7AGMBb4rhBh895PS8S7g9J1ASrlQStlLStkrKuq+fejKY6hI3llZWaxYsYJFixaRmZnp5agURalKSouT5A1QAsVLXHafaiVwKeX18p8zgCSgD5AuhGgKUP5zhsuiUh6qQYMGTJs2jfz8fBYsWMD+/fvVvnFFqU1kMQ8Y04KW77LbPDKBCyFChBBhFb8GRgEngDXAzPIvmwmsdllUyiN16NCBuXPn0rZtWzZs2MDKlStVEleU2kKEQ0BjJ0/oILCfy25TnX3gjYEkxzQ3emCFlHKTEOIAsEoI8RZwBfiOy6JSqiU0NJTp06dz8OBBpJSU/xspiuJlQgio9ztkTjyOaRQN0IMIQoT9xHX38eSorVevXlLVQnGvkydPkpqaypgxYwgMDPR2OIri16T1DLLoA7BdgsDuiJC3EAFNHvs6D1rEVCcx65js7GyOHDnC5cuXiYuLo0WLFt4OSVH8ljA8iwj/P7ddXxXZqGOef/55Xn/9dex2O0uWLOHrr79G01y371RRlNpDJfA6qHXr1sTHxxMdHU1KSgqpqaneDklRFDfw6BSK3W735O38mslkIi4ujt69e9OyZUsAbt++TYMGDdRip6LUER4dgWdkZLBr1y71kd6DKpJ3dnY28+fPZ9WqVRQXF3s5KkVRXMGjCdxkMrF161aWL19Obm6uJ2/t9yIiIhg+fDjnzp0jISFBTavUYdJ2Aa3gfbSCfyKtZ70djuJGHt9GuHjxYjZs2IBOp2P8+PF07tzZY/dX4NatWyQmJpKZmUm/fv0YPXq0mlKpQ7TCxVD4T8CK4yRgIIS8hS7sB16OTKmJmtZCcZlu3bqpEqle1KRJE2bNmkXfvn3R6XQqedch0pYGhf8ASgE7jsMjpVD0AdJ63rvBAdKe4dgXLavWB1GelFf2gVeUSN21axdfffUVaWlpxMbGojrWe4bBYGDs2LGVR+/T0tK4evUqAwYMUAndl1m247z+hhVZ+iXC0N7TEQEgtXxk7g+hbD8IR7NuGfouupBpXomnLvHaNkKdTsfgwYN566230Ov1LF++nC1btmCz2bwVkt+pSNYnT55ky5YtLF++nLy8PC9HpTw5HeDsDVgghPfO7DmS9zdAGcgix4+CPyItu70WU13h9X3gzZs3Z/bs2fTo0YPdu3ezePFiVSLVw8aMGcOkSZMq27edOHHC2yEpT8I06gFPBIBpjEdDqSDttxwjb6xVnilBFi32Rkh1itcTOEBgYCATJkzg5ZdfriyR+s0336jqeh4ihKB79+7MmTOHhg0b8sUXX3Du3Dlvh+U20nYVrXABWsHfkGVHvR2Oy4iAJlDvPcAImMp/GCHsZwh9a+8EpWWDeEBNHvstz8ZSB9W6YlaFhYWsXr2a8+fP8/TTTzNp0qTKRgaK+2maxtGjR+nWrRtCCEpLSzGZTN4Oy2W04mTI/zWOBT4bCBOYYhD1fl9n5v+lPR0s20BqYHoBEdDUe7HIUmRGv/L62HfTQ/DL6Or92itx+ZoH7UKpdQkcQErJwYMH2bx5c+XovGPHjh6IULlbQUEB8+fPp0ePHgwdOtTn27dJLQ+ZMQiw3PuECEKEJyCMAxw7ObQM0HdA6NTAwRW0oo+g4P8BJeWP6EGEIRquQTitma1UVWu2EVaHEILevXsze/Zs6tevz8qVK1mzZg1lZWr7kScZjUY6dOjAzp07Wbx4Mbdv3/Z2SDVj2QXOFvNkCbIkCS3rFeTtGGTOLGTGALTCf6lpPBfQhbyKiPiXo5FBQFsImoZouFolbxeolSPwu9ntdlJSUti9ezcRERF+XSJVSoks+QKKEsB+GwzPIsLeRQT2dDxvPQXW06BvBYZeLpsSOHPmDGvWrMFqtTJq1Ch69XLdtT1Jlm5C5v2nYxfEPQToGoOWxb2LbUGI8D8hTGM9GKXvkNIC6BDlWwMV9/GpKRRnrly5gtlspqCggMGDBzN48GB0ulr5AcJttMJFUPQ+yJK7HjVB5FIofB/KDoEo/zvRNUM0+Bihi3TJvQsKCli9ejUmk4kpU6b4ZgLXCpEZA7nzUb6CCcfBl6o7JQBDF3QNvnB/cD5EWs8g834FtpNAABhHIOr/FqGr7+3Q6iyfT+AApaWlbNiwgWPHjtGiRQvi4uKIjHRNgqrtpCxDZvR1MnoEdC1By8RxAq+CHozPo4tY4MIYJDabDYPBwO3bt8nKyqJDhw4uu74nyNIUZO4PQAiQdkCAaTJY1jpZaAMCWqCL2u7xOGsrac9E3h4NsvCuRw2gfwbRwOyTb+y+wKfmwB+kokTqiy++yO3bt5k/fz5Hjhzxj3lK7bZjV4HT565xb/IGsIFlJ1K6rkyBEAKDwfFxedeuXXz66aesW7fOp9YmhGkYotHXiLBfIcJ+hmi4FlH/PcDZNIAeAp/3dIi1mixZCfcdhbeC/RJYj3kmBq0YafkaadmDlE4+NfkRn2ypFh0dTcuWLUlOTmb16tWcO3eOCRMmEBwc7O3Q3EcXifNj0uB4H35ArXVpc344r4ZiYmIICQlhz549XLp0ibi4OJo3b+76G7mB0EVA8L09uGW930DeL3G8EZYXgRIhiNC5XoiwFrOdx9GktyoB9itAV7feXivZAHn/CSIAx7+THiLmV64D+RufGoHfrX79+rz22muMGjWqskTqhQsXvB2W2whhguBXgKAqz5gcq/vO3ov1zyB0oW6JR6/XM3LkSGbOnInNZuODDz7w6RK1uqDxiMgPwTga9J0h5HVEw/Vqp0RV+q441gyqkHbQu3c6TdrSIO8XQIljCkcWgcxD5ryN1Pyzxr1PzYE/yN0lUvv27cuIESMqP+rXJVLakYXvQ/EykKWgawRhv0IEdkdmxYGWj2OBzgjCgIj8BGFw//750tJSdu3axdChQ9Hr9Ugp1VxoHSW1fGTmKJC5OA5DARghsA+6yA/cem+t4B9QtACoUi9JhCDq/Q4RFOPW+3tTnVjEfBir1cq2bdvYt28fUVFRTJkyhSZNmrjlXt4mpYbjMIqpMlFKrQhZshqsR0HfDhH0IiKggcdjs1gsLF26lH79+tG1a1eVyOsgab+BzP8TlO0EjBD8IiL0+4gHHZl3ES3vd1DykZNnTIh6v0QE193qhnU+gVdITU0lOTmZ4uJihg8frkqkelhhYSFffPEFly9fplOnTsTExNTttQnFY6RlJzL3e052Cxkd0136Vl6JyxP8JoEDFBcXs3btWk6fPk2bNm2IjY2lfn21R9VTNE1jz549pKSkEBwczOTJk3nqqaeq/XqpFTvmOHUNEcJnl2kUF5NSQ+bOcVQ3rEjiIgiCXkZX7xfeDc7N/CqBg2PP8rfffsvGjRvR6XTExMQQHR3tkXsrDjdv3iQxMZHQ0FBmzpz5yE9CUitG5v8aSjfjOB1ZH8LeQxc00jMBK7WelHYo3YQsXQcEIoJfgsCBdf5Ttt8l8ArZ2dkkJSVx9epVunTpwrhx4+pUdb3azmq1YrFYCA0NpbCwkKKiIho3dr6zQ8uJd9QruafYlAkR+REi0L3b0xSlNqsTB3meRGRkJG+88QbDhg3jxIkTJCQkcPnyZW+H5TcMBgMhIcFIKdmyZQsLFy5k79699x2+cpRArZq8ASzIooUei1dRpFaMVrQcLXsmWu6PkWVHvB3SA9X5BA6O9m1DhgzhzTffJCAggOXLl7N161bs9gccflFcQtouoGVNR6Z3RKZ3YUTfPTz9VEs2b97Mhx9+SH5+/p0vtt+q7JdY5SrlB0QUxf2kVuTYklvwFyjbC6XrkdmvoxV95u3QnPKLBF6hRYsWzJkzh+7du7Nr1y7Vvs2NpD0TmTUVrIdwnJizEKLbyHdGfcnEiRO5du0a8+bNIy0tzfECfTtweixaD4beHoxc8WeyeCXYb3CnNIUEShw9PGvhYSG/SuDgaN82ceJEpk2bRl5eHgsWLGD//v3+UU/Fg2TxZyAt3Hv8vwxhO0H3zkHMmTOHNm3a0LBhQwBH84SQN7j3pKnO0Wwh9B0PRq74NcsW7q8rhOPovvW4x8N5FL9L4BWeffZZ4uPjadOmDRs2bGDFihUUFhY++oVK9dhO47RmhggA2yUaNGjAtGnTCA4Oxm638/nnn3M1ewrU+28IeApEJBhHOyrcBTTzePiKn9JFPOAJO+jqeTSU6vDbBA4QFhbGK6+8wrhx47h06RLz5s3jzJkz3g6rbjBE42iuW4W0g/7pex4qKCjgxo0bLFu2jJS94cjIdega70MX8Q/vNeNV/JIIftWxt/weOtA1Bf2zXonpYer8NsLqyszMJDExkVu3btGzZ09Gjx5NYKB7jwb7GmlPd8wR2s6DoTsi+EXEA0YlUssur5lRwJ1pFCME9kIXufS+r7dYLGzevJnDhw/TrFkz4uLiKqdXFMWTtMIPoPDv5YvqGuiiEBFLEPqWXoupxvvAhRABwEHgupQyRgjRFvgMaAAcAl6V8r5CwfeozQkc7m3fFhkZ6VMlUt1NWk8is2eULzSWASbQhSAaJCECnNeckbbLyPzfO1bzhRGCpiDCfuKorPgAp0+fZs2aNURERPDOO+/U+QMaSu0ktTxHfXNdOOijvf596IoE/mOgF1CvPIGvAsxSys+EEPOBo1LKhIddo7Yn8AqXL18mKSmJgoIChgwZwvPPP+937duq0m5PKp/XvpsOTOPRhf/FpfcqKCigtLSUqKgoysrKsFqthISEuPQeiuJLanSQRwjRAhgPLC7/vQCGAxXNApcDk10Tqve1adOG+Ph4oqOjSUlJYenSpWRnZ3s7LK+RWhHYzjl5RgPLVy6/X1hYGFFRUQBs2bKFefPmce6cs/srin+r7rDy78DPuVMAuAGQK6WsKMx7DahTcw0V7dumTJlCZmamf7Vvq0oYeGBbn4dMh7hC7969CQ0NZcWKFT7Xvk1R3O2RCVwIEQNkSCkPPckNhBCzhBAHhRAHffHQTOfOnYmPj6dZs2asXr2aVatWUVxc+zb0u5MQgWAczv19I00Q9B1nL3GZRo0a8c477zBgwAAOHTrEggULSE9Pd+s9lScn7deRRR8gCxOQ1rPeDqfOe+QcuBDij8CrONpgmIB6QBIwGmgipbQJIfoDv5FSjn7YtXxlDtwZTdPYu3cv27dvf6ISqb5OarnI7NfBfhko7+hu7I8I/5fbC/lXuHTpEhs2bGD69OlERDxov67iLVpxIuT/BseuIztggOAZ6Or93LuB1QEuqUYohBgK/LR8EfNzIPGuRcxjUsp5D3u9LyfwCne3b+vXrx8jRoxAr/fJ3tCPTUrpWJm3XwXDs4gq+7k9FYMQAiklX331Fd26tqG+YbWjEFZAU0TIG4jAHh6Pyxuk9SRY9oAuDExjELpw78Viz0JmDuX+YmSqmqQruKMa4bvAj4UQF3DMibu3IV4t0aRJE2bNmkXfvn3Zt28fCxcu9JuP9EIIRGBXRFCMV5J3RQwAOTk57N2zjYS/DOXo/veR1qNg+RKZ/QZa8WqvxOYpUkq0vHeRWdORhX9D5v8RmTkEadnjvaAsX5d3ir/vCWTpBo+H4y8eK4FLKb+SUsaU//qilLKPlPJpKeVLUsqqb711lsFgYOzYscyYMYPi4uIHlkhV3CcyMpI5rwoaR9lI3pjDF+sKKSmx4yg89FsecSTBt1m2QekmHA2sbY6fZQky93ve+3ML7i17c88Tai+/u/j35uYaevrpp4mPj6d9+/bOS6QqbhUedICZ3wnmheeDOXO+jI++KCh/E9XAdsnb4bmNLDGDLHH2DJR5aYrSOBTHvHdVgXW6W7y3+XQCv30jm0vHr2Atc1aG1DNCQkKYOnUqEydO5Pr168ybN4+TJ096LZ7qkrIMrXAhWuYYx4/CBfjchyhdJDqdYFDfIN6aXp9RQ4MRQqDZrdi0unzw52Gf9LzzKVDoIqHeH3DUvzHi2LFkhJA3EQbVytBdfLIWSn5WAb+b+ldO7jmL3hCATqcj/u+vM3rmMBdE+eSys7Mxm81cu3aNrl27Mnbs2FrZvk1K6TgWbz3OndKZJjA8h4j8xGcaCcvSrcjcn+CYSqig5+v9LThzPZYpU6bQqFEjb4XnNrJ0MzL359z75wZEKKLRPo/tCnJG2tPLe5pawTgMoW/ntVjqkjrVUu292D9zYudprKVWSgpKKcor5l/fXcyJ3d6tJFjRvm3o0KEcO3aM+fPnc+WK97vJSFsasvhzx398aYGyfWA7yb11j0sdR+XL9norzMcmTCMgdA5gAhHq+NnQmeYd/kBhYSELFy5k3759dW9twjgSTMNx1E7X4RjxmhDhf/dq8gYQAY0RIa8hQt5SydsDfG4EfvNiOm93/jFlJfcu1ggBAyb15jfm2rHn9OrVq5jNZnJzcxk0aBBDhw4lIMDZKr37SCmRBX+C4hU4miPogAAwxUDJZ9w5WFtBIEK/jwj9rkfjrCmpFYDtjKNqnL4NAEVFRaxZs4azZ8/Srl07Jk+eTL16ta+e85NybOk8CmW7QNQD03hEQANvh6W4yYNG4D63gTnrZg56g/6+BC4lZKRleSmq+7Vs2ZI5c+awefNmdu7cSWpqqudLpFq+guLPqNybW/FeXboGx6it6kJYEOicd4yvzYQuDALvbbsWEhLCtGnTOHz4MFu2bKGgoKBOJXAhBAR2c/xQ/JbPTaG069Iau9V23+MGo56eo7p4IaIHMxqNTJw4kalTp5Kbm8uCBQs4cOCAxz7Sy5JV3J+kAamVj8arEHowjXF7XJ4ihKBnz5786Ec/qiwLfOzYMSwWH1usVZQH8LkEHhwWxIz/fhFTyJ1uL3pDACH1Q4j7Ye3crtSxY0fi4+Np3bo169ev59NPP/VM+zanW81wJO/QX0BAWyrmTwlo6zgxpwt1f1weZjQ6vleys7NJTk5m/vz5XL161ctRKUrN+dwceIU9aw7w+V/WkJuRT+8x3Zj27mQim9Tu+hhSSvbv38+WLVsqR+cdOnRw3/2Kzcj8/4/7dysEIxp9gxBGpO0aICGghdeL1ntCWloaZrOZvLw8Bg8ezODBgz2+NqEoj8sltVBqqi7UQnGFjIwMzGYzt27dolevXowaNcot7duktCKz33LUL6EYx5KHHur/GV1Q3ZkqeVwWi4WNGzfy7bff0rZtW1577TW/ePNSfJdK4LWMzWYjJSWFPXv2EBkZyZQpU2jWzPXd16W0g+UrpOUr0EUggqaoRsHlTp48id1up0uXLpXrEiqRK7WRSuC11KVLl0hKSqKwsJChQ4cyaNAgv2/f5g1HjhzhzJkzTJw4UbVvU2qdOnWQpy5p27Yt8fHxdOrUie3bt7Ns2TJycnK8HZbfsdvtpKamMm/ePM6fP+/tcBSlWvxmBH77ehYr/7yab7efIKpVQ6b+bBJdhz7nlVge5NixY6xfvx6AcePG0aVLF/WR3oPS09Mxm82kp6fTu3dvRo0ahcFQtQuRonieX0+hZF7LYna3n1JSUILN6qiYZgw28r3332L0696tn1JVbm4uSUlJXLlyheeee46YmBiCgoK8HZbfsNlsbNu2jX379jFjxgy/6rqk1F5+ncD/Pmchm5Zsx267t9xlSP1gPk9fjCGwdo2yNE1jz549bN++nZCQEGJjY2nXTtWV8KTbt29Xnpq9evUqzZs3V2sTitf49Rz44a3H7kveAJpd40Zq7eumo9PpGDRoEO+88w5Go5EPP/yQzZs3Y7PdfwJVcY+K5J2dnc3SpUtZvnw5ubm5Xo5KUe7lFwk8oonzXoE2q536DcM8HE31NW3alNmzZ9O7d2/27t3LokWL/KZ9W20RERHBpEmTuHXrFgkJCRw7dqzuVTdUfJZfJPCpP5uEMdh4z2OGQD09RnQmPKq+l6KqHoPBwPjx45k+fTqFhYUsWrSobpZIraWEEHTt2pU5c+bQuHFjzGYzSUlJ6u9fqRX8Yg4c4PO/rGH5e6sI0OuwldnoMqQT//XZjwip7zt7fut6idTaTtM0du/ejZSSwYMHezscxY/49SJmhZKiUtJOXyeySThRLXyzdrKUksOHD7Np0yb0ej0TJkygU6dO3g6rVpJaXnmDikAwDkQI4yNf8zguXLjAxYsXGT58OHq9z1VmVnyISuB1TFZWFmazmevXr9OtWzfGjh1bWXVPAa14JeT/3lEiFwCBiJiPCOzjsnts376dHTt20KRJE+Li4upk+zaldlAJvA6y2+3s2LGDHTt2EB4eTmxsLK1atfJ2WF4nbReQt+O4t2UcjiqMUXsQumCX3evcuXOsXr0ai8XCyJEj6dOnjzp8pbicX28jrKsCAgIYNmwYb775JgBLly5l+/bt2O33b5n0J7LEDFidPCMcXYpc6JlnniE+Pp527dqxceNGzp4969LrK8rDqIm7Wqowt4hdSfspKSih1+iutOzQ/IFfW9G+bePGjezYsaOyfVuDBr45z19jWhHg7E1Me3CTixoIDQ3l5Zdf5vz587Rv3x6A/Px8tcCsuJ2aQqmFDm89xnuxfwbAbtMQOsGE2SOZ/ZeZj/x4furUKdauXYvNZmPMmDH06NHD7z7SS8tOZO73QBZXecaIiNqCCGji1vvn5uaSkJBAp06dGDNmjFqbUGpMTaH4iLLSMn4z5f9RWmShtMiC1WKlrKSM9Yu2cmTb8Ue+vlOnTsTHx9OyZUvWrl3LZ599RlFRkQcir0UCB0HgQBAVc90CCILQeLcnb4CwsDD69OnDt99+q9q3KW6lEngtc2T7CZwNmEuLLHy5/KtqXaNevXq8+uqrjBkzhtTUVBISEvyqRKoQAhH+L0T9v4JpAgS9hIhchi50rkfuHxAQwAsvvMDrr7+OlJKlS5fy1VdfqcM/ist5dA5cSomU0u8+0j8Oza498Dmbk3ouDyKEoF+/frRt2xaz2cwnn3ziVyVShdCBaTjCNNxrMbRu3bpybSI/P1993ysu59EReG5uLp9//jklJa5fSKorug17zmnhLVOIkeEvD3rs6zVu3Jh33nmHAQMGcODAARYsWMDNmzddEapSDSaTidjYWGJiYgC4efMmhw8fVqNxxSU8msANBgNnz55l3rx5XLx40ZO39hlBoUH8bOl/EBgUiD5QD8KRvPtN6EW/mJ5PdE29Xs+oUaN47bXXKCsrY9GiRezatQtNe/BoX3GtilK0hw4dYs2aNaxcuZLi4qqLrIryeDy+C2Xt2rUkJiZy+/Zt+vfvzwsvvKCOITuRkZbJ9k93UZhbTL/xPXhu4LMu+QheUlLCunXrOHnyJK1btyY2NpbwcOfVGhXXk1Kyd+9etm3bRlBQEJMnT+bpp5/2dlhKLVerTmJarVa2bNnCiRMniI+PJyys9pZ0rYuklBw7dowNGzYAMH78eDp37qzmaD3o1q1bmM1mMjIymD59Os8884y3Q6qzpNSg7ABot8DQGaH3veYotSqBVyguLiY4OBgpJSdPnuS55567L4lIKUk7cx3NrtG6UwvVFcWFcnJySEpKIi0tjejoaMaPH6/at3mQzWZj//799O3bl4CAAGw2m/o06mLSfguZPQO0LECCtINpJKL+/yFEgLfDq7ZamcArnD59mpUrV95XIvXisSu8F/tnctPzQCcIDgvi16t+TPTAZz0Wc11XUSI1JSWF0NBQYmNjadu2rbfD8jslJSUsXLiQnj17MmDAADVQcREtaxpYj3LvydwgCPspupBXvRXWY3viBC6EMAE7ACOObYdfSCnfE0K0BT4DGgCHgFellGUPu9aDErizEqnt2jzF9FZzKMguvOdrTaEmPr74b+o3VMeUXenGjRskJiaSnZ3NgAEDGDZsmBoNelBJSQlr167l1KlTtGnThtjYWOrXr93NRmo7ac9CZg4BnKSlgKfQRW30eExPqiYnMS3AcCllV6AbMEYI0Q/4X+BvUsqngRzgrRoER8+ePZkzZw6RkZGsWrWK9/+QgK3s/h6Qms3Otk92PumtlAdo1qwZs2fPpmfPnuzevZvFixeTkZHh7bD8RlBQEC+99BKTJ0/mxo0bJCQkcPz4o0/eKg9TygNTnCx1/riPeWQClw4Vw2BD+Q8JDAe+KH98OTC5psE0aNCAN998kyFDhhCqq+c0gZeVWsm6kV3TWylOBAYGEhMTw/Tp0ykoKGDhwoV88803as+yhwgh6NatG/Hx8URFRXH06FH1d18TusY+VTMAACAASURBVGagc1bQzQCm0R4Pxx2qNdEmhAgQQnwLZABbgFQgV0pZkWGvAU7L5QkhZgkhDgohDmZmZj7yXhUlUodNGkKAIYAsmU62zKj8Rg4KNdFlyHPVCVt5QlVLpH788ccUFBR4Oyy/ERERwRtvvMGLL76IEIK8vDwuX77s7bB8jqOkwp/La+IElj8aBAFNEKFzvBmay1QrgUsp7VLKbkALoA9Q7VVEKeVCKWUvKWWvqKioagfWoddT9BjZhQCjjhwyuc4lhEnSrmsbeo/pVu3rPEpJUSkr/5zMnB4/4weD/ottn+xUox7ulEiNiYkhLS2NefPmcfr0aW+H5Td0Oh0mkwmAlJQUli9fztatW/2+1vvjEoG9EQ03QsjbYIqBsF8iGq5D6OrG2YfHWqWSUuYKIVKA/kC4EEJfPgpvAVx3dXD//flP6PNBdz55fxUXs87RsFsQU3813mX7la1lVn446L+4du4GZSWOBgAXj17m2Ncn+dFCxzt0abEFu81OSD3XdXHxFUIIevXqRZs2bTCbzaxcuZLu3burEqkeNm7cOAICAti1axcXLlxgypQpPM5gyN+JgKaIsB96Owy3qM4ulCjAWp68g4AvcSxgzgQSpZSfCSHmA8eklPMedq2a1AMvKCggOTmZK1eu8N3vfpeIiIgnus7dtn2yk7/PWUBpkeWexwNNBv5fym/45PeJHPryKBJo17kVP13yXdp1aV3j+/oiu93O119/zc6dOwkPDycuLo6WLVt6Oyy/cubMGdasWUNZWRnTp0+nXTvfO5CiPJmabCPsgmORMgDHlMsqKeVvhRDtcGwjjASOADOklJYHX6nmDR2klKSnp9OkiaOm882bN2natOkTX+9/X3+frR9+fd/jxuBAQuoHk3e7ALv1zkfW4HpBLD//L8Kj/Hd7V1paGmazmby8PAYPHszgwYMJCPCdAxG+rrCwkO3btzN69GiMRqOq7uknnngboZTymJSyu5Syi5QyWkr52/LHL0op+0gpn5ZSvvSo5O0KQojK5H327FkWLFjA+vXrsVqd9T98tKjmkegN9ycfKaEwt/ie5A1gs9rZvDTlie5VV7Rq1Yr4+Hi6dOnC119/zdKlS8nOVruCPCU0NJSJEydiNBqx2Wx8+OGHnDlzxtthKV7is8e9nnrqqXtKpN64ceOxrzH27RcIqJLAhRAYAvXodPePaspKyrh69vHvU9cYjUZiY2N56aWXyMrKYv78+apEqhcUFxdTWlrKZ599Vjm1ovgXn03gFSVSZ86cSVlZGYsXL2bfvn2PdY2mbRvz35//lHoNwggKM2EMNtKiQzN++sFcnOUiU4iRZ/u0d9GfwPc999xzxMfH06JFi8oSqX7Xvs2L6tWrx9tvv83zzz/PkSNHmD9/PteuXfN2WIoH1YpaKDVVUSK1Y8eOREdHP/br7XY7l46nYQwKpMUzzRBC8PORv+Xk7jOUlTqmZwL0AUQ0qc+S0/8gKMTk6j+CT5NSsm/fPrZu3apKpHrJlStXMJvNhIaG8vbbb6t58TqmVhezcoW7F3MOHTqEwWCoUYnUstIyVvwhkY1LtmMttTFgcm/e+p/pRDSuG/tH3SE9PZ3ExEQyMjLo06cPI0eO9Iv2bbVFaWkppaWlhIeHU1JSQklJCZGRkd4OS3GBOp/AK0gp+eijj7h48aIqkepB187f5NyBC0Q2C+dW6XX27dtHVFQUcXFxNdoppDyZNWvWcOLECcaOHUu3bt3UiNzH+U0CB1Ui1ZPsdjv/++q/2L36AAF6HUho2KIB310yk692b6e4uJhhw4apEqkelpeXR1JSEpcvX6Zjx45MmDCB4GD/O4xWV/hVAq9wd4nU73//+y45/KPcK+mf6/ngl59iKb6zizRAryN6UEd+t/5dVSLVi+5u3xYcHMzUqVNp0aKFt8NSnoBfJnCAsrIyUlNT6dixI3CnC5DiGm90/AHXnGyt1AfqWXl9IWGRoRw9epQNGzag0+kq27cpnnPr1i02btzIlClTKpulKL6lJvXAfVpgYGBl8r5y5Qp/+9vf2Ldvn9qz7CKWIufnt3Q6gaWk7L4SqYmJiSQmJlJaWjfqMfuCJk2a8MYbb1CvXj2klKxfv55bt255OyzFBep8Ar9bw4YNadu2LZs2bVIlUl1k4OQ+6APvr4kW2TSChs3v7ICoKJE6fPhwTp48SUJCQp0okSptV5ElScjSFKR8shPBnpSbm8vp06dZtGgRe/bsUQMZH1fnp1CqklJy6NAhNm/ejF6vZ+LEiZUjdOXx5d3OZ26vd8nPKqC0yII+UI/eEMD/bPgVnZ93/vd6/fp1zGazT7dvk1IiC34PxatABAACMCIafIzQ1+498MXFxaxZs4YzZ87Qtm1bJk+erNYmajm/nQN/kNu3b2M2m+ncuTP9+/f3djg+raSwhC0f7uDY1ydp9nQTYmaPpFGrh5c7LSsrY/PmzRw6dIgmTZr4XIlUWboZmfdzkCV3PSpA1xwRta3Wb9uTUvLtt9+yceNGIiMjmT17dq2P2Z+pBO6E3W5Hp9MhhOD8+fOYTCZVItXDzp49y+rVqykrK2PkyJH06dPHJxKJlv06lO25/wkRjIhcgTB08nhMTyI7O5uSkhKaN2+OzWbDZrNVNpJQag+/XcR8mICAAIQQSClJSUlhyZIlpKSkqK4nHtShQwfmzp1L27Zt2bhxI5988olvrE3cM/K+mw7cX5jTZSIjI2ne3NENMSUlhfnz53PlyhUvR6VUl18n8ApCCGbOnFlZInXJkiVkZWV5Oyy/ERoayvTp0xk/fjxXrlwhISGh9pdINcUAzkaqAgy+2bO1Y8eO6HQ6li1bxrZt29RAxgf49RSKMydPnmTdunXYbDbmzp2rDv94WGZmJmazmZs3b9KjRw/GjBlDYGDgo1/oYVJakFnTwZYKFOPoTqhHhP8VYRrh5eieXFlZGZs2beLw4cM0bdqUF198kQYNnHV2VzxJzYE/hvz8fI4fP87AgQMBx9F8dQzcc+x2O1999RW7du0iIiKCuLi4WnmCUEorlG5Glu0EXRQi6CWEvm603Dt9+jQbN25kxowZNGrUyNvh+D2VwJ9QZmYmK1asYNy4cbRvr2qBe1JFidSCggKGDBnC888/r95IPchut1e2y9u3bx/R0dGEhoZ6OSr/pBYxa8BgMPDJJ5+wYcOGh7ZvO3vgAr8a/z+83GoO747+HSf3nPVglHVP69atiY+PJzo6unKRWbVv85yK5J2dnc3WrVtJSEjg7Fn1PV2bqBF4NdhsNrZt28bevXsfWCL1+M7T/OfY32MpvtPWyhgUyHvmn9F7dDdPh1zrZV7LYucX+7BZbQyY1JsWzzR76NefOHGCdevWoWmaKpH6BKS0IYvmQ9HHIAshsAci7L8Qhmeq9fqMjAzMZjO3bt2iZ8+ejB49ulauTdRVagrFBVJTU0lOTiY6OprRo0ff89zcXu9y/vDF+17TokMzlp7+h6dC9Ambl6Xwz+8uBinR7Bq6AB3TfhHLq//90kNfl5eXR3JyMpcuXVIlUh+TlvsulG4E7qpBI0IQDdYi9NVbX7DZbKSkpLBnzx6aN2/OW2+9pd5EPUQlcBcpLi4mMDAQvV7PzZs3CQoKIjw8nDHGafd1sa+wyfpZ5cdRf5eTnsuMtnMrW9VVMAYF8vfdv+fpbg+v2161ROqkSZNU+7ZHkPYMZOYLQNX96QYImoau/q8f63qXL1/GYrHQoUMHR0kBKdXahJupOXAXCQ4ORq/XI6Vk9erVJCQkcOzYMeo3dF6mMyQ8WCXvu+xdewhdwP3fdlaLla9WOjnZWIUQggEDBvDOO+9gMpn4+OOP2bhx40PXJvye7SIIZ9MdVrAee+zLtWnThg4dOgCwf/9+li5dSk5OTg2DVJ6ESuBPSAjB1KlTady4MWazmdajG6IPujdRG4ONvPijGC9FWEu56BNfkyZNmDVrFn379uWbb75h4cKFqkTqg+hbgyxz8kQAGDrU6NIhISFkZmYyf/58vv32W1Xd0MNUAq+BiIgIXn/9dYYPH05IayPhgwLRBQmCQk0YgwKZED+K6b+a4u0wa5V+E3qi2bX7HjcYDQz9zoDHupbBYGDs2LG8+uqrlJaWsmjRInbv3l0rkoi030AWfYws/hRpz/RqLCKgKRiHAMYqzwQiQt6q0bWjo6OZM2cOTZo0ITk5mc8//5zi4uIaXVOpPjUH7iLXr1/n4MGDjHxhFNk3c2nQLIKgEFUUyJmNH2zj/e99gNQkmibRGwKY8pMJvPHbaU98zeLiYtauXcvp06e93r5NK1oGBX/BUWIWQEK936ILjvVKPABSliEL/heKPwcsoH8WUe83iMDuLrm+pmns3buXlJQUZsyYQZs2bVxyXcVBLWJ6UGFhIWazmbFjx/pUiVRPSr+SyY4v9mErszFgcm9ad6z5Scu7S6TqdDpiYmKIjo52QbSPEYPtEvL2RO5fMDQ6yswGePdUo+P/uw0hDG65fmFhYeVhn/Pnz9O2bVufq/VeG6kE7kFXr17ls88+w2Kx+FSJ1LoiOzsbs9nMtWvX6NKlC+PGjfNYiVStYB4UvQ/YqjxjQtT7BSJ4ukfi8LacnBz++c9/EhUVxZQpU2jcuLG3Q/JpaheKB7Vs2ZL4+HjfK5FaR0RGRvLmm28ybNgwTpw4QUJCggdLpNqA++f4QYKsmtTrroiICKZPn05xcTELFy5k7969tWJtoq5RI3A3klJy8OBBvvzyS6Kjo4kZH4MuQKdG4x507do1zGYzOTk5DBw4kGHDhrl1W6e0nkFmfYd7DswAjimUTYiA5s5fZ89ClnwB9ssIQy8IGo8Qvr+GUlRUxNq1azlz5gzt27dn+vTp6vv/CagpFC/asXYPy375GddO3UIXBDFvj2L2n2diCHTPPKRyr6olUqdMmULDhg3ddj+t4K9QtAwow/EhVw9hP0QX8qbTr5fWk8jsGeUjdAsQDAGRiAZfIHSRTl/jS6SUHDlyBJvNRp8+fbwdjk9SCdxLLp1I43v9foml2IKUkhtcRhhgQswE/mR+z9vh+ZUzZ86wZs0arFYro0aNolevXm4bDUrraWTpl4AOETQOoX/qgV+rZY4D+4Uqj+ohaCq6+nXve+TUqVOcPXuWcePGYTRW3dqoOKPmwL1k5f8mYy11HKIQQhBJI2xWG+a1iaw1O4ozKZ7x7LPPEh8fT+vWrVm/fj0rVqygsLDQLfcSho7own6ALux7D03eUssGu7P5eRtYNrslNm/Lzc3l2LFjJCQkkJaW5u1wfJpK4G526XgamnbnU06QCKE57QgPbMCm9ZtYsmSJWuD0oLCwMF555RXGjRvHpUuXakGJ1IdNowU6ao1Y9iKLPkCWbkI6PVHpWwYMGMCbb76JEIKlS5eyfft21b7tCakE7mbP9Gx3X+2PABFAlGzKjNdnoNPpVBdwDxNC0KdPH2bPnk1YWBiffvopa9eupazM88lR6MIgsCdQdWHVBEGxyKzvIHPjkQV/Qeb9JzJzONJ2zeNxulrLli2ZM2cO3bp1Y8eOHVy4UHUKSamOR86BCyFaAh8CjQEJLJRS/kMIEQmsBNoAl4HvSCkfWtHGH+fAr52/SXzPn1NaeGdXgjHYyMhXB/ODhFlIKRFCUFZWxtatWxk6dKgqkepBd5dIjYyMJC4urrJLu6dIezoy+xXQskBqgITAPqBvD8Ufc++hIB0YeqBrsMKjMbrTtWvXKlvmZWRkEBUVpXaqVPHEi5hCiKZAUynlYSFEGHAImAy8DmRLKf8khPgFECGlfPdh1/JUAi/KKyLzWjaNWzckKDTI7fd7lAtHLpHw42Wc3neOkPAQ4n4wju/8bNI929lSU1NZsWIFQUFBTJ48WZVI9bDLly+TlJREQUEBQ4cOZdCgQR4tkSqlBmV7wX4dDNEIQye0jEGgZTj5aj2i0X6Erm61N8vJyeHf//437dq1Y9KkSYSEhHg7pFrDZbtQhBCrgffLfwyVUt4sT/JfSSkfWtrM3QncbrPz/veXsHlZCnqDHrvNzuTvjeXtP77iE+/ot27dwmw2k5GRQd++fRkxYgQGg9pq6CmlpaWsX7+e48eP07JlS+Li4oiIiPBaPFrGANBuO3nGgGi0F6FzXsLYV0kp2b9/P1u2bMFoNDJp0iSeeaZ6HYPqOpckcCFEG2AHEA2kSSnDyx8XQE7F76u8ZhYwC6BVq1Y93Xkibsl/rcD89w1Yiu985DQGG3nj99OY8kPfKOtqtVrZtm0b+/bto3v37kyaNMnbIfmd48ePs379ejRNY9y4cXTt2tUrAwAt/3dQvBLHfvIKAvTR6BomejweT8nIyCAxMZH09HR69+7NuHHjHvn3L7ViR7GukmSgDAL7Iuq9h9A/vEGIr6hxAhdChAJfA3+QUpqFELl3J2whRI6U8qHDFXeOwKWUTAp/jZKCqifgoEGzCD67ttAt93WX1NRUIiMjiYiIwGKxEBgY6BOfIuqK3NxckpOTuXz5Mp06dSImJsbjaxNSK3Cc6tRugSwCgkAYEQ0+fejWxLrAZrOxfft2pJT3tS90Rst6BaxHufNmJ0CEIaK+rBOHoR6UwKtVJkw4SpclAp9IKc3lD6cLIZreNYXibLLOY+w2+z0LhXfLz/K9bXpPPeX4DyqlJDExEavVyuTJk71WItXfhIeH89prr7F37162b9/O1atXmTx5cuW/iycIXRg0XAOW7UjrCURASzCNq3Nz387o9XpGjRpVWT8lLS2NK1euMHDgwPvWJqT1FFhPcO8nFQmyDFm8EhEa77nAPeyRqzTl0yMfAKellH+966k1wMzyX88EVrs+vOrTG/Q0f0Bn8/Y92nk4Gtfq2LEj169fJyEhgRMnTrj9fjarjW82HGbrxzvIuOpsDtY/6HQ6Bg4cyNtvv43JZOKjjz5i06ZN2GyeK0olhAFhGo0u7CeI4O/4RfK+W8WnzjNnzrBt2zaWLVt2f/s220UQzlJZKVhPuT9IL6rOLpRBwE7gOHfKrP0S+AZYBbQCruDYRpj9sGu5exHz0JajvBf7Z8pKypAShE4QaArk/7a9R8e+7d12X0/Izs4mKSmJq1evurVE6sVjV/j5yN9itViRmsRmtTPlh+N564+vuPxevsRqtbJlyxb2799Po0aNVIlUD5NScuzYMTZs2ADAuHHj6NKlC0IIpPUUMutloKTKq0wQGo+uDozA/aYWypn95/nk94lcOXWNp3u0ZcZ/vUi7Lq3dek9P0TSNnTt3cvjwYWbPnu3yOVlN03ildTy3r9/7PmwKMfLrVT+hz1jXdG/xZefPn2f16tWUlJQwYsQI+vXrp9YmPCg3N5ekpCSuXLnCtGnTePbZZwH/nQOvcwncH1itVgwGA5qmceDAAXr16uWSEqmnvznPuyN/S4mTtYT+E3vx2+SHbvP3G3eXSG3bti2xsbHUq1e3tvTVZpqmcfz4cTp37oxOp6O0tBRjoObYhVKa7Gjg7Ce7UNRReh9UsTf8/PnzbNy4kcWLF5OZWfPGuZZiC0LnfDRZXFD146n/CgkJYerUqUycOJHr168zb948Tp486e2wfJLUctAKF6Ll/hCtcIGjuNcj6HQ6unbtik6no6CggH/9619s2boLLeTX6BofRdfkNLrIZXUmeT+MSuA+rEOHDkybNo28vDwWLFjA/v37a9T15Nm+7Z12jDcFGxk+bVBNQq1zhBD06NGDOXPm0LBhQz7//HOSkpKwWKr2wlQeRNouIzNHQeH7ULoBCv+NzByFtF2u9jVMJhOdOnViz549LFq0iIwMr26G8zg1hVIHFBYWkpyczIULF+jTpw/jxo174mtt/2wXf30rAZvVht2mYQox0q5La/5v+28INKpToc5omsaOHTvYsWMH9erVIy4ujlatWnk7rFpPy34DyvbgKLFUQUBgf3SRyx7rWufOnWP16tVYLBZGjBhB375969TahJoDr+OklBw4cIAWLVrQrFmzyiJZTyLtzHU2LN5Kbnoe/Sf0YmBsH/QG1Vn8Ua5evYrZbCY3N5dBgwYxdOhQt7Zv83XarY6AszKyAYjGpx77+7eoqIg1a9ag1+t58cUXH316056BLP4Iyr4FfXtEyOsIfe1841UJ3M+sW+doFjFmzBgCAwO9HY7fsFgsbN68mcOHD9OsWTPi4uLc2r7Nl2npXUE6W1sxoWty7ImuKaXEZrNhMBjIysoiPT2dTp063f91tsvIrBdBluLYuaIHYUBELEME1r7dVmoR04V2Ju5jbu93mdZiNn94+W9cv3DT2yHdQ0qJyWTiyJEjzJ8/n2vXfL9+tK8wGo1MnDiRqVOnkpOTw4IFCzh48KDqyO6MaRJQdXARCEFPXv9HCFG5yL9nzx5WrVpFcnLyfWsTsuBPIAu4s+3QBrIEmf/rJ763tGcibZeQ0nPNKdQI/DF9/pc1LH9vVWXBLJ1OYAo1Mf/w/9G0Xe062HF3idQhQ4bw/PPPe7REqr8rKCggOTmZ1NRUnnnmGVUitQqpFSFz3gbbKRxjSQ30HRERHyB0Nf97stvtfP311+zcuZPw8HBiY2Mr1ya09G4gi528KgDR+DBCVL8MtbRnIXN/ANZvgQDQBSHq/Q/CNLzGf4YKagrFBSwlFl5s9BalRfe+m+sCdIx8bQg//WCulyJ7sIoSqWfPnmXu3LmEh99XMFJxI1Ui9dGk9QTYUkH/FMIQ7fLrp6WlkZSURG5uLtOnT6d9+/ZoGQNBc7b1NhDR+FuEqP6aj3Z7EtjOA3eXWDAhGnyBMLjm31pNobjAjQu3EE5GsJpd4/jO016I6NFMJhNTpkwhPj6e8PBwpJSkpqaqj/QeIoSgb9++zJo1i7CwMFasWMG6deu80r6tthKGaETQJLckb4BWrVoxZ84cBg0aRJs2bQDQTC8DVUtRBEJQzGMlb2k9DfbL3Ju8AazI4uVPHnQ1qQT+GCKbRmArc17IqHHrKA9H83gqGhOcPXuWjz76iFWrVlFc7OwjpOIOjRo14u2332bgwIEcOnSIBQsWcOPGDW+H5TeMRiMvvPACBoOBsrIyFn0iOHSmC1IGgggDTBDYCxH2mHPgWjr39zMFsIPd/WtPKoE/hvoN69FvQk8CTffuhzYGBzL9l3FeiurxPPPMM4wcOZJz586RkJBAamqqt0PyG3q9npEjR/Laa69htVpZvHgxO3bsQNPuPzyluI/VaiUkJIz1Xz3Nyu1zKTb8AdFwteP05uPOveujHUf372OEwAEuifdh1Bz4YyottvC3WfPZmfgNugAdgSYD8X97nZGvDvF2aI/l1q1bJCYmkpmZybBhwxgyxLfi93UlJSWsX7+eEydO0KpVK2JjY73avs3fSCnZt28fW7duJSgoiEmTJtG+/ZNVLNXy/wjFn3GnGqIBdJGIhutd1vZOLWK6WFF+MQXZhUS1aECA3jcPa1itVrZu3cpTTz2lFta8QEpZ2b4N7i2RqnhGeno6ZrMZo9HIG2+88UR/91JKKF2DLFoGMh+MLyBCZiMCGrgsTpXAlUfavXs3Qgj69++vkogH3V0i9bnnniMmJoagoOpvY1NqxmazUVpaSmhoKEVFReTn59O0aVNvh3UPtQtFeSgpJTdu3ODLL7/kww8/JD8/39sh+Y3w8HBmzpzJiBEjOH36NAkJCVy8eNHbYfkNvV5PaKij09HWrVtZvHgxu3bt8om1CTUCVypJKTly5AibNm1Cp9MxYcIEnnvuOW+H5Vdu3LiB2Wzm9u3bDBgwgOHDh6PXqzo0nlJSUsLatWs5deoUrVu3JjY2tlacnVBTKEq1ZWdnYzabuXHjBv/xH/9BZKTvdzTxJVarlS+//JIDBw7QuHFjpkyZQqNGjbwdlt+QUnL06FE2btwIwMsvv1y5f9xbVAJXHoumaaSlpVV+4+bk5KhdEh5W10uk1nY5OTl8+eWXTJgwweXtCx+XSuDKE0tNTeXjjz9WJVK9oKJE6tmzZ2nXrh2TJ09W7du8QNM0EhMT6dWrF23ber7Tj1rEVJ5YixYt6NatGzt37uSDDz7g9u3b3g7Jb4SEhDBt2jRiYmK4evUqCQkJnDp1ytth+Z2CggJu3kxl+cIZbF71FGXXu6Hl/SdSy/VqXGoErlTb6dOnWbNmDTabjXHjxtG9e+2rm1yXZWVlYTabuX79Ot26dWPs2LEYjUZvh+UXpCzDcmM0X26/wKGjxTSOCiBufASNGrdDNFyHEO79VKpG4EqNdezYkblz59KqVSuf2GJV1zRo0IA333yTIUOGcPToUebPn09aWpq3w/IPlu0E6nOJGRnEtMlhFBZJzOtzkPabYNnhtbDUCFx5bBXfM0IITpw4gcFgoEOHDl6Oyr/c3b7t+eefZ8iQIWptwo20gn9A0b8rf19YpFFSohHV0Ig18D8oM7xGWFiY2+6vRuCKywghEEJU9uH89NNPVYlUD2vZsiVz5syha9eu7NixgyVLlpCVleXtsOosoW8L4s5OlNAQHVEN9SBMbN2Rzbx58zh92vMlpdUIXKkRm81GSkoKe/bsITIykilTptCsWTNvh+VXTp06xdq1a7HZbIwZM4YePXqo7YYuJqUFmfkCaFncacQcALrGZIlPSUpay40bN+jevTtjxoxx+dqE2kaouNWlS5dISkqisLBQHf7xgvz8fJKTk7l48SIdOnRg4sSJqn2bi0n7TWTer6Fst+MB42BEvd8iAhrf074tIiKCl156yaX1VFQCV9yupKSEM2fOVO5OKSsrIzCwatNaxV2klHzzzTds3boVk8lUoxKpyoNVNC12tvPkypUrrF+/nmnTprl0EKMSuOJRN2/e5KOPPmLUqFF07dpVfaT3oIyMDBITE0lPT6d3796MGjWqslO74n5Syso1opSUFLp161bjZK4WMRWPCgoKIioqiuTkZL744gtKSkoe/SLFJRo1asQ777xD//79OXDgAAsWLODmzZveDstvVAxWcnNz2b9/jThECwAAEhFJREFUP/Pnz+fw4cNu6UOrRuCK22iaxp49e0hJSSE4OJjY2FjatWvn7bD8ysWLF0lOTqawsJDhw4czYMAAdE4acyvukZeXR3JyMpcuXaJjx45PXFdFTaEoXnPz5k0SExN57rnnGDZsmLfD8TslJSWsW7eOkydP1qoSqf5CSsnevXvZtm0bUVFRzJ49+7GnFFUCV7zKarWi0+kICAjgypUrmEwmGjdu7O2w/IaUkmPHjrFhwwYAxo8fT+fOndXahAfdunWLkpIS2rZti6Zp2O32aq9NPCiBq0rxikdUfKNKKdm0aRMZGRmMGDGCfv36qSTiAUIIunbtSuvWrTGbzZjNZs6dO8f48eNV+zYPadKkSeWvd+3axfHjx4mLi6vRdsNHToYJIZYIITKEECfueixSCLFFCHG+/GdVKFqpFiEEM2bM4Omnn2bz5s189NFHqn2bB4WHh/P666/zwgsvcOrUKRISErh06ZK3w/I7zZs3p7S0tMbt2x45hSKEGAwUAh9KKaPLH/szkC2l/JMQ4hdAhJTy3UfdTE2hKBWklBw+fJhNmzah1+t555131OEfD7tx4waJiYlkZ2fTv39/1b7Nw4qLi1m3bh2nTp2iTZs2xMbGUr9+fadfW6M5cCFEG2DdXQn8LDBUSnlTCNEU+EpK+chqRiqB///t3XtwVFWewPHvL510JyEg4c0kEwTCQxYiIiBxBSVAiCCTmFVqUBZWsSDBQWd2LNdxZtZ1SndHa0fXxxhUZBcqoFKkIbwUDQYhUUAeQmB4BUkECkyQBMirO905+0d3mBDCw9Cv230+VVT63n7c3yG3f7n33HN/R2vtxx9/ZPfu3UycOPHS2FndpeI7drudzz77jJ07d9KrVy8yMzP19G0+1Dx928aNG5k5cyZxcXFtvs7TCbxaKdXZ/ViAqublNt47F5gLkJCQcGd5efkNNUwLPdXV1Xz00UdMmTKFhIQEf4fjFRUnzrJp2VZqq2sZdf8dJI0bEhB/sA4fPsyaNWuw2WxMmjSJ0aNH+z0uperBcRTCuiKmthNbsLDZbJfqp+zdu5dBgwYRGRl56XmvJXD3cpVS6rr94PoIXLuW06dPs2LFiqAtkbrVup1X/vlNnM4mHHYHkR0sjJw8nD+u+NeAGJtdU1PDmjVrOHLkCImJiaSnp3u1ROq1NNUuhYt/ATGBaoSIJCT2bSQsuC+3VVVV8dZbb9GxY0cefPDBS3PSevpOzB/cXSe4f1a0N2BNa9a7d2+ysrIYPnx40JVIbaiz8erst7DV23HYHa51tTZ2bvyW4tXf+Dk6l5iYGGbMmMEDDzxAeXk5OTk5fimRqmxFruRNPagawAaNe1BVT/k8Fl+LjY1lzpw5mEwmlixZQkFBAU6n86qvb28CXwPMdj+eDeS383M07TIWi4X09HSmT5/OuXPn+Prrr/0dkkeUbPkbYaYrv24NtTY25fpvRpfWRISRI0cyb948OnfuzMcff0x+fj42m81nMajaRUDr0gsOaPzWNQNOkIuLiyMrK4sRI0ZQVFTE0qVLr/ra615yFpEPgfuAbiJyEngB+DOwQkTmAOXAdI9ErmluQ4YMIT4+/lK/4NmzZ4mKijJsidS2knez8IjA6ybq1q0bc+bMYfPmzRQVFVFeXk5mZibx8fHe37jzKif0EuGqx23yXJnWQGU2m5k2bRoDBgy45kQp103gSqkZV3lqQnuD07Qb0alTJ8B1pd5qtXL+/HnS09MZOHCgnyP76ZLubftiZWQHC5MfC8zyAiaTiQkTJpCYmMiqVatYvHgx48aNY9y4cd7ts7eMg7pyoLHVE00QHlrlcQcPHnzN5/1/5UTTrkNEyMjIICYmhuXLl7N+/XoaG1t/uQNbhDmCF1c9S2QHC1ExkZgjIzBHmZn8L+MZOXm4v8O7pj59+pCVlcWwYcPYvHkzixcv5ty5c17bnnR4AsI6AS1vM4+CmH9DxLMz3RidroWiGYbD4eCLL77gq6++olu3bsycOdNwRZlqz9dSvPobas/XcWfq7SQMNtbwuAMHDrBu3TqcTidpaWnccccdXhluqJxnUbUfgL0IwnogHeYglrs9vh2j0MWstKBx/Phxtm/fzsMPP+yTYYbHS8rJfSmP0t3fkXBbPI/+4Z8YPDq0TuVbajl92+DBg5k2bZphr00YhU7gWlCqr69n/fr1TJw40StH44d2HOWZlBexN9hRTQoRMEeZ+Q/rs4xMvd3j2zMKpRTbtm2joKCAqKgoMjIySExM9HdYQUvPyKMFpYqKCo4ePUpOTg779u3z+KwnC3+7FFudDdXk+lylwFZn569PfeDR7RiNiJCcnMzcuXOJjo4mNzeXDRs2GO7ahNHpBK4ZWp8+fcjOzqZnz55YrVby8vI8On3b0V3H2lx/qvQMdptOVj179mTu3LkkJyezY8cO3nvvPT19mw/pBK4ZXusSqZ9++qnHPrtj17ZvJY+MthBh1pX7AMLDw5k8eTKzZs3ySIlU7cbpPdCPnE4nW1duoyB3CxGWcNIeS2H0lBF+LyJkRGFhYYwdO5b+/ftfqt9RW1uLxWK5qRKp05/5BYt//yG2ur/fiWiJNpP+ZJr+PbXSr18/5s+fz9q1aykoKKC0tPSaJVK1m6cvYvqJUooXHnyVPZtKaKh1JYfIDhZSZ9/Hgref8HN0xqeUYunSpdTX199UiVSlFB88v5xVb2zAFGHC0eggdda9LHj7CUzhgXcHZSBoLpG6YcMGwsLCLk3fprWfHoUSYHZvKuGFjFdpqG24bL05ykzOrlcNNz44EB05cuRSHY+bLZFaX1PPmbJKusd3JaazHjJ3I6qqqrBarZw4cYJhw4YxderUy0qkajdOj0IJMN98uueK5A2Agt0F+3wfUID7bl85L/3ydeb8w2/4r5lvUHbgxHXfM3DgQLKzs+nXrx+ffPIJubm51NbWtmv7UTFR9B2aELTJu7ryPId3HqOmun3/P22JjY3lscceIyUlhQMHDpCTk0NZWZnHPl/TfeB+07FLDBHmcBrdpUWbmcLDgjZJtNf+ooM8l/YS9oZGVJPi5OFTfLX6G17d9AK33XXtG2qaS6Tu2rWLHTt26CnDWmm0N/KXOTlsWbmNCEs4DruDaVmpzP3vWR6pdxIWFsa4cePo378/VquVJUuWcPfdd5OSkhJUtd79RR+B+8nER8e2XaFO4O70Ub4PKIC9teADbHX2S2Oxm5oUDXU23vn1/97Q+5tLpGZlZWGxWHA4HBQWFvq0RGqgev/ZXIqs22m0NVJ3oR57QyPr3itg1ZsbPLqduLg45s2bx4gRIyguLub999+nsrLSo9sIRTqB+0mPhO48l/sUUTGRRHeKIrpTFB27xPDyuueJ7hjl7/ACRlNTE9/tbXsavquN0b6a5iPK48ePs2XLFhYuXMiJE9fviglWTqeTDYsKsNVfXq7UVmcj77V1Ht9ec4nUGTNmcOHCBd5991127Njh8ZuvQom+iOlntnob+4sOYQo3MfSewYRH6FP81tI7z6LuwpU359zSrSMrKxa36zO///77SyVqm0ukhtopfUOdjfRbZtHkvHK8tiXazLqaZV7bdk1NDfn5+Rw9epTExMRL1Sa1tumLmAHKEmXhzkm3M3z8UJ28ryLjV/djiTZfts4SbeHBp6e2+zMTEhLIzs4mKSmJL7/8knXrPH/EGegioy38rH/PNp8bkjzIq9uOiYnhkUceYcqUKZSVlfHOO+9w6NAhr24zGOkjcC3gOR1O3pj/PptytxBuDqfR5iDt8fE8+ebjHjlqPnDgAN27d6dHjx44HA5MJlPI3KSzu2Af/57xCvb6RpRShJnCMEeZeX3Ln0i4LZ6tK7dRsvUgvfp2J3X2fXTp5flJhSsrK7FarZw+fZoRI0aQlpaG2Wy+/htDiB4HrhnehR8vcqasgt79etIx1jun21arFbvdHlIlUkv3HGf5f1r5/uBJBo7qzyO/yyS2V2eeSn6eihM/0lDTgDkyAlO4iT9/9keGjPH8jEhOp5PCwkKKi4uJjY313fRtBqETuKZdR+sSqenp6QwYEJp1vxf/fjkrX1tHY6uCXb369mBp6dteO0MpLy/HarVy8eJF7r33XsaOHevd6dsMQveBa9p1tC6RumzZspAtkVr4UfEVyRug6kw1P5R7b/hfc3XJoUOHUlhY6PXp24xOJ3BNa6W5ROqYMWMoKSnxaHlao4iwRLS5vqlJXfU5T4mMjCQzM5OHHnqIs2fPsnDhQvbs2aOHG7ZBJ3BNa0N4eDhpaWksWLCATp06oZSipKQkZEqkTp078YqRP2FhQt9hCXTt7fkLmW0ZOnQo2dnZxMXFkZ+fz4oVK6irq/PJto1CJ3BNu4bo6GjAVRgrLy+PJUuWUF1d7eeovC/jV/dz56TbsUSbsUSbie4YRZefxfKHj3/j0zhuueUWZs2aRWpqKkeOHCEnJ4djx37aDVzBTF/E1LQboJRi3759bNjgusV86tSpJCUl+Tkq7zu2t4xD24/SLa4LIycP92sJ3TNnzpCXl0dlZSV33XUXEydOJCLCu905gUKPQtE0D2hZIjU5OZnJkyf7O6SQ0tjYSEFBAdu3b6dHjx5kZmbSq1cvf4fldTqBa5qHNDU1UVRUREJCArfeeitKqZC58SdQlJaWsnr1aurr65kwYQLJyclB/TvQCVzTvGTTpk00NTUxfvx4Xa7Wh+rq6li7di0HDx6kb9++ZGRkBO30bXocuKZ5gVKKhoYGiouLWbRokS6R6kPR0dFMnz6d9PR0Tp06RU5ODvv37/d3WD6lj8A1zQMOHz5Mfn4+drud1NRURo0aFdSn9IHm3LlzWK1WTp48SVJSElOmTAmq6dv0EbimedGgQYOYP38+ffv2ZePGjVRVVfk7pJDSpUsXHn/8ccaPH8/+/fspKSnxd0g+4dMjcBGpBNquzn993YCzHgzHKHS7Q0uothtCt+030u4+SqnurVf6NIHfDBHZ2dYpRLDT7Q4todpuCN2230y7dReKpmmaQekErmmaZlBGSuDv+TsAP9HtDi2h2m4I3ba3u92G6QPXNE3TLmekI3BN0zStBZ3ANU3TDMoQCVxE0kTksIiUishz/o7HW0RksYhUiMj+Fuu6iMjnInLU/dM31fR9SER+LiKFIvI3ETkgIk+71wd120UkUkR2iMhed7tfdK/vKyLb3fv7xyISlFO0i4hJRPaIyDr3ctC3W0TKRKRERL4VkZ3ude3ezwM+gYuICfgrcD8wBJghIkP8G5XX/B+Q1mrdc8AmpdQAYJN7Odg4gN8qpYYAY4An3b/jYG+7DUhRSt0ODAfSRGQM8ArwulIqEagC5vgxRm96GjjYYjlU2j1eKTW8xdjvdu/nAZ/AgdFAqVLqO6WUHfgISPdzTF6hlNoCtJ7BNR1Y4n68BMjwaVA+oJQ6rZTa7X58EdeXOo4gb7tyqXEvRrj/KSAFWOleH3TtBhCReGAqsMi9LIRAu6+i3fu5ERJ4HHCixfJJ97pQ0VMpddr9+AzQ05/BeJuI3ArcAWwnBNru7kb4FqgAPgeOAdVKKYf7JcG6v/8P8CzQPMloV0Kj3Qr4TER2ichc97p27+e6eLGBKKWUiATtuE8RiQHygF8rpS60rOYXrG1XSjmB4SLSGVgFDPZzSF4nIg8AFUqpXSJyn7/j8bF7lFKnRKQH8LmIHGr55E/dz41wBH4K+HmL5Xj3ulDxg4j0BnD/rPBzPF4hIhG4kvcypZTVvTok2g6glKoGCoFkoLOINB9cBeP+/o/AL0SkDFeXaArwBsHfbpRSp9w/K3D9wR7NTeznRkjg3wAD3FeozcAvgTV+jsmX1gCz3Y9nA/l+jMUr3P2fHwAHlVKvtXgqqNsuIt3dR96ISBQwCVf/fyHwkPtlQddupdTvlFLxSqlbcX2fv1BKPUqQt1tEOohIx+bHQCqwn5vYzw1xJ6aITMHVZ2YCFiulXvZzSF4hIh8C9+EqL/kD8AKwGlgBJOAqxTtdKdX6Qqehicg9wFaghL/3iT6Pqx88aNsuIkm4LlqZcB1MrVBK/UlE+uE6Mu0C7AFmKqVs/ovUe9xdKM8opR4I9na727fKvRgOLFdKvSwiXWnnfm6IBK5pmqZdyQhdKJqmaVobdALXNE0zKJ3ANU3TDEoncE3TNIPSCVzTNM2gdALXNE0zKJ3ANU3TDOr/AT2x4HztjFC1AAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "from sklearn.svm import LinearSVR\n", + "\n", + "from sklearn.datasets import make_regression" + ], + "metadata": { + "id": "1kFEW_y6y8v0" + }, + "execution_count": 35, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "X, y = make_regression(n_features=1, noise=10)\n", + "\n", + "plt.scatter(X[:, 0], y)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 282 + }, + "id": "lad8MyGxzp9K", + "outputId": "faa430cf-cc53-49f2-ca12-37e8e5dc8c35" + }, + "execution_count": 39, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 39 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAD4CAYAAAAJmJb0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAZk0lEQVR4nO3df5BddXnH8c/DsuIy2lktqcgmMWnFOEGs0S3SyXSmRNpEFJKibdFq8Ucno4OtUhtcyh/ijAxp0/FHxx+dzMhUp0wBBxqw6EQwOE4zRt2YoEaITUEgK5Ywsv5oVtgkT//Ye8PN3nPPPff8/J5z36+ZjLn37N7z3SN5znef73Oer7m7AADNdFrVAwAAFIcgDwANRpAHgAYjyANAgxHkAaDBTq96AJ3OOussX7FiRdXDAIBa2bt375PuviTqWFBBfsWKFZqenq56GABQK2b2SK9jpGsAoMEI8gDQYAR5AGgwgjwANBhBHgAaLKjqGgAYNjv2zWjbzoP6yeyczhkf05b1q7RpzURun0+QB4CK7Ng3o2vv+L7m5o9LkmZm53TtHd+XpNwCPekaAKjItp0HTwb4trn549q282Bu5yDIA0BFfjI7N9D7aRDkAaAi54yPDfR+GuTkAaBk7cXWmdk5maTO/fnGRke0Zf2q3M5FkAeAEi1ebHXpZKCfoLoGAOotarG1HeB3T63L/Xzk5AGgRGUstnYiyANAicpYbO1EkAeAEm1Zv0pjoyOnvJf3YmsncvIAUKL2omqRrQw6EeQBoGSb1kwUFtQXI8gDaISiG33VFUEeQO2V0eirrlh4BVB7ZTT6qiuCPIDaK7v2vE5I1wCovXPGxzQTEdB71Z4PU/6emTyA2huk9rydv5+ZnZPr2fz9jn0zJY22XAR5ALWzY9+M1m7dpZVTd2vt1l2SpBsvP18T42MyLfSBufHy8yNn58OWvyddA6BWelXS3Hj5+ac0+GrfCBanZIYtf89MHkCtJJmJx6Vkyu4dU7XcgryZjZjZPjP7z9brlWb2LTM7ZGa3mtlz8joXgOGVZCYedyMou3dM1fKcyb9f0gMdr/9B0sfd/aWSnpL07hzPBWAI7dg3o9PMIo91zsTjbgSb1kwkzt83QS45eTNbKukNkm6Q9LdmZpLWSXpr60s+L+l6SZ/N43wAhk87BXPcvevY4pl4v5LKMnvHVC2vmfwnJF0j6UTr9W9KmnX3Y63XhyVFXlEz22xm02Y2feTIkZyGA6BpolIwkjRi1jUTH7aUTJzMQd7M3ijpCXffm+b73X27u0+6++SSJUuyDgdAQ/VKwZxw75qVD1tKJk4e6Zq1ki4zs0skPVfSb0j6pKRxMzu9NZtfKqmZTxoADRXaU6GDPtVaVEomtOvST+aZvLtf6+5L3X2FpCsk7XL3v5B0n6Q3t77sSkl3Zj0XgHKE+FRoCCmYEK9LP0XWyX9IC4uwh7SQo/9cgecCkKMQnwoNIQUT4nXpJ9cnXt3965K+3vr7Q5IuyPPzAZQj1KdCk6RgikynhHpd4vDEK4AudX0qtOh0Sh2vC0EeQJcQ8t9pFJ1OqeN1oUEZgC7t9EZn2uOily/Rtp0HdfWt+4OtKik6nRJ1XUK8Dp0I8gAidea/67KH6qBllmnU7WlZ0jUA+qpLVUkd0ylFYyYPoK+6VJXUMZ1SNII8gL7KSIPkpW7plKKRrgHQF2mQ+iLIA0jkuaPPhovxsdGhbfhVN6RrAMRaXFkjSU8fOxHzHQgJQR5ArLjKms6ZfF7tBOrW5TF0BHkAsZJU1uRVR1+Xevw6IScPIFaSfi151dHXpR6/TgjyAGIlqazJq46+LvX4dUKQBxArSR/3vLoz1rHLY+jIyQPoq98DRlvWr+qqwElTR5/X5+BZBHkgICFUlqQZQx7tBNrnnZs/rhEzHXfXBNU1mZm7Vz2GkyYnJ316errqYQCViKpHHxsdKfWho6gxjJ5met5zT9fs0fnCbjwh/Ox1ZmZ73X0y6hg5eSAQIVSWRI1h/oTrqaPzhW5cnfZn37FvRmu37tLKqbu1duuuoDfUrgrpGiAQIVSWJDlX1INQcZKkf9L87NTUJ8NMHghEHpUlWWe2Sc+V9MaTdM/VND97CL/51AFBHghE1k6Pg25iHXVDiBpDFJcS3USSBuI0P3vZv/nUNTVEkAcCkaQePc4gM9teNwRJp4xhfGxUoyMWeb4k+fleAXdmdu6U70vzs5dZUz/oDTQkmXPyZrZM0hckvUgLN/jt7v5JM3uhpFslrZD0Y0l/5u5PZT0f0GRZNrwYZGYbd0PYPbUusvFY1KYh/fLzvTYbkdSVPx/0Zy+zpj5pk7YQ5TGTPybpg+6+WtKFkq4ys9WSpiR9zd3PlfS11msABRlkZtsr8EbdEDatmdDuqXWKns/Hp0fi0j9Z8+dZf/MZRAiL4mllnsm7++OSHm/9/Zdm9oCkCUkbJf1h68s+L+nrkj6U9XzAMIurVEkys92xb0Yf+dKBnp8fl+pIswVge2wfuHV/5PGsQbKsrf7qtP3hYrnm5M1shaQ1kr4l6UWtG4Ak/VQL6Zyo79lsZtNmNn3kyJE8hwM0Sr+8cL+Z7Y59M9ryxfv11NH5yM83KTbVkWVhuNdvAXUIklK9tz/MrU7ezJ4n6XZJH3D3X5g9+3+ru7uZRT5a6+7bJW2XFp54zWs8QNMkyQvHzWyvv+uA5k/0/ifmiq8vT9u6YNvOg4o6a7+bSkjyaNtQlVyCvJmNaiHA3+zud7Te/l8ze7G7P25mL5b0RB7nAoZVlrzwjn0zmp2LnsG3TSSYVadJj/QaX7+bSmjKSg3lLXO6xham7J+T9IC7f6zj0F2Srmz9/UpJd2Y9FzDM0pYMttM8cYpMPfQaX5KbCrLLIye/VtLbJa0zs/2tP5dI2irpj8zsvyVd3HoNIKW0eeGoNE8nMxXaCKzO+ewmyKO65r/Ue13ldVk/H8CCtHnhuHTOyGmm559xuq6+db+27TxYSJ65zvnsJqDVMNBwa7fu6lkXvxjtfeuJVsPAEEvaj0aiwVcT0WoYyElZuzoNep7OdEmSGX0dnuJEcszkgRyU1cAq7Xn6tSboVJcHlJAMQR7IQVm9zXud5/q7ercq6NQvgFP10jwEeaBD2p7hZTWw6vV5s3PzicYalZ9vz+6LbPCF6pCTB1qybCdXVgOruNa9SdreUs44fAjyQEuWnuFl9Tbfsn5V5o6OdX08H+mQrgFasqRcyuptvmnNhF5w5mjkMRZMEYWZPNCSNeVS1gz5w5eeV9qOSJ3KKhFFvpjJAy116bFS5o5IbXXe43TYMZMHWuq0KFl2Xr3Oe5wOO4I80CHERckQ0iR13uN02BHkgcB0BvXxM0f1q18fO7mj0yBlnXnqtV4xfuao1m7dFfxvPsOMnDyQg7QPUUV9Tmfu+6mj811b9lXRRCxqvWJ0xPSrXx8jTx84ZvJAhEFSJGkfooo6R78NPtrKTpNErVf839PHurYUJE8fHoI8sMigQTvNomSvcyQJ8FI1NfGL1ytWTt0d+XXk6cNCugZYZNBmY2kWJXudY8T694kMpawz7Z6zKBdBHlhk0KCdJtj1+qzj7pG57/Gx0dJq4pOqy3MFw450DbDIoE++pulb0+scEx25+dArVur0XMEwI8hj6PRbVL3o5Ut0855H1VnTEhe00wS7uBtDZ+67Pdarb90fZBAN8bkCnIogj6HSb1F1x74Z3b535pQAb5Le9Jp8g1mSG0PUWLd88X595EsHNHt0vrKgH8LDWUiOII+h0q8SJuq4S7rvwSM9PzNtCWW/WXDUWOZPuJ46Oj/QefKUpec+qlH4wquZbTCzg2Z2yMymij4fEKffomqelTJZH1hKUopY9oNRZW1ziPwUGuTNbETSpyW9XtJqSW8xs9VFnhOI068SJs9Kmaz14klLEcusS6eHTf0UPZO/QNIhd3/I3Z+RdIukjQWfE+ipX9lfmrLAourFo8ZSxHkGQW18/RQd5CckPdbx+nDrvZPMbLOZTZvZ9JEjvfOeQB769WJP06u9qHrxxWMZHxvV6MipD0uVXZdObXz9mLv3/6q0H272Zkkb3P2vWq/fLum17v6+qK+fnJz06enpwsaD4VRGNUhZFSchVLaEMAacysz2uvtk1LGiq2tmJC3reL209R6Qi3bAmZmd04iZjruffKCoXRKZthokLphFHds9ta7YH1Zh1KWHMAYkV3SQ/46kc81spRaC+xWS3lrwOVFzUQFU6q4pl3RKAD/u3T3X0+5oFHdzWHxeyggRskLTNZJkZpdI+oSkEUk3ufsNvb6WdA0WB1dJGj3NJJPmjz/73+rY6IjOOP20rla3nSbGx/STVq/zxUzSw1vf0PN7127d1bPtgKSex8qYzQOLVZmukbt/WdKXiz4PmqHXA0CLzc0f79uWtz3rH6QPTef3DvJ+v2NAVehCiaDkGSjbaZ001SBxpYKUEaJOCPIIyiCB8gVnjvasIzctpFS27TyoN71mYqCSSCm+VHDQG0deWwMCadC7BkGJ6s7YKyf/4UvPk6Su6hqTTubhZ2bndPvemVMCezvoxpUAJmkglqSMkF4vqFrhC6+DYOEVUvLqmqggGbdguntqXeTC7tjoSGEbcfQbT0iof6+vShde0RxlBYFeddhJztVvwTRtSWWnQa5D3HhCCqr8xtFc5OSRSDsIzLRKEttBILT8cr9F0awNtga9Dr3GM37maFDXk+6SzUWQRyJFB4G8Fif7LYpmrYwZ9Dr0Go+7ggqqdJdsLoI8EikyCOT5W0K/BmNpSyrbN6Go/LrU+zr0Gs/PezzEVVVQpSy0ucjJD7mkeeG0DxUlkUeevFNcb5U0+7FGLdYuFncdosbTrgga5HOKlGYzctQDM/khNsgMusgWs2WnCjatmdDuqXV6eOsbtGX9Km3beTA2TRR1E+qU5jqE1rI3TYtl1AMz+SE2yAw66cbTaapFivwtoZcd+2b0kS8dOLlfqtS7oiTuZjORsiomzW8URaO7ZDMR5IfYoDPouCCQpQSv7FRBXPol6ibX6yaUtdadoIoykK4ZYnkutmWpvik7VdAv/bL4JhdaagUYBDP5IZbnDDprXr3MWW2/MS2+yYWYWgGSIsgPsTyDVxV59ShJ1gV6jVXqfZMLPbUS0tOzCAu9a5CLsnvCJB2DtNCt8sOXnndKg7KorxsfG9X1l51Xu+AYwrVHtehdg8KFkNLolWt/6ui8rr51v6Yf+Zk+uun8IMaap7yfM0CzEOSRm7JTGotTFL1SMNJC6+Gb9zyqyZe88OQ4mxIAaUmAOFTXoJaiHuTqx6VGNtyiJQHiEORRS/3KIHtp4uyWEk/EIV2DWooL1p07Qy3WxNlt09YYkC+CPGqpXw7+bRcu1817Hj0l2GeZ3YZeotikNQbki3QNamnL+lWyHsfOGR/TRzedr4//+atyeYq2LhumAFEyzeTNbJukSyU9I+l/JL3T3Wdbx66V9G5JxyX9jbvvzDhW1EjRM99NayY0/cjPYmfrec1uKVFEnWWdyd8j6RXu/kpJP5J0rSSZ2WpJV0g6T9IGSZ8xs5Gen4JGyWvm22+3qDxn63EoUUSdZZrJu/tXO17ukfTm1t83SrrF3Z+W9LCZHZJ0gaRvZjkf+ls8g77o5Ut034NHSs0l57VZdpKulmXkokNp2QCkkWdO/l2SvtL6+4SkxzqOHW6918XMNpvZtJlNHzlyJMfhDJ+oGfS/7Xm09FxyHjPfkDaWpkQRddZ3Jm9m90o6O+LQde5+Z+trrpN0TNLNgw7A3bdL2i4t9K4Z9PvxrCS143nkkvvl2/OY+YaUIqFEEXXWN8i7+8Vxx83sHZLeKOl1/my3sxlJyzq+bGnrPRQoaQDMEiiTpFHiWhiHsKdsGpQooq4ypWvMbIOkayRd5u5HOw7dJekKMzvDzFZKOlfSt7OcC/0lDYBZAmWSNEqvTUAkZdpT1lrf02svVgDdsj4M9SlJZ0i6x8wkaY+7v8fdD5jZbZJ+qIU0zlXuPvgz6BhI1Ax6say55KRplKiZ79qtu1LtKTszO3fKU6yDbC0IDLtMM3l3f6m7L3P3V7X+vKfj2A3u/jvuvsrdvxL3OchH1Az6bRcuz7XEMEszrDR7yu6eWqeJ8bGuNgVVLcICdUNbg4YpOnecZcvAtHn2kBZhgbqhrQEGkmXT7bSliLTSBdJjJo+BLf5tof1kar+KmbSliHluOA4MG4I8JKXvNZP0ydS2NOmkpDeH0DtFAlVgI29k2gh67dZdkXn2ifEx7Z5al/tYe2EzawyzuI28yckjUwuBUBZFQ2qDAISEII9MgTqURdFQbjZAaAjyyBSoQ2neFcrNBggNQR6ZAnWWkso8hXKzAUJDdQ0yd1ks4gGsQStl6BQJRKO6BsGhUgYYDNU1qBUqZYD8kK5BpCofLKJSBsgPM3l0yWsj7rSolAHyQ5CvqXa/mJVTd+e+iUbV6RIqZYD8kK6poUH7xQyq6nQJlTJAfgjyNRQ3084jEIawvyp7qgL5IF1TQ0XPtItMlxSZZgLQjZl8DRU90y4qXVJ0mglAN4L8AELpV17GJhpFpEuKTjMB6EaQTyikWWiZC5N53tiqXtAFhhFBPqHQZqFlLEzmfWMLYUEXGDYsvCY0jLPQvOvlqX8HypdLkDezD5qZm9lZrddmZv9sZofM7Htm9uo8zlOlPJ7CrFtlSd43tqi2xG96zYS27TxYm2sC1E3mdI2ZLZP0x5Ie7Xj79ZLObf15raTPtv63trIudmZNfVSx6FtEeqUzzRTSOgfQVHnM5D8u6RpJnT2LN0r6gi/YI2nczF6cw7kqk3VzjCypj6p6yRSdXqm6fQIwDDLN5M1so6QZd7/fzDoPTUh6rOP14dZ7j0d8xmZJmyVp+fLlWYZTuCyLnVlSH1Ut+hZdxTOM6xxA2foGeTO7V9LZEYeuk/T3WkjVpObu2yVtlxY2DcnyWSHLkvqoMhgWWcVDtQ1QvL7pGne/2N1fsfiPpIckrZR0v5n9WNJSSd81s7MlzUha1vExS1vvDa0sqY+mtt6l2gYoXuqcvLt/391/y91XuPsKLaRkXu3uP5V0l6S/bFXZXCjp5+7elaoZJlly+nkGw5AqfELZBBxostz2eG3N5ifd/UlbSNB/StIGSUclvdPd+27eyh6vveVRXcPeqUAzxe3xykbeQ2Tt1l2ROfCJ8THtnlpXwYgA5IGNvCGJahZgGBHkh0hTF3AB9EaQHyJUswDDhy6UQ4S9U4HhQ5AfMuydCgwX0jUA0GAEeQBoMII8ADQYQR4AGoyF1wBVsUEIgGYiyAeG3ZIA5Il0TWDYLQlAngjygaG/DIA8EeQDQ38ZAHkiyAeG/jIA8sTCa2DoLwMgTwT5ANFfBkBeSNcAQIMR5AGgwUjXZMTTqQBCRpDPgKdTAYSOdE0GPJ0KIHQE+Qx4OhVA6DIHeTP7azN70MwOmNk/drx/rZkdMrODZrY+63lCxNOpAEKXKcib2UWSNkr6XXc/T9I/td5fLekKSedJ2iDpM2Y20vODaoqnUwGELutM/r2Strr705Lk7k+03t8o6RZ3f9rdH5Z0SNIFGc8VnE1rJnTj5edrYnxMJmlifEw3Xn4+i64AgpG1uuZlkv7AzG6Q9GtJf+fu35E0IWlPx9cdbr3Xxcw2S9osScuXL884nPLxdCqAkPUN8mZ2r6SzIw5d1/r+F0q6UNLvSbrNzH57kAG4+3ZJ2yVpcnLSB/leAEC8vkHe3S/udczM3ivpDnd3Sd82sxOSzpI0I2lZx5cubb0HAChR1pz8DkkXSZKZvUzScyQ9KekuSVeY2RlmtlLSuZK+nfFcAIABZc3J3yTpJjP7gaRnJF3ZmtUfMLPbJP1Q0jFJV7n78ZjPAQAUIFOQd/dnJL2tx7EbJN2Q5fMBANnwxCsANBhBHgAajCAPAA1GkAeABiPIA0CDEeQBoMEI8gDQYLXf/o89VgGgt1oHefZYBYB4tU7XsMcqAMSrdZBnj1UAiFfrIM8eqwAQr9ZBnj1WASBerRde24urVNcAQLRaB3mJPVYBIE6t0zUAgHgEeQBoMII8ADQYQR4AGowgDwANZu5e9RhOMrMjkh6pehwxzpL0ZNWDCBDXpRvXJBrXpVse1+Ql7r4k6kBQQT50Zjbt7pNVjyM0XJduXJNoXJduRV8T0jUA0GAEeQBoMIL8YLZXPYBAcV26cU2icV26FXpNyMkDQIMxkweABiPIA0CDEeQHZGbbzOxBM/uemf2HmY1XPaaqmdmfmtkBMzthZkNfHmdmG8zsoJkdMrOpqscTAjO7ycyeMLMfVD2WUJjZMjO7z8x+2Pr38/4izkOQH9w9kl7h7q+U9CNJ11Y8nhD8QNLlkr5R9UCqZmYjkj4t6fWSVkt6i5mtrnZUQfhXSRuqHkRgjkn6oLuvlnShpKuK+G+FID8gd/+qux9rvdwjaWmV4wmBuz/g7uyevuACSYfc/SF3f0bSLZI2Vjymyrn7NyT9rOpxhMTdH3f377b+/ktJD0jKfXMMgnw275L0laoHgaBMSHqs4/VhFfAPF81iZiskrZH0rbw/u/Y7QxXBzO6VdHbEoevc/c7W11ynhV+3bi5zbFVJck0ADM7MnifpdkkfcPdf5P35BPkI7n5x3HEze4ekN0p6nQ/Jgwb9rglOmpG0rOP10tZ7QBczG9VCgL/Z3e8o4hykawZkZhskXSPpMnc/WvV4EJzvSDrXzFaa2XMkXSHprorHhACZmUn6nKQH3P1jRZ2HID+4T0l6vqR7zGy/mf1L1QOqmpn9iZkdlvT7ku42s51Vj6kqrUX590naqYWFtNvc/UC1o6qemf27pG9KWmVmh83s3VWPKQBrJb1d0rpWLNlvZpfkfRLaGgBAgzGTB4AGI8gDQIMR5AGgwQjyANBgBHkAaDCCPAA0GEEeABrs/wFat95dSceMnQAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "model = LinearSVR().fit(X, y)\n", + "plt.scatter(X[:, 0], y, color='r')\n", + "\n", + "plt.scatter(X[:, 0], model.predict(X), color='b')\n", + "\n", + "# plot_svc_decision_function(model)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 282 + }, + "id": "b9XmxvY-zyit", + "outputId": "5264bc9d-b195-4ff8-d21a-eab9ca0f2889" + }, + "execution_count": 41, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 41 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAD4CAYAAAAJmJb0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAfcklEQVR4nO3df4wc533f8ff3jmSkI2U42qMRQdTtqahdQHZT1KJVN3KBxGJiWjXMNHABEXsSrRimdbRdBk3rX1f0vwvsJHBCw6acSyyZ0W6lGo1TqW1aR07dpk5jO6fEdiRLchiLR1NwI5KKY5G0JfHu2z9m97i3NzM7szO7Mzv3eQED3v6aeW4hfee57/N9nsfcHRERqaaJohsgIiLDoyAvIlJhCvIiIhWmIC8iUmEK8iIiFbat6AZ0m56e9tnZ2aKbISIyVh577LFz7r477LVSBfnZ2VmWl5eLboaIyFgxs5Wo15SuERGpMAV5EZEKU5AXEakwBXkRkQpTkBcRqTAFeRGRIrVaMDsLExPBv61WrqcvVQmliMiW0mrB4cNw6VLweGUleAzQaORyCfXkRUSKsrBwJcB3XLoUPJ8TBXkRkaKcPp3u+QEoyIuIFGVmJt3zA1CQFxEZtc5g68oKmG18bWoKFhdzu5SCvIjIKHUGW1fay824Xwn09TosLeU26AqqrhERGa2wwVb3IMCfOpX75dSTFxEZpREMtnZTkBcRGaURDLZ2U5AXERmlxcVgcLVbzoOt3RTkRURGqdEIBlfrdTCjVXs/s1f/DRN3NoaxqoGCvIjIyDUacOoUrQfWOPzDT7ByfhfuV1Y1yDPQK8iLSDUMeaGvPHWaOjc39FUNVEIpIhUwgoW+8tLb1DB5FtqoJy8i428EC33lJaypvfIstFGQF5HxN+La8yz6NSnvQhsFeREZf2lrzwvM38f10oewqoGCvIhUQJra8+61Y4ZV0jJAU5vNYFWDvIcQFORFZPz09sRhQ+15bJe44Px9T5n8UHrv3RTkRWS8RPXEIegKr61dWegrLCVTgvx9u0x+vanDLABSkBeR8ZKkJx6Xkhnx2jFFyy3Im9mkmf2Fmf3X9uMbzeyrZnbSzP6jme3I61oisoUl6YnH3Qgyrh0zRnOugHx78keBJ7sefwz4DXf/+8DfAu/K8VoishW1WkF0DdPdE4+7EQyYFG+1YHo6mKVa0JjtQHIJ8ma2B/jnwO+0HxvwZuA/td9yAvj5PK4lIltUJwWzurr5td6eeL+UTMqkeOfS589vfq2kc67W5dWT/03gA8Ba+3EN+L67X24/PgNcH/ZBMztsZstmtnz27NmcmiMilRM1VXRycnNPPOflfPvNUi3hnKt1mYO8mb0NeM7dHxvk8+6+5O573X3v7t27szZHRKoqKpKurW3uiedcp9gviJd5zDaPnvytwNvN7BTwEEGa5hjwSjPrLIC2B3g2h2uJyKiUbYQxbVVMjnWKcUF8asflYe33kYvMQd7dP+zue9x9FrgD+J/u3gC+BLyj/bZDwMNZryUiI1LwrNBQI95Rqd+lwalxliV/Nw3KO/I6zDr5DwL/2sxOEuToPzPEa4lInsq4quOop4qGXXryDMYadU7RpME5XkXj5c+WeuTV3L3oNqzbu3evLy8vF90MEZmYCHrwvcyC9EeZtVpB0D19OsizLC5uuhEkeEu4kn4vZvaYu+8Ne00zXkVks3GdFZogzZQpEzWG34uCvIhsVmD+O5MEaaZMmagx/F4U5EVks7D896FDQSQsS7VNmK5axxYHmeUZJlhlduV/5bM+WYHjAoNSTl5E+gvbmHRqqnwBbnaW1spPcZRjnGcasPWXOs1dWAhSNL3q9SuLV44b5eRFJJsyVtv0aLVg+txTzNHiPLvpDvCQ2/pkY0dBXkT6K8Ea7HHW15a5eBW9wb1bhvXJxta2/m8RkS1vZiY8x1FwVUmnFDKsaWG61yeralDvpZ68iPRXshxH77K/SVQ5JRNHQV5Ekrn66is/12qF5Di6g3vYsr9RCmpuKShdIyLxwiprfvjDUjSjn1oNjh3bmsG9Qz15EYmXtLImr1UrI87Tb033bvU6NJtw7tzWDvCgnryI9JOksqa3m91ZKwDSRdmY85w+3f88ZSzdL5p68iISL8l6LXnV0S8s0Lp04MpMVZ6hdekALCz0LeTZynn3OAryIhIvSWVNDnX0rRZMr/wZc7RYYRZnghVmOcxv01q5NWJN9yC4KzUTTUFeROIlmT2UcXXG9clMYTNV2cnC5MdCm6Hg3p/WrhGR7DKubTM7G1/vbjhrHj2TdavT2jUi46IM+6oO0oaMawX03Si7rgA/KAV5kbIow76qYW24++5gBlK/oB+zcXZnEpNZcExPbzzNzLUXIpu0VWeq5kVBXqQsyrDSY1gbXn45mF464I3nyJHNM1TPnw/uHZ3TLPIRprjY80mnZufj/yAow18+ZefupTluvvlmF9myzNyDULrxMCu+Db1HvZ7odM2mu7HW/zRm3uSg13nGjVWv84w3ORj/uzeb7lNTG084NRU8v8UAyx4RV9WTFymLPPYPzdqzTXqthKWRC0cv4H2W/u1ct8GDnOJG1pjkFDfS4MH49pThL58xoCAvUhZZV3pMm9MPuyFEFaP3ct90Ewk73enz8edaj+GD/O6jXuN+XFNDUV38Ig6la2TLazaDHIZZ8G+a1EO9njy1Epfq6G5Drea+Y0dk2qa5/Z1er72wnlXqPV2N5yJTNdsnL2/89dL+7ml+36xKnhoiJl2TOTADNwBfAr4FPAEcbT9/LfAo8Fftf3+837kU5EUySJPTT3tDCHl/k4M+xYXY1H3NzoW8Z8138nfe3P7ObEFylIF3lDeUAQw7yF8HvL798zXAt4GbgF8FPtR+/kPAx/qdS0FeJIM0gSgqKscNdLZvIp0BUmIGVNdPx1rQ2+8dUM0rSGb5yyeNMgyKxxhqkN90QngY+FngaeA6v3IjeLrfZxXkRfqIC2pJerbNZpCCGaBqZn7nZx1WEwX3DadrNge7qZTJVu7JbzgZzAKngVcA3+963rof93zmMLAMLM/MzAz/2xAZV0mDeNxNYPv2+IAb0hNuNt2vuspTBfcNTWs2o3vCJQmSfW3lnPz6iWAX8BjwC+3H3+95/W/7nUM9eZEYWXuTcT34ztGlX6c/6j7RadJ6/Itqd8RNpbRGlRoaQFyQz2XTEDPbDvwe0HL3z7ef/hszu87dv2dm1wHP5XEtkS0rS8lgq9V/U9R6ff2tR4+m20O18/HFxZDZqVHtcx+v5SMbjfFqb1vmOnkzM+AzwJPu/vGulx4BDrV/PkSQqxeRQQ06WapTPx9naorW7c2BNsk2C5b87Vmupn/72jcVGa48JkPdCtwJvNnMvt4+bgc+Cvysmf0VsK/9WEQGNehkqX6bo05M0Dr0BQ6feFPq3jvAPff06eBmneQl2UTlcYo4lJMX6WOQvHDEoGeTg17jbHtANd2gKgRzpBKnpUucz64CYnLy2jREpOp6duRocZB7+DQXuIbeXZiSqNXg2LGxTE9XljYNEdnKutIl+/gfzNHiAq8gTYDv7KPqru32xo2CvEheRrWAVdrrNBq0Dn2BXfyAP+LnGCS4K7CPr1xKKEW2vN49TjsrQEK+0XGA67RacPjEm4gZeu3h1OsWXg4pY0c5eZE8RO1EXa8HtYXDvk6tFnS3U3wkzHZ+xP3zyzSOv2ngJsroKScvktSgKZdRrW0edb7z56HVCl/TPVETnJ28oABfQUrXiHRkSbnMzIR3l9Ps6pRExHVaHOTonfs53/WHeaf5114bN7nJ2TG5yn0nttFoXAMowFeNevIiHVm2kxvVhJ+Q87U4yGF+m/Ne2/Ra59cJ2+xpYgLm540XL29T7r3CFORFOrKkXBoNWFoKcvBmwb9LS/mPXDYaQf69ywK/wiV2Rn7k+ec3N63ZhNVVOH483+ZJ+SjIi3Rk3Ui70QgGWdfWYhZyyabVgukfncFYWz9WiF8DZmYmp6aN6x6nW5yCvEhHyddYabXgrrvg/MWrCGrdu49wuTU/7SbhUhoK8iIdo0q5pNBqwfR00Jy5uaAnnlStlmPzs4xXSKFUJy9SUq0W3H03vPxy8s+YBemZ3CcyTUwEPfiwC6a588hQqE5eZIy0jnyZ2W1nmJvzVAG+Xh/icEDUuMS11ypPX3IK8iJ5yGlQ8si+p7jz3p9iZXUPadaY2bFjyEMHYeMVO3bAD36gPH3JKciLhEkTtAcdlOy5RuvIl/n0H70GT/m/5c6dcN99Qx46CBuvuOaazbkk5elLRzl5kV69M18h6MVGjWIOsm5Nq8WRuy6wtPYuVplkklWu5oftNd778fbpC15ETHn60lBOXiSNtJUkA0yiOvKey9y7dphVtgHGKtu4wK6YRjng1DhLc/sv4s3/MKxS/OSyziuQkVCQF+mVNmgPEOyWLjbYnHMPz8EbazR3vge3Sc7V30Dj/n3lWAO45PMKJKAgL9IrbdDuE+zC0vurTEZcfGP6w1jjntu+TePC0lBn0g6khPMKZDMFedl6+g2q3n57ELS6xfVQY4Jd1JisET4WZviG0zww/385fnJ/eUsUR7CUg2SjIC9bS79KmFYLTpzYOKBoBocODRTAotL7O3dN0NtrB+ee+YkrMXOxRePEWza29e67gymwRQZ9rWEzXty9NMfNN9/sIkNVr7sHIXPjUa8nez1Ms+k+NbXx/VNT7s2mm4Wfzsx9ft59cjJ4PDkZPE7U1pDrjEzM7yrFAZY9Iq4OvYTSzPYDx4BJ4Hfc/aNR71UJpQxdv7K/QcoCZ2c5svJv+C3mWWv/cbyTF/it2r9jYdcnBt8VMKotA50sJ6Pa5lBSKayE0swmgU8BbwVuAg6a2U3DvKZIrH6DqgNUyhxZ+bfcy3tZY5LOqpAXeQV3nf91br89QwFK0lLEvLcYHORao2yDpDLsnPwtwEl3/467vwQ8BBwY8jVFovUr+0tYFtidlr6XI4SVP66xgz/4gwwFKGFtCTPKunTVxo+fqDxOHgfwDoIUTefxncAne95zGFgGlmdmZoaYtRJpazaDfLdZ8G9vPrnP6/PzHplrD8u959bWWs19xw7l5GUTYnLyhQf57kMDrzIU/YJ6At2DpGmOuPHaon6XSrRBNogL8sNO1zwL3ND1eE/7OZF8dPImZrBtW/Bvd1lflh2N2uc+Yp/i3nud1dV0TZuYGMLkzzLUpZehDZJcVPTP4wC2Ad8BbgR2AN8AXhv1fvXkxd3De4pRz/WmDnpTCIOURLp7c/7/eI2zDmvtI0nP/cr7du5UB1dGh4JLKG8HfpOghPI+d4/s26iEUkJXgNy+Peihv/TSleempuDqq+H8+ehz1etB1UfYf+MRJZGtFrznPXDxopNmPXdjjQdqv0Tj3CcSf0YkL3EllFpqWMolqg57EJ298BLWdQ+y3R6015fhOMftX2mJXSmElhqW8ZFnvXVns9OEi4cdOpQmwDuwRp1TPMAcx3m/ygillBTkpVzSBMpaLbqO3CzowS8sBNG7p1C9RYPpaZibuzImm2xg1ZmcWGN+YglnklPcSIMH42c4aa0XKZCCvJRLWM97+/ZgP9FuU1Nw7NiVmUYAk+3le82u5OFXVoIFxxYX16tB9v3KTzM357Hp/DDbJ1dpNo3LqxMc/91dyWY4ZanuEclD1IhsEYeqa8Tdk1fXhOlTTTN/25MpqmWuHANXywxY3VMI1b+PLYqaDJX2UJAvuXEIAiFTUZsc9DrPtF/qH+C7T1Grhfyaab6HuGUoy/R9aibrWFOQl+zGJQi0e85NDnqN51LWuSf4ldJ+D1E9+VqtXN/nOP3FIZsoyEt2ww4CefVqm02fn/j0ACmZtfBee6+030PUTaFWK1dQjfuLQ0pPQV6yG2YQyOmvhGYzyJ0PEuBvu+lM/5PHbeIR9z2E3cDKFlTVkx9rCvISLacBzUxyOPf8fJqg3rkRrPkkL/v8bU/Gnzxu+YRBv4eyBdVxScdJKAV5CZfmf+xhBoEMvdr5efeJiXQBfkOzk9zk+m3DN8j3UMagWqaBYElFQV7CDZJfzrAOe27taLvttnTBHbqqZZrN8Lx4WKCNWzw+4/iBgqrkQUFewuWZF87SMx3gs81muuC+oc69X/ql9+ZSttSKSA8FeQmXZ/DKeq4EuzF1Nu2YnOwMsCY75ucTtjXqJlfG1IpIFwV5CZdn8BpitUj6QdXg2LUr4lfpt3df2I1JqRUpsbggr7VrtrJGI8Mu0z1y3uC51YLp6aBZ996b5pPOTi7QpMELtVkahKwRE9emqIXGyr4bkhZBkyhR0b+IQz35MZbjXwWD9txhzW/j0c0v9M5yisrJJ5oNVUJKJ215KF0jI5EhpdFvrlHYMTHRc7na+6PfbLYxOV+l9IsGhre8uCCvnaGkUK0WHD0av4tflPnbnuL4yf3BRiNRO0B1M4MHHihfqiWriYkgrPeK2OJQqkc7Q0kpdZZaTxvgJyfbAf5Pb964Tns/7sEmIlWT83iIVIuCvIzUkSOwbVvQyZyb27hfdz/bt0OzCZcvE/Tg03y4I8/tBcuizxaHsrUpyMvIHDkSVMok22Zvo5074f77uzItccHaLPq1KvZu86ySkspRkJeRWVpK/t5OnK7Xg977hQs9MatfsJ6f3xzss/Ruy16iWPYSTymMgrwMRVhMTNqDr9WC8VH3mHi1uBjdY5+ZgePHg5Pk0bvVPq0yzqLKbpIcwK8BTwHfBH4feGXXax8GTgJPA29Jcj6VUFZDs+k+tePljWXbO16OXS1yoErG+fnNs1eHUR+uEkUpOYY44/VR4HXu/pPAt9uBHTO7CbgDeC2wHzhuZpMZryUl1+m9z805l17atuG1Sy9t4+rtL4V+bn4+IsvQL0WSZ289TlT+v4qDuFI5mYK8u/+hu19uP/wKsKf98wHgIXd/0d2fIejR35LlWpJQb2A8cmToueTOEgRzc51KxvA0yqUXtzE/H5RAQrsUcj6I1aEnTZIiGUUuWiWKMs6iuvhpD+C/AHPtnz/Z+bn9+DPAOyI+dxhYBpZnZmaG+idN5SXZwSjndEaSS65nN3gm+YnLlCLRsgFScmRJ15jZF83s8ZDjQNd7FoDLELYaVN+bzJK773X3vbt37077cem2sNC/dvzSpcwTglpHvszstjNM2BqH5i4nKlef4iKLtY8nv0iZUiQqUZQx1jfIu/s+d39dyPEwgJm9E3gb0GjfUQCeBW7oOs2e9nMyTEkD4ICBstWC6Wt+xNy9t7KyugdnglW29fmUU+cUS9vfR+PYP0leili2FIlKFGVMZcrJm9l+4APA2929uz/3CHCHmf2Ymd0IvBr4WpZrSQJJA+AAgXJ9CYILVxGVc+81ZZdoMsep+k/TuH9f8GTSUsSwWZxmwWfKWKcuUlZReZwkB8GA6neBr7ePT3e9tgD8NUEJ5VuTnE8llBkNISc/yOqQkav2DrqnbKfGUjlxkVBoqeEtpHcJ3fn5gZbUjdrnOuqY5OX+lxh096gyDcKKlFBckO+XUJVx02hkzhd3UjNJ1/+a4iJL839B4/ib4t8YtRxwv/RRmQZhRcaMljUQYON46KFDSQO8U7PzyQI8DL5aYtkGYUXGiIL8Ftc7kck92RozwcJhxrm1Go1bV5JVzAxaiqildEUGF5XHKeJQTn600kxkihzvHNVEoSTb9VVpSz+RFND2f9LRagVzoU6fDjreadZ2r9Xg2LGejvfsbHievV4P6slHJWwgYWpKk5ZkS9D2fwJsXg6mX4Cf5PJ6VqXZhHPnQuJlWQZFw2b75jC7V2TcKchX3GADqkHFzAkO9Z/gWZZB0bLcbERKRkG+wtL23ANOjbMs8W4a9T/p//ayDIqW5WYjUjIK8hUzSM99cmINY406p2jS4ByvojH1cLJAXZbFu8pysxEpm6gR2SIOVddkk6lapmyVKYO0p2y/g8iIoOqarSGq0KXX5GSwmOLMTNDRLV3xiSplRFJRdU0Fha3Ym2SMcWoKTpwo+Yq5qpQRyY2C/BiK2hnv2mvD3z85OUC6POm678OgShmR3CjIj4l+A6qdx2Fjj6l77kn3Vx0WVcqI5EZBfgwkLYV8/vmcCl2KTpeoUkYkNxp4HQNJB1TrtQucOrcr+wUnJoK7SS+z4E+CUehef6G0I8Qi5aCB1zHTmw5PEuCnuMgiH8mnAWVIl2hPVZFcKMiXTFg63CK2VJ3k8vokpiXeTeP5T+bTiGGmS4oc0BXZgrQzVMmEpcPdg0DfnUGZ4mIQ2HnwypMz9Xwa0ek1550u6a1/7wzodl9TRHKlnnwaI+iFRlUJuncNqNYusLT9fRsDfN4Dk8NIlxQ9oCuyBSnIJzWissKotHdnefa1NTh1bheN+/eNZr2YPG9sqn8XGTkF+aRy6IUmiZeJ0+GjGJjM+8ZWhgFdkS1GQT6pjL3QpPGyLIs6AvmnV1T/LjJyuQR5M/tlM3Mzm24/NjP7hJmdNLNvmtnr87hOoTL2QtPEy9JUD+adXgm7gx06FHwJqrYRGYrMQd7MbgB+Duj+P/+twKvbx2Hg3qzXKVzGXujplfBJZ1HPb1JE6eEw0ivdd7DFxWDNhaKWTxDZAvLoyf8G8AGgO1odAH63vdTxV4BXmtl1OVyrOBnzKDOTz6Z6foOi1pIZdnpF1TYiQ5cpyJvZAeBZd/9Gz0vXA9/tenym/VzYOQ6b2bKZLZ89ezZLc4YvQx5lcfWDTHFxw3NTXGRx9YP9P1xUMBz2AIGqbUSGrm+QN7MvmtnjIccB4CPAv8/SAHdfcve97r539+7dWU5ViKRZlEb9T1ji3dQ5tXGWapJ9VIsMhsMcIFC1jcjQ9Z3x6u77wp43s38I3Ah8w4J593uAPzezW4BngRu63r6n/VylpJrAubhI4/BhGpd6JzAt9b/QzEz4AjbjHgwXF8N3gFK1jUhuBk7XuPtfuvur3H3W3WcJUjKvd/f/BzwC3NWusnkj8Hfu/r18mlweqbIoWVIfeebGy7R2TKnqRUUqKmrz17QHcAqYbv9swKeAvwb+Etib5Bxl38i7d5/oqM2xzUZw8UE2qQ7b6Xt9J28RGVdoI+/swvaW7l00rKOzBEHpRK1bXNoGi0gSWk8+B3GrQ3YrdUpZ1SwiW46CfEKJVocse0pZ1SwiW46CfEKJVoc8VeIAD1o7RmQLUpBPqBLxUdUsIluOdoZKaFibJY1cozGGjRaRQSnIp6D4KCLjRukaEZEKU5AXEakwBXkRkQpTkC+jMq0vIyJjTQOvZZNqaUsRkXhj35OvXKdXuyWJSI7GuidfyU6v1pcRkRyNdU++kp1erS8jIjka6yBfyU5vJdZPEJGyGOsgX8lOr9aXEZEcjXWQr2ynd5ibZ4vIljLWQV6dXhGReGNdXQNaNExEJM5Y9+RLoXKF+iJSJWPfky9UJQv1RaRK1JPPopKF+iJSJQryWVSyUF9EqiRzkDez95vZU2b2hJn9atfzHzazk2b2tJm9Jet1SqmShfoiUiWZgryZ/QxwAPhH7v5a4Nfbz98E3AG8FtgPHDezyYxtLZ/KFuqLSFVk7cnPAx919xcB3P259vMHgIfc/UV3fwY4CdyS8Vrlo0J9ESm5rEH+NcA/M7Ovmtn/NrM3tJ+/Hvhu1/vOtJ/bxMwOm9mymS2fPXs2Y3MKoNmpIlJifUsozeyLwE+EvLTQ/vy1wBuBNwCfM7O/l6YB7r4ELAHs3bvX03xWRETi9Q3y7r4v6jUzmwc+7+4OfM3M1oBp4Fnghq637mk/JyIiI5Q1XfOfgZ8BMLPXADuAc8AjwB1m9mNmdiPwauBrGa8lIiIpZZ3xeh9wn5k9DrwEHGr36p8ws88B3wIuA+9199WM1xIRkZQyBXl3fwmYi3htEVAtoYhIgTTjVUSkwhTkRUQqTEFeRKTCFORFRCpMQV5EpMIU5EVEKkxBXkSkwsY/yGuPVRGRSOO9x6v2WBURiTXePXntsSoiEmu8g7z2WBURiTXeQV57rIqIxBrvIK89VkVEYo13kNceqyIisca7ugaCgK6gLiISarx78iIiEktBXkSkwhTkRUQqTEFeRKTCFORFRCrM3L3oNqwzs7PAStHtiDENnCu6ESWk72UzfSfh9L1slsd3Unf33WEvlCrIl52ZLbv73qLbUTb6XjbTdxJO38tmw/5OlK4REakwBXkRkQpTkE9nqegGlJS+l830nYTT97LZUL8T5eRFRCpMPXkRkQpTkBcRqTAF+ZTM7NfM7Ckz+6aZ/b6ZvbLoNhXNzP6lmT1hZmtmtuXL48xsv5k9bWYnzexDRbenDMzsPjN7zsweL7otZWFmN5jZl8zsW+3/f44O4zoK8uk9CrzO3X8S+Dbw4YLbUwaPA78A/HHRDSmamU0CnwLeCtwEHDSzm4ptVSl8FthfdCNK5jLwy+5+E/BG4L3D+G9FQT4ld/9Dd7/cfvgVYE+R7SkDd3/S3Z8uuh0lcQtw0t2/4+4vAQ8BBwpuU+Hc/Y+B54tuR5m4+/fc/c/bP78APAlcn/d1FOSz+UXgvxfdCCmV64Hvdj0+wxD+x5VqMbNZ4B8DX8373OO/M9QQmNkXgZ8IeWnB3R9uv2eB4M+t1ijbVpQk34mIpGdmu4DfA37J3X+Q9/kV5EO4+764183sncDbgNt8i0w06PedyLpngRu6Hu9pPyeyiZltJwjwLXf//DCuoXRNSma2H/gA8HZ3v1R0e6R0/gx4tZndaGY7gDuARwpuk5SQmRnwGeBJd//4sK6jIJ/eJ4FrgEfN7Otm9umiG1Q0M/sXZnYG+KfAfzOzLxTdpqK0B+XfB3yBYCDtc+7+RLGtKp6ZPQj8KfAPzOyMmb2r6DaVwK3AncCb27Hk62Z2e94X0bIGIiIVpp68iEiFKciLiFSYgryISIUpyIuIVJiCvIhIhSnIi4hUmIK8iEiF/X8cqiFP+I0IsAAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ] + } + ] +} \ No newline at end of file