\n",
+ " "
+ ]
+ },
+ "metadata": {},
+ "execution_count": 34
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "**Objective**\n",
+ "The goal of this machine learning project is to predict whether a person makes over 50K a year or not given their demographic variation. This is a classification problem.\n",
+ "\n",
+ "\n",
+ "**1. Categorical Attributes**\n",
+ "\n",
+ "* **workclass**: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked.\n",
+ "Individual work category\n",
+ "* **education**: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool.\n",
+ "Individual's highest education degree\n",
+ "* **marital-status**: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse.\n",
+ "Individual marital status\n",
+ "* **occupation**: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces.\n",
+ "Individual's occupation\n",
+ "* **relationship**: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried.\n",
+ "Individual's relation in a family\n",
+ "* **race**: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.\n",
+ "Race of Individual\n",
+ "* **sex**: Female, Male.\n",
+ "* **native-country**: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands.\n",
+ "Individual's native country\n",
+ "\n",
+ "\n",
+ "**2. Continuous Attributes**\n",
+ "\n",
+ "* **age**: continuous.\n",
+ "Age of an individual\n",
+ "* **fnlwgt**: final weight, continuous.\n",
+ "The weights on the CPS files are controlled to independent estimates of the civilian noninstitutional population of the US. These are prepared monthly for us by Population Division here at the Census Bureau.\n",
+ "* **capital-gain**: continuous.\n",
+ "* **capital-loss**: continuous.\n",
+ "* **hours-per-week**: continuous.\n",
+ "Individual's working hour per week"
+ ],
+ "metadata": {
+ "id": "YxoEyfG-UZ3Q"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "attrib, counts = np.unique(data['workclass'], return_counts = True)\n",
+ "most_freq_attrib = attrib[np.argmax(counts, axis = 0)]\n",
+ "data['workclass'][data['workclass'] == ' ?'] = most_freq_attrib"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "kdWMMYohUB4m",
+ "outputId": "135c50ab-ea5d-4157-ae41-ef11ddbeec98"
+ },
+ "execution_count": 35,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:3: SettingWithCopyWarning: \n",
+ "A value is trying to be set on a copy of a slice from a DataFrame\n",
+ "\n",
+ "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+ " This is separate from the ipykernel package so we can avoid doing imports until\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "data['occupation'].replace({' ?': np.nan}, inplace = True)\n",
+ "data['native_country'].replace({' ?': np.nan}, inplace = True)"
+ ],
+ "metadata": {
+ "id": "B-wD2y7fUi-q"
+ },
+ "execution_count": 36,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "from sklearn.impute import SimpleImputer\n",
+ "\n",
+ "si = SimpleImputer(strategy = 'most_frequent')\n",
+ "data[['occupation', 'native_country']] = si.fit_transform(data[['occupation', 'native_country']])"
+ ],
+ "metadata": {
+ "id": "jPOZFeaaUou2"
+ },
+ "execution_count": 37,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "data['income'] = np.where(data['income'] == ' <=50K', 0, 1)"
+ ],
+ "metadata": {
+ "id": "w-BrC12KUuSz"
+ },
+ "execution_count": 38,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "## EDA"
+ ],
+ "metadata": {
+ "id": "qTlskxwTU5Hk"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "## Feature Engineering"
+ ],
+ "metadata": {
+ "id": "IuG6784AU8sx"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "num_col = ['age', 'fnlwgt', 'capital_gain', 'capital_loss', 'hours_per_week']"
+ ],
+ "metadata": {
+ "id": "Ly--b-01Uzxy"
+ },
+ "execution_count": 39,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "y = data['income']"
+ ],
+ "metadata": {
+ "id": "TPlyHYjkVBZy"
+ },
+ "execution_count": 40,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "num_data = data[num_col]\n",
+ "cat_data = data.drop(num_col, axis = 1).drop(['income'], axis = 1)"
+ ],
+ "metadata": {
+ "id": "4mz1e_gvVCzl"
+ },
+ "execution_count": 41,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "## Select and Train"
+ ],
+ "metadata": {
+ "id": "BpBROLCKVPZU"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "### Numerical"
+ ],
+ "metadata": {
+ "id": "u0bE1N-ZVTfn"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "import seaborn as sns\n",
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "for col in num_col:\n",
+ " sns.distplot(num_data[col])\n",
+ " plt.show()"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 1000
+ },
+ "id": "0l8POSxKVOGQ",
+ "outputId": "71e31fee-ed79-4ac5-c5de-1a2f7acb02d4"
+ },
+ "execution_count": 42,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).\n",
+ " warnings.warn(msg, FutureWarning)\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "
"
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEGCAYAAABy53LJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXxV9Zn48c+Tm30nGyELJCHsiywRXKi7wlQrarXiVjva0lZtO+2Mv9p2xnGcdqZ2Zrqqtbh0LB3rTo2KUisVq5Ul7LuEECALZCFkJfvz++OeaIyB5EJO7k3yvF+v++Is33N47uUmD9/lfL+iqhhjjDH9FeTvAIwxxgwtljiMMcb4xBKHMcYYn1jiMMYY4xNLHMYYY3wS7O8ABkNSUpJmZWX5OwxjjBlSNm7cWKWqyT2Pj4jEkZWVRUFBgb/DMMaYIUVEDvZ23JqqjDHG+MQShzHGGJ9Y4jDGGOMTSxzGGGN8YonDGGOMTyxxGGOM8YklDmOMMT6xxGGMMcYnljiMMcb4ZEQ8OW4C1zPrDn3q2M3zx/ohEmNMf1mNwxhjjE8scRhjjPGJJQ5jjDE+scRhjDHGJ5Y4jDHG+MRGVZkzYqOijBl5XK1xiMgiEdkrIoUicl8v58NE5Dnn/DoRyXKOzxORLc5rq4hc2+2aYhHZ7pyz1ZmMMWaQuVbjEBEP8AhwOVACbBCRfFXd1a3YnUCNquaKyBLgIeBGYAeQp6rtIjIG2Coir6pqu3Pdxapa5VbsxhhjTs7Npqp5QKGqFgGIyLPAYqB74lgMPOBsvwg8LCKiqk3dyoQD6mKcQ5obTUW93XMg7muMGR7cbKpKBw532y9xjvVaxqlN1AKJACIyX0R2AtuBr3WrbSjwJxHZKCJLXYzfGGNMLwK2c1xV1wHTRGQK8LSIvKGqzcACVS0VkRTgLRHZo6rv9rzeSSpLAcaOtf8pG2PMQHGzxlEKZHbbz3CO9VpGRIKBOKC6ewFV3Q00ANOd/VLnzwpgBd4msU9R1WWqmqeqecnJyWf8Zowxxni5mTg2ABNEJFtEQoElQH6PMvnA7c729cBqVVXnmmAAERkHTAaKRSRKRGKc41HAFXg70o0xxgwS15qqnBFR9wCrAA/wlKruFJEHgQJVzQeeBJaLSCFwDG9yAVgA3CcibUAncJeqVolIDrBCRLpif0ZV33TrPRhjjPk0V/s4VHUlsLLHsfu7bTcDN/Ry3XJgeS/Hi4CzBj5SY4wx/RWwneNm4NlT3saYgWCJwwwZlviMCQw2yaExxhifWOIwxhjjE0scxhhjfGKJwxhjjE8scRhjjPGJJQ5jjDE+seG4ZtixaeGNcZfVOIwxxvjEEocxxhifWOIwxhjjE0scxhhjfGKJwxhjjE8scRhjjPGJJQ5jjDE+scRhjDHGJ/YAYACyB9gGj63xYYzvrMZhjDHGJ64mDhFZJCJ7RaRQRO7r5XyYiDznnF8nIlnO8XkissV5bRWRa/t7T2OMMe5yLXGIiAd4BPg7YCpwk4hM7VHsTqBGVXOBnwEPOcd3AHmqOgtYBPxGRIL7eU9jjDEucrPGMQ8oVNUiVW0FngUW9yizGHja2X4RuFRERFWbVLXdOR4OqA/3NMYY4yI3E0c6cLjbfolzrNcyTqKoBRIBRGS+iOwEtgNfc873557GGGNcFLCd46q6TlWnAWcD3xORcF+uF5GlIlIgIgWVlZXuBGmMMSOQm4mjFMjstp/hHOu1jIgEA3FAdfcCqrobaACm9/OeXdctU9U8Vc1LTk4+g7dhjDGmOzcTxwZggohki0gosATI71EmH7jd2b4eWK2q6lwTDCAi44DJQHE/72mMMcZFrj0AqKrtInIPsArwAE+p6k4ReRAoUNV84ElguYgUAsfwJgKABcB9ItIGdAJ3qWoVQG/3dOs9GGOM+TRXnxxX1ZXAyh7H7u+23Qzc0Mt1y4Hl/b2nMcaYwROwnePGGGMCkyUOY4wxPrHEYYwxxieWOIwxxvjEEocxxhifWOIwxhjjE0scxhhjfGKJwxhjjE8scRhjjPGJJQ5jjDE+scRhjDHGJ67OVWVGtqbWdjYfOk5RZQNVDa0oEB8RwviUaPLGjSIqzL5+xgxF9pNrBkxTSzvF1U386PVdrC+uYWdpLe2d2mvZ0OAgLpmUwrjESMYlRg1ypMaYM2GJw5y28toTbDl8nOKqRoqrG6mobwG8SWFWRjxfvTCHs7MSmDomlsToMIIEqhtb2VNez9t7jrJicylv7jzC5NQYrpqZRkJUqJ/fkTGmPyxxmH47WtfM2qJqPthfzQdF1RysbgIgLDiIcYmRzMqMJysxiu9cMZHwEE+v90iKDmPBhDAWTEji3oWT+PZzW/nLngp++fY+rpmdzqzM+MF8S8aY02CJw5xSTVMr20tq2VZ6nO+v2A5ATHgw87MT+eK5WdQ0tpIaF06QyEfXnCxp9BQZGsyFE5M5KyOO5wsO83zBYQ5UNXDdnPR+38MYM/gscZhPqWtuY0dpLdtKajl0zFuryBgVwXcXTWZBbhJT02LxBHkTxTPrDp3x3xcfGcqdC3L48+6jrPmwkmsf/RvLbptLZkLkGd/bGDPwLHEYAI41tvLGjnJe3VrGuqJjKJAaG84VU0czIz2OxOgwbp4/1rW/3xMkLJyWSlZiJC9vLmXxI+/z2K1zmZed4NrfaYw5PZY4RrATrR28UHCYV7eV835hFR2dSk5yFBdPTmFmehwpseGDHtOk1Fj+eHcWX/ldATc/vpZ/v2Y6N81zL2EZY3znauIQkUXALwAP8ISq/rjH+TDgd8BcoBq4UVWLReRy4MdAKNAK3Kuqq51r3gHGACec21yhqhVuvo/h5HhTK3uO1LP3SD2FlQ10dCqZCREsvSCHz81MY8qYGP6w/rBfYxyfHM2Ku87nm3/YzPde3s6e8jr++aqpfo3JGPMx1xKHiHiAR4DLgRJgg4jkq+qubsXuBGpUNVdElgAPATcCVcDnVLVMRKYDq4D0btfdoqoFbsU+XNSeaGNnWS07S+vYXlrL3/ZXUdXQCkBCVCjnZCdw76LJnJURh3Tr3A4EcREhPPWls3nozT0se7eInWV1XDw5hVGRNmTXGH9zs8YxDyhU1SIAEXkWWAx0TxyLgQec7ReBh0VEVHVztzI7gQgRCVPVFhfjHfLaOjrZc6Sef3h2M5sPH/9ouCxAWlw4yTHhnJ2VwKTUGJKjwxCRgB7+6gkSvv/ZKUxLi+UHK3awo6yWa2alMzMjcGM2ZiRwM3GkA93bPEqA+Scro6rtIlILJOKtcXT5PLCpR9L4rYh0AC8BP1TV3h9PHiE6OpUPiqr564eV1Le0e2sTOQl8IS+T6elxTEuLJSk6bEBGQPnD4lnpzM4cxS1PrOXZDYfZe6SeK2eOITLUuuiM8YeA/skTkWl4m6+u6Hb4FlUtFZEYvInjNrz9JD2vXQosBRg7dvh2rlbVt/BcwWFKj58gJzmK6ydk8IMrpxDsGV7zV45NjGTpBeNZvcc7ZHdfRQNXn5Xm77CMGZHc/O1SCmR2289wjvVaRkSCgTi8neSISAawAviiqu7vukBVS50/64Fn8DaJfYqqLlPVPFXNS05OHpA3FGgKio/x6zX7qWlq5aZ5Y/nyghwmjI4ZdkmjiydIuHxqKnddlEtseDDPrD/E15ZvpKKu2d+hGTOiuPkbZgMwQUSyRSQUWALk9yiTD9zubF8PrFZVFZF44HXgPlV9v6uwiASLSJKzHQJcBexw8T0ErILiY9z65DoiQz3cdVEuM9Lj/B3SoEmLj+DrF+WycOpoVu+t4LKfruGFgsOM8BZLYwaNa4lDVduBe/COiNoNPK+qO0XkQRG52in2JJAoIoXAd4D7nOP3ALnA/SKyxXmlAGHAKhHZBmzBW2N53K33EKg+PFrPHf+7gbS4CL564fgROTmgJ0i4cFIKb3zrM0xKjeHeF7fxxafWc/hYU98XG2POiKt9HKq6EljZ49j93babgRt6ue6HwA9Pctu5AxnjUFPX3MZXfldAeIiHp++Yx1/3VfV90TA2Pjma55aey+/XHeShN/aw8OfvcunkFObnJH5i/ixjzMAZno3hw5Sqcu8LWympOcGjt8yxuZwcQUHCF8/NYtW3LyAvK4FXt5Xz5HsHqGtu83doxgxLljiGkBcKSli18yjfXTSJvCybw6mnjFGRPP33Z/P5OemU1DTx8OpCiqoa/B2WMcOOJY4hovZEG//++i7mZSfw5QU5/g4nYIkIc8cl8PWLcgkPCeKp9w7w7oeV1nFuzAAK6Oc4zMde21ZGW0cnP/n8TIKCrO2+L6mx4dx1US4vbyrhzZ1HOHisic/NSiM2POS079nbA5RuzhhsTKCyGscQsL+ygZ1lddxzcS5ZSbY+d3+Fh3i4ad5Yrpwxhr1H6rjmkfcpqrSmK2POlCWOANepysrt5cRHhvDlz1gTla9EhPNzk7hjQTbHm9pY/Mj7vLPXJlM25kxY4ghw20pqKa9tZuG0VFtO9QzkJEXzyt3nkx4fwR3/u4Gn/1bs75CMGbKsjyOAdaryzt4KUmLCRtST4W7JTIjk5bvO45t/2MK/5u+kpqn1o1mCjTH9Z4kjgO0qq6OivoUb8zLtYbYBEhkazGO3zuG7L23n53/exzk5iVw1c8yAfr4nm4XYOtLNcGGJI4C9u6+SxKhQZmRYbWMgBXuC+K/rZzIqMoQn3jtAR6dyzaw0q3kY00/96uMQkZdF5EoRsT6RQVJ6/AQlNSc4d7xNneGGoCDhB1dO4cKJyWwoPsbbe6zD3Jj+6m8ieBS4GdgnIj8WkUkuxmSA9QeOEeIRZmeO8ncow5aIcMXU0cwdN4rVeyrYVnLc3yEZMyT0K3Go6p9V9RZgDlAM/FlE/iYif+9Mb24GUHNbB1sPH2dmRjwRoTaSyk0iwuJZaYxNiOTlTaUctbU9jOlTv5ueRCQR+BLwZWAz8Au8ieQtVyIbwXaV1dHa0cnZNh/VoAgOCuLmeWMJCQ7i+YLDtLZ3+jskYwJaf/s4VgB/BSKBz6nq1ar6nKp+A4h2M8CRaHtpLaMiQ8gcFeHvUEaM2IgQrpudTnltM79avc/f4RgT0Ppb43hcVaeq6n+qajmAiIQBqGqea9GNQLUn2iisaGB6WpyN8hlkU8bEMmdsPI++s5/d5XX+DseYgNXfxNHbokofDGQgxuutXUfpULUhuH7y2RljiA0P5l/zd9qMusacxCkTh4ikishcIEJEZovIHOd1Ed5mKzPAVm4vZ1RkCOnx1kzlD5Ghwdy7cDLrDxwjf2uZv8MxJiD19QDgQrwd4hnAT7sdrwe+71JMI1ZLewd/21/F7MxR1kzlRzeenckz6w/yHyt3c9mU0USF2XOyxnR3yhqHqj6tqhcDX1LVi7u9rlbVlwcpxhFjY3ENzW2dTEix8Qb+5AkS/u3q6Ryta+FXqwv9HY4xAaevpqpbnc0sEflOz1dfNxeRRSKyV0QKReS+Xs6Hichzzvl1IpLlHL9cRDaKyHbnz0u6XTPXOV4oIr+UYfRf83f3VRHiEbKTbc0Nf5s7bhSfn5PBk+8VcaCq0d/hGBNQ+uoc7/oNFg3E9PI6KRHxAI8AfwdMBW4Skak9it0J1KhqLvAz4CHneBXeYb8zgNuB5d2u+TXwFWCC81rUx3sYMv66r5I5Y0cRFmwP/QWC7/7dJEI9Qfzo9d3+DsWYgHLKxltV/Y3z57+dxr3nAYWqWgQgIs8Ci4Fd3cosBh5wtl8EHhYRUdXN3crsxNs5HwYkALGquta55++Aa4A3TiO+gFLV0MLOsjruXWizuQSKlJhw7r4kl5+8uZf39lX5OxxjAkZ/HwD8iYjEikiIiLwtIpXdmrFOJh043G2/xDnWaxlVbQdqgcQeZT4PbFLVFqd8SR/37Ip5qYgUiEhBZWVlH6EOjmfWHfrUq8vaomoAzs9N8ld4phd3nJ9NZkIE//7aLjo6bXiuMdD/5ziuUNU64Cq8c1XlAve6FVQXEZmGt/nqq75eq6rLVDVPVfOSk5MHPrgBtvFgDeEhQUxLi/V3KKab8BAPP/jsFPYerWdD8TF/h2NMQOhv4uhq0roSeEFVa/txTSmQ2W0/wznWaxkRCQbigGpnPwNYAXxRVfd3K5/Rxz2HpE0HazgrI54Qj81cH2gWTktlfnYCf959lKbWdn+HY4zf9fe31GsisgeYC7wtIslAX9OIbgAmiEi2iIQCS4D8HmXy8XZ+A1wPrFZVFZF44HXgPlV9v6uwM91JnYic44ym+iLwSj/fQ8BqbutgZ1kdc8bZFOqBSET4189No7mtgzd3HPF3OMb4XX+nVb8POA/IU9U2oBFvx/aprmkH7gFWAbuB51V1p4g8KCJXO8WeBBJFpBD4DtA1ZPcevM1h94vIFueV4py7C3gCKAT2Mww6xreV1NLeqcwda4kjUE1Ni+X83CQKDtZQVNXg73CM8StfHomdjPd5ju7X/O5UF6jqSmBlj2P3d9tuBm7o5bof0vv8WKhqATC9/2EHvo0HawCsxhHgLp08mh2ltby8qZRvXJxLWIgNmzYjU39HVS0H/htYAJztvGxW3AGy6VAN2UlRJESF+jsUcwqhwUFcPzeTmsZWXtte7u9wjPGb/tY48oCpatOFumLr4eNDYhhu9+HDp1Pu5vljBzIcv8hOiuKCicms+bCSnKSoYfGejPFVfxPHDiAVsP9mDbDK+hYq6ltGxDDc/iaeQHfZlNEcOtbEis2l3Dx/LLOtb8qMMP0dVZUE7BKRVSKS3/VyM7CRYpezYNC0NFt/Y6jwBAk3zxtLTHgwX12+kSO1tk65GVn6W+N4wM0gRrKdZd5HYqaO8U+NY7jUAgZbVFgwt52TxZPvFbF0eQHPf/Vcwq2z3IwQ/R2OuwbvE+MhzvYGYJOLcY0Yu8rqyBgVQVxkiL9DMT5KjQvnZzfOYntpLfe+uM1WDDQjRn9HVX0F7ySEv3EOpQN/dCuokWRXWd2I6N8Yrq6Ylsq9Cyfx6tYyW7vDjBj9baq6G+9st+sAVHVftwfyzGlqae/gQHUji2f1Ok/jabPmp8H19QvHU1jRwE/f+pDxybYIlxn++ps4WlS1tWvNJOchQKuXn6Ejtc2oYjWOHoZa4hMR/vO6GRyqbuIfX9jClxfkkGZrxpthrL+jqtaIyPfxrotxOfAC8Kp7YY0MR+q8o3GmWOIY8sKCPTx221xGRYbyh/WHaGnr8HdIxrimv4njPqAS2I53ivOVwD+7FdRIcbSuheiwYNLiwv0dihkASdFh/PzGWRxrbCV/a5m/wzHGNf1qqlLVThH5I/BHVQ2MVZGGgYr6ZnJTohlGy6YPukBr1pqfk8jFk1NYvaeC6elxTPHTMGtj3HTKGod4PSAiVcBeYK+z+t/9p7rO9E9FXQsTUqwzdbi5aFIyqbHhvLKllBOt1mRlhp++ahzfBs4HzlbVAwAikgP8WkS+rao/czvA4aqppZ2GlnYmjLbEMdwEBwXx+TkZ/HpNIW/tPsLVZ/k2am44z/Vlhoe++jhuA27qShoAqloE3Ip3ESVzmirqWwCYMDrGz5EYN6SPimBediLrio7ZlCRm2OkrcYSoalXPg04/hz3qfAaO1nt/mVhT1fB12ZQUIkI9vLqtzJ4qN8NKX01Vrad5zvShor6FUE8QaXH9H+8faB3B5tQiQ4O5bMpo8reWsaOszt/hGDNg+qpxnCUidb286oEZgxHgcFVR10xKbBhBQTaiajibl51Aamw4b+wop9me7TDDxCkTh6p6VDW2l1eMqlpT1RmorG8hOTrM32EYlwWJcNVZYzje1MZv1hT5OxxjBkR/HwA8LSKySET2ikihiNzXy/kwEXnOOb9ORLKc44ki8hcRaRCRh3tc845zzy3Oa8jNmdXa3kldcztJMZY4RoKcpGimp8Xy2Jr91lFuhoX+zlXlMxHxAI8AlwMlwAYRyVfVXd2K3QnUqGquiCwBHgJuBJqBfwGmO6+eblHVArdid1t1o3dEVaKtMT6o/NlHtGj6GH759j5+smoPP/3CLL/FYcxAcC1x4J1Nt9AZvouIPAssBronjsV8vEjUi8DDIiKq2gi8JyK5LsbnN9UN3nEFidZUNWIkRIVyx4JsHluzny+dl8XMjPgBuW9vydCe9zBuczNxpAOHu+2XAPNPVkZV20WkFkgEPjUEuIffikgH8BLwQ+1lrKOILAWWAowdG1g/SNUNH9c4bKRU4HHr3+Tui8fz4sbDPPjqLl742rk21YwZslzt43DJLao6A/iM87qtt0KqukxV81Q1Lzk5eVAD7Et1YytRYcG21OgIExMewj9eMYmCgzWs3H7E3+EYc9rcTBylQGa3/QznWK9lnDU+4oDqU91UVUudP+uBZ/A2iQ0pVQ2tJFn/xoj0hbxMJqfG8J9v7LbhuWbIcjNxbAAmiEi2iIQCS4D8HmXygdud7euB1b01O3URkWARSXK2Q4CrgB0DHrnLjjW2kBhtiWMk8gQJ9181lZKaEzz1/oG+LzAmALnWx+H0WdwDrAI8wFOqulNEHgQKVDUfeBJYLiKFwDG8yQUAESkGYoFQEbkGuAI4CKxykoYH+DPwuFvvwQ1dQ3GtY3zkOi83icumjOaR1YVcOzudMT7MHmBMIHCzcxxVXYl30afux+7vtt0M3HCSa7NOctu5AxWfP9hQXANw/1VTueLna/jBih08eXuedZSbIWUodo4PaTYU1wCMTYzk3oWTWb2ngle22GqBZmixxDHIqhudxGE1jhHvS+dlMWdsPA+8upNKZ5p9Y4YCSxyDrLqhxYbiGsDbUf6T62fS1NLBA/k7/R2OMf1miWOQVTe2Wm3DfCQ3JYZvXTaB17eX83zB4b4vMCYAWOIYZNUNLSTZUFzTzdcuHM+C3CT++Y872FFa6+9wjOmTJY5B1DUUNyHKOsbNxzxBwi+WzCIpKpSv/X4jTa3t/g7JmFOyxDGIuobiWo3D9JQYHcajt86loq6F5wsO02lLzZoA5upzHOaTPhqKazWOYWMgJ0SclRnPA1dP4/srtvPHzaVcOzvdnu8wAclqHIPoo6G4VuMwJ3Hz/LFcNCnZmQixnFPMwGOM31iNYxBVN7QQFeqxobjmlC6fMprW9k7e319NaLCHy6eO9ndIxnyCJY5BVN3Yak+Mmz6JCFfOGENreyd/2VtBW0cni6an+jssYz5iiWMQVTe0MD452t9hmCFARLhmdjrBniDeK6yiurGV6+akExlqP7LG/+xbOEhOtHbYrLjGJ0EiXH1WGknRoby+rZwv/OYDlt2WR1r86c2ma8vMmoFineOD5OCxRsCG4hrfnTc+idvOGceBykY++8u/8vbuo/4OyYxwljgGSXGVN3HYUFxzOiaPieXVbywgLS6CO58u4Iev7aK1vdPfYZkRyhLHICmubgJsKK45fTnJ0bx813ncds44nnjvADf85gOOOUO8jRlMljgGSXFVow3FNWcsPMTDv18znUdvmUNRRQMP/2WfzW9lBp0ljkFSXN1oHeNmwHx2xhhe/+ZnSIoO45n1h8jfWkZbhzVdmcFhiWOQFFc12XTqZkCNTYxk6QU5nD8+kbVF1Sx7t4iGFpsg0bjP1cQhIotEZK+IFIrIfb2cDxOR55zz60QkyzmeKCJ/EZEGEXm4xzVzRWS7c80vZQhM5nOitYMjdc1W4zADLjgoiCtnpnHr/LFU1Dez7N0iyo6f8HdYZphzLXGIiAd4BPg7YCpwk4hM7VHsTqBGVXOBnwEPOcebgX8B/qmXW/8a+AowwXktGvjoB1bXUFzrGDdumZoWx5fOy6a+uY0bHvuAA84oPmPc4GaNYx5QqKpFqtoKPAss7lFmMfC0s/0icKmIiKo2qup7eBPIR0RkDBCrqmvVO/vb74BrXHwPA6K4yjuiKsmG4hoXZSdF8eXP5HCirYMbHvuAg9WWPIw73Ewc6UD3tTBLnGO9llHVdqAWSOzjniV93BMAEVkqIgUiUlBZWelj6AOruNpqHGZwpMdH8NzSc2jv7OT2p9ZT3dDi75DMMDRsO8dVdZmq5qlqXnJysl9jOVjdSGJUqA3FHeGeWXfoUy83TBgdw5O351Fe28wdTxfYioJmwLmZOEqBzG77Gc6xXsuISDAQB1T3cc+MPu4ZcA5UNTIuMdLfYZgRZO64BH5102y2lxznnmc2025Ddc0AcjNxbAAmiEi2iIQCS4D8HmXygdud7euB1XqKlWtUtRyoE5FznNFUXwReGfjQB9bB6iaykqL8HYYZYa6YlsqDi6ezek8F//Wnvf4Oxwwjrs2Oq6rtInIPsArwAE+p6k4ReRAoUNV84ElguYgUAsfwJhcARKQYiAVCReQa4ApV3QXcBfwvEAG84bwC1onWDsprm8lKtMRhBt+t54xjz5E6frOmiCVnZzIzI97fIZlhwNVp1VV1JbCyx7H7u203Azec5NqskxwvAKYPXJTuOnTMO6IqKymKhmZrazaD7/6rprGnvJ6XNpWQHBPGmLjTm5bdmC7DtnM8UHSNp8+yPg7jJ6HBQTx66xwiQjz8fu1B6yw3Z8wWcnJZ11j6cYlR7Cit83M0JtC4NbKqp5SYcG6eP47H3y3ihYISbjt3HEGBP+mCCVBW43BZcXUjCVGhxEWE+DsUM8KNTYjkszPHsPdoPe9+6N9nm8zQZjUOlxVXNVkzlQkY52QncLC6kbd2HSVjlH0vzemxxOGy4upGzs051cPwxgweEeHa2emU1zbz3IZDLL0gh9S48E+UOVnzma1PbrpYU5WLPhqKa89wmAASFuzhlvljaetU7vq/jbYErfGZJQ4XdY2oykm2xGECS0pMONfNTmfToeP85xu7/R2OGWKsqcpF+ysbAMhJivZzJMZ82syMeMJDPPz2/WLmjhvFVTPT/B2SGSIscbioqLIREe9018acKTeG7n7/s1PYVnKc7764jcmpseSm2H9yTN+sqcpFRVUNpMVFEBFqs+KawBQaHMQjt8whLMTD13+/kUZbetb0gyUOF+2vbGC8/Q/OBLgxcRH8cslsCisb+P6K7ZxinlFjAEscrlFVDlQ2kmPNVGYIWDAhiX+8fCKvbClj3YFj/g7HBDhLHC45WtdCY2sH421ElRki7rool0smp/D6tnIO2bKz5vGqCRQAAA+2SURBVBSsc9wlXSOqxidbU5UZXKfbiR4UJPz0C2dxyf+sYfnag9x1US6jomy5Y/NpVuNwSVHXUFxLHGYIiY8M5fZzs+hQ5ekPimlu6/B3SCYAWeJwSWFFA1GhHkbHhvk7FGN8khwTxs3zxlHV0MKzGw7R0Wmd5eaTLHG4ZM+ReiamxiA2dbUZgnJToll8VjofHm3glS2lNtLKfIIlDheoKnuP1jM5NcbfoRhz2s7OTuDiSSkUHKxh1c4j/g7HBBDrHHdBZX0Lx5vamDTaEocZ2i6bksKJtnbe3VfFr9/Zz9cvGv+J8711xNssusOfqzUOEVkkIntFpFBE7uvlfJiIPOecXyciWd3Ofc85vldEFnY7Xiwi20Vki4gUuBn/6dpzpB6AiVbjMEOciHDVzDRmZsTx0Jt7+N/3D/g7JBMAXKtxiIgHeAS4HCgBNohIvqru6lbsTqBGVXNFZAnwEHCjiEwFlgDTgDTgzyIyUVW7hnhcrKpVbsV+pvY6iWNyaqyfIzHmzAWJcMPcTEbHhvPAq7to61C+ckGOv8MyfuRmjWMeUKiqRaraCjwLLO5RZjHwtLP9InCpeHuTFwPPqmqLqh4ACp37DQl7jtSTHBNGgo2BN8OEJ0h49JY5fHZGKj9auZtH/lLo75CMH7nZx5EOHO62XwLMP1kZVW0XkVog0Tm+tse16c62An8SEQV+o6rLevvLRWQpsBRg7NjBbXPde7TO+jfMsBPiCeKXS2YT4tnKf63aS31zOxmjIgiykYMjzlDsHF+gqqUikgK8JSJ7VPXdnoWchLIMIC8vb9DGEnZ0KvuONnDrOeMG66805rT5+pR5sCeIn35hFlFhwTy2Zj8zM+K4fk4GwR4boDmSuPmvXQpkdtvPcI71WkZEgoE4oPpU16pq158VwAoCrAlrf2UDLe2dTBlj/RtmePIECT+6Zjr3LpzEtpJafvu3Yk602hPmI4mbiWMDMEFEskUkFG9nd36PMvnA7c729cBq9T5plA8scUZdZQMTgPUiEiUiMQAiEgVcAexw8T34bOvh4wDMyozzcyTGuEdEuPviXL6Ql8mh6iYee3c/NU2t/g7LDBLXmqqcPot7gFWAB3hKVXeKyINAgarmA08Cy0WkEDiGN7nglHse2AW0A3eraoeIjAZWOE9jBwPPqOqbbr2H07G15DjRYcG2XKwZEWZlxhMbHszv1x3k1+/s51Z7hmNEcLWPQ1VXAit7HLu/23YzcMNJrv0R8KMex4qAswY+0oGzraSWGelxBAVZh6EZGXKSo/nqBeNZvvYgj793gOzkKG482xLIcGY9WgOopb2D3eV1zLRmKjPCjI4N566LxpOdFMV3X9rO/a/soK2j099hGZcMxVFVAWt3eT1tHcqsjHh/h2LMoIsMDeb2c7M4dKyRx/96gL1H6nn0ljkkRtsM0cON1TgGUFfH+FmZljjMyOQJEn5w5VR+duNZbD58nCt/+R7rbSnaYcdqHANo06EakmPCGBMX7u9QjPGra2dnMCElhruf2cRNj6/lO5dPJC4i5FMPC9qEiEOTJY4Boqr8bX815+Yk2hocZljy9WHB6elxvPaNBXzv5e3816q9jE+O4rrZGbYc7TBgTVUDZF9FA5X1LZyfm+jvUIwJGDHhIfzqptn8+LoZHK45wS9W72NtUTWdtjDUkGY1jgHyfqF3st7zxif5ORJjAouIsGTeWKobW1mxuZT8rWVsLTnOlTPG+Ds0c5qsxjFA3i+sYlxiJJkJkf4OxZiANCoylL8/L4vrZqdTVd/Co+/s59vPbaH0+Al/h2Z8ZDWOAdDe0cnaomN87qw0f4diTEATEfKyEpieHseaDyt5fXs5r20rY/GsdL52YQ65KTar9FBgiWMArDtwjIaWdi6YYM1UxvSnEz08xMPCaan8x3UzWLZmP88VHObFjSVcMjmFG8/O5JLJKYTYjLsByxLHAHhlSylRoR4unpzi71CMGVLS4yP4t8XT+dZlE3n6b8X8Yf0hVu+pIDEqlGtnp3NDXiaTnCWYbX3zwGGJ4wy1tHfwxo4jLJyeSniIx9/hGDMkJUSF8u3LJ/KNS3J5d18lz28o4ekPinnivQNMGRPLlTNS6eyEpBh7Cj0QWOI4Q+/sraS+uZ3Fs9L7LmyMOaVgTxCXTB7NJZNHU93QwitbynhtWxn//acPAUiNDWdGRhwz0uIsifiRJY4z9PyGwyRFh3L+eHt+w5iBlBgdxh0LsrljQTZlx0/wo9d3s720lrd2HeWtXUdJjQ2nuqGFhdNTmZASbQ/eDiJLHGdgR2ktb++p4DuXT7SlM405Db48jX5+bhLn5yZxvKmVnWV1bC+t5X/e+pD/eetDshIjuWJaKpdPHc2csaPw2LIGrrLEcQZ+tXofMeHB3H5elr9DMWbEiI8M/SiJXDolhbd2HeVPu47y2/cPsOzdIhKjQrl0SgqfmZDMeeMTbXZeF1jiOE0bio+xaudRvnnpBOIiQvwdjjEj0tu7KwgSYdG0VC6amMyHR+vZVV7HK1vKeL6gBPD2i2SMiuDqWWlMS4tjypgYIkPtV9+ZsE/vNBxvauVbf9jMuMRIvvKZbH+HY4zB+2zIzIx4ZmbE09GplB0/wf7KBg5UNbKrvI6CgzUABAlkJUaRkxxNS3sHydFhJEWHkRQTRlSoBxEZtGG+J2uqC/RhxpY4fFTX3MbXf7+JyoYWXvr6ecSEW23DmEDjCRIyE7xTAF00yTt79cWTU9hZVseO0lr2HqmnqKqB/ZWNdHR+POFiRIiHpOhQNh2qISc5ipykaMYnRzE2MZKwYBtu38XVxCEii4BfAB7gCVX9cY/zYcDvgLlANXCjqhY7574H3Al0AN9U1VX9uaebNh2q4XsvbWd/ZQM/uX4mM22lP2OGBBHhnb2VgHeZ29Gx4VwwMZlOVWoaW6lqaKGyoZWq+hYqG1p498NKXtxY8tH1QQKZCZHkJEUxPjmanORoJ7FEkRgd5lNnfHtHJ+W1zZQeP8GmQzXUNLVyvKmN5rYO2juU9s5O3t591KkFhZIWH0G28/emxIQFxOgx1xKHiHiAR4DLgRJgg4jkq+qubsXuBGpUNVdElgAPATeKyFRgCTANSAP+LCITnWv6uueA6arq7iqr4+09Faw/cIyk6FCevmMe5+fa9CLGDHVBIiRGh5EYHcakHuea2zq8CaW+5aPEsru8nr/uq6K9Wy0lSLwPMCZFh5EYHUp8RChhwUGEBgchAk2tHTS1dlDb1Ebp8RMcqWv+RC0HICYsmIhQDyGeIDxBQnltM9tLa6lubP1E2eiwYLKToj6qDWUnR5EcHcaoqBBGRYYSHuwhNDiIEI/gCRLXkoybNY55QKGqFgGIyLPAYqD7L/nFwAPO9ovAw+J9p4uBZ1W1BTggIoXO/ejHPQfMzY+vpbi6CYDJqTF8d9FkvnjuOKLCrIXPmOEuPMRDxqhIMkZ9csbrTlVqm9qobGihuqGFhpZ276u5nUPVTXzY1kB4aBAtbZ0oEBnqISLEQ3NbB8kxYUwcHU18ZCjxkd5f9nERIZ+al6urj6OzUymva6aosoGiykYOVDWyv7KBguIa8reWcaplTUQg1BPElvuvICJ0YJvZ3PwNmA4c7rZfAsw/WRlVbReRWiDROb62x7Vdj2b3dU8ARGQpsNTZbRCRvafxHj5yEFgF3HUmN/FNElA1eH/dkGSfUd/sM+pbwH1GtwzgvSJ/dEaXj+vt4LD9r7OqLgOW+TuO0yUiBaqa5+84Apl9Rn2zz6hv9hn5zs3HnUuBzG77Gc6xXsuISDAQh7eT/GTX9ueexhhjXORm4tgATBCRbBEJxdvZnd+jTD5wu7N9PbBaVdU5vkREwkQkG5gArO/nPY0xxrjItaYqp8/iHrxdAx7gKVXdKSIPAgWqmg88CSx3Or+P4U0EOOWex9vp3Q7craodAL3d06334GdDtpltENln1Df7jPpmn5GPRE/VLW+MMcb0YFO6GmOM8YklDmOMMT6xxOFnIpIpIn8RkV0islNEvuUcTxCRt0Rkn/PnKH/H6m8i4hGRzSLymrOfLSLrRKRQRJ5zBkyMWCISLyIvisgeEdktIufa9+iTROTbzs/ZDhH5g4iE2/fId5Y4/K8d+EdVnQqcA9ztTLlyH/C2qk4A3nb2R7pvAbu77T8E/ExVc4EavFPYjGS/AN5U1cnAWXg/K/seOUQkHfgmkKeq0/EOsOma6si+Rz6wxOFnqlquqpuc7Xq8P+zpeKdSedop9jRwjX8iDAwikgFcCTzh7AtwCd6pamCEf0YiEgdcgHekIqraqqrHse9RT8FAhPPcWCRQjn2PfGaJI4CISBYwG1gHjFbVcufUEWC0n8IKFD8H/h/Q6ewnAsdVtd3Z7z4tzUiUDVQCv3Wa854QkSjse/QRVS0F/hs4hDdh1AIbse+RzyxxBAgRiQZeAv5BVeu6n3Meihyx46ZF5CqgQlU3+juWABYMzAF+raqzgUZ6NEvZ90hG4a2BZeOddTsKWOTXoIYoSxwBQERC8CaN/1PVl53DR0VkjHN+DFDhr/gCwPnA1SJSDDyLt2nhF0C80+QANv1MCVCiquuc/RfxJhL7Hn3sMuCAqlaqahvwMt7vln2PfGSJw8+ctvongd2q+tNup7pPx3I78MpgxxYoVPV7qpqhqll4OzNXq+otwF/wTlUD9hkdAQ6LSNeyEpfinXnBvkcfOwScIyKRzs9d12dk3yMf2ZPjfiYiC4C/Atv5uP3++3j7OZ4HxuKd1f0LqnrML0EGEBG5CPgnVb1KRHLw1kASgM3Arc4aLiOSiMzCO3ggFCgC/h7vfw7te+QQkX8DbsQ7mnEz8GW8fRr2PfKBJQ5jjDE+saYqY4wxPrHEYYwxxieWOIwxxvjEEocxxhifWOIwxhjjE0scxhhjfGKJwxhjjE8scRjjIhH5o4hsdNaAWOocu1NEPhSR9SLyuIg87BxPFpGXRGSD8zrfv9Eb0zt7ANAYF4lIgqoeE5EIYAOwEHgf7zxS9cBqYKuq3iMizwCPqup7IjIWWKWqU/wWvDEnEdx3EWPMGfimiFzrbGcCtwFruqb9EJEXgInO+cuAqd5plACIFZFoVW0YzICN6YslDmNc4syrdRlwrqo2icg7wB7gZLWIIOAcVW0enAiNOT3Wx2GMe+KAGidpTMa7NHAUcKGIjHKm8v58t/J/Ar7RteNMWmhMwLHEYYx73gSCRWQ38GNgLd61Hv4DWI+3r6MY70p04KyHLSLbRGQX8LVBj9iYfrDOcWMGWVe/hVPjWAE8paor/B2XMf1lNQ5jBt8DIrIF2AEcAP7o53iM8YnVOIwxxvjEahzGGGN8YonDGGOMTyxxGGOM8YklDmOMMT6xxGGMMcYn/x/GzxKNTveD6AAAAABJRU5ErkJggg==\n"
+ },
+ "metadata": {
+ "needs_background": "light"
+ }
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).\n",
+ " warnings.warn(msg, FutureWarning)\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "
"
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAERCAYAAABy/XBZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXzc9X3n8ddnTt2WbMnGNpaNweYICcEokIuQkE1KSRq6zdEksC0tW7ZH0jZpeiTdbbppuz3SzabdTZqQY4EkkISEEJqLKyRAAIMNCRiDOQw2PmXZknUfM/PpH78ZWTa2NZL1+/1GM+/n46GHRjO/+f0+Hlnzme/1+Zq7IyIitScRdwAiIhIPJQARkRqlBCAiUqOUAEREapQSgIhIjVICEBGpURWXAMzsy2bWbWab5uh8nWZ2u5k9aWabzWzVXJxXRGS+q7gEAFwLXDKH57se+KS7nwmcD3TP4blFROatiksA7n4PcGDqfWZ2qpn9yMw2mtm9ZnZGOecys7OAlLvfUTz3oLsPz33UIiLzT8UlgGO4Bvigu58HfAT4bJnPWwv0mdnNZvaomX3SzJKhRSkiMo+k4g5gOmbWBLwWuMnMSndni4/9GvCJozxtp7v/EsG/70LgXGA78A3gSuBL4UYtIlL5Kj4BELRS+tz9lUc+4O43Azcf57k7gJ+7+1YAM7sFeDVKACIild8F5O79wPNm9m4AC5xT5tMfBlrNrKP488XA5hDCFBGZdyouAZjZjcADwOlmtsPMrgIuB64ys18ATwCXlXMud88TjBncZWaPAwZ8IZzIRUTmF1M5aBGR2lRxLQAREYlGRQ0Ct7e3+6pVq+IOQ0Rk3ti4cWOPu3dMf+RLVVQCWLVqFRs2bIg7DBGRecPMts32ueoCEhGpUUoAIiI1SglARKRGKQGIiNQoJQARkRqlBCAiUqOUAEREapQSQIRUdkNEKokSQET+7vubeffnHqBQUBIQkcqgBBCR2zfvZcO2Xr73+O64QxERASqsFEQ1uWH99snbA6MTbNsfbEX86Tue5tKzTyKVVO4VkXjpXSgCLx4I3vwvPK2drT1D3Plkd8wRiYgoAURi+4FhkmZctDYo2PfcvsGYIxIRUQKIxLYDwyxrraMhm6KtIc2uvpG4QxIRUQIIW65QYGfvCJ0LGwBY3lavBCAiFUEJIGTd/WPkCs6KYgJYtqCenUoAIlIBlABC1jc8DsCixiwAy1rr2dk7okVhIhK7UKeBmtkLwACQB3Lu3hXm9SpR38gEAAsa0gAsb61naDxP/2iOBfXpOEMTkRoXxTqAN7l7TwTXqUgHhydIJYzGTBIIxgAAdvWNKAGISKzUBRSyvpEJWurTmBkQdAEB7OzVOICIxCvsBODA7Wa20cyuDvlaFengyMRhn/SXtdYBsOugEoCIxCvsLqDXu/tOM1sM3GFmT7n7PVMPKCaGqwE6OztDDid6B0cmWN3eOPlze2OWTDKhmUAiErtQWwDuvrP4vRv4DnD+UY65xt273L2ro6MjzHAily84A6MTkwPAAImEsay1jl19ozFGJiISYgIws0Yzay7dBt4KbArrepVoYHSCgvOSwd5gKuhwTFGJiATCbAEsAe4zs18ADwHfd/cfhXi9inOwOAW09YgEsHRBPbsPqgUgIvEKbQzA3bcC54R1/vmglAAW1GcOu7+9OcP+oXHcfXJ2kIhI1DQNNESHEsDhLYC2hgzjuQLD4/k4whIRAZQAQtU3MkE2laAuffjLvLAhaBH0FstEiIjEQQkgRAeHgzUAR3bztDUWE8DQRBxhiYgASgCh6h8NVgEfqa04LfSAWgAiEiMlgBANjOZozr50nL3UAuhTAhCRGCkBhMTdGRzN0Vz30hZAaQzgwJASgIjERwkgJMPjefLutNS/tAUQFIeDXiUAEYlRFOWga1L/aDDAe2QL4Ib12wGoTydZ//yByZ/ff0H11UESkcqmFkBIBkZzAEcdAwBoyKS0DkBEYqUEEJLJBFB3rASQZGg8F2VIIiKHUQIIycAxuoBKGjNJRtQCEJEYKQGEpH80R106QSZ19Je4IZtiaEwtABGJjxJASAZGJ2jOHnvP34ZMkuHxPO4eYVQiIocoAYRkYDR3zP5/gMZMilzBmcgrAYhIPJQAQjJwjDIQJQ2ZJIAGgkUkNkoAIXD3Y5aBKGnIBI8Nj2kgWETioQQQgv6RHLmCH78LKBu0AIbVAhCRmCgBhKB7INju8VhTQOFQC2BIU0FFJCZKACHY2z8GQPNR6gCVlMYA1AIQkbgoAYRg18ERABYcpwVQlw4SgBaDiUhclABCsLsv6AI6ci/gqZIJoy6dYHhCCUBE4qEEEII9/SM0ZlOkksd/eevTKgchIvFRAgjBrr5RWo/z6b+kIZNSAhCR2CgBhGD3wZHjdv+U1KeTGgQWkdgoAYRgd9/ocVcBl9RnkoxMFCKISETkpZQA5tjA6AQDY7myuoDqM0lG1AIQkZgoAcyxPQennwFU0pBOMjKhiqAiEg8lgDm2awYJoD6TpOAwllM3kIhETwlgju3uKy4CK3MQGLQYTETicexaBfISN6zfftT7339B5+TtXQdHMaOsQeBSOYgRLQYTkRiE3gIws6SZPWpm3wv7WpVgd98IHU1Zkgmb9tj6UklotQBEJAZRdAH9EfBkBNepCHv6R1naWl/WsfVqAYhIjEJNAGZ2MvA24IthXqeSPN8zxIq28hJAQ1oVQUUkPmG3AD4N/BlQE9NchsZy7OgdYe2S5rKOn2wBqAtIRGIQWgIws7cD3e6+cZrjrjazDWa2Yd++fWGFE4lnuwcBWLukqazj08kEqYSpC0hEYhFmC+B1wDvM7AXg68DFZvbVIw9y92vcvcvduzo6OkIMJ3zPFBPAmjJbABDMBFILQETiEFoCcPePuvvJ7r4KeC/wY3e/IqzrVYJn9g6QSSZYubCh7OfUZ5KaBSQisdBCsFkanciTKxw+tPH03gFWdzROuw/AVPXplLqARCQWkSQAd/+Ju789imuFLV9wfrKlm7//4ZP8+y92HfbY03sHyx4ALqlXF5CIxEQtgBl6ZFsvt2/eS106yaPb+ybfvIfGcuzsGyl7ALikVBBORCRqSgAztPPgCPXpJL/5mlXkCs6jL/YCh2YAnbZ45i0ArQMQkTgoAcxQz8AY7U0ZlrXWs7y1noeeP4C788NNe0gYnLNiwYzO15hJMpF3dQOJSOSUAGaoZ3CM9qYsABecspDugTGuf2AbX1u/jUvOPomlC8pbBVzSkA3qAfUOj895rCIix6MEMANjuTz9ozk6moMEsG5lG6sWNfLxW59gYDTH1W84dcbnLFUEPTCkBCAi0VICmIGeweBNutQCSJjxnq6TWVCf5tWrF/LKFa0zPmdDRi0AEYmH9gOYgZ6BMQDaiy0AgNaGDHd86A2TdX1mqrH4vN7hiRMPUERkBpQAZmDf4BgGLGrMHHb/4pa6WZ9zcgxAXUAiEjF1Ac1Az+AYrQ1p0jNY6Tud+nQSQ2MAIhI9JYAZ6BkcmxwAnivJhFGXTmoMQEQipwQwA/sHx1nUOLcJAIKZQGoBiEjUNAZQpuHxHGO5wlE3ez/WZvHlasym6NMgsIhETC2AMu0vTgFtys5uts/xqAUgInFQAijT/uIbdGN27htNDZmUxgBEJHJKAGXaPxisAWgKIQE0FlsA7j7n5xYRORYlgDKVuoBCaQFkU4zlCioLLSKRUgIoU89Q0AJozITTAgCtBRCRaCkBlGn/4DiZVIJMau5fslI9IM0EEpEoKQGUaf/gWCj9/6CKoCISDyWAMu0fGp/sqplrDdlSQTglABGJjhJAmXoGx0MZAIZD4wpqAYhIlJQAyhRmF1B9JknCDs00EhGJghJAGQoF58BQeC2AhBmLmrLsK+43ICISBSWAMvSPTpAreGgtAIDFzVn2DSoBiEh0lADK0BPiIrCSjuYs3QOjoZ1fRORISgBlCLMMRMniZnUBiUi0ykoAZnazmb3NzGoyYRwqBBfONFAIWgA9g+PkC6oHJCLRKPcN/bPA+4FnzOwfzOz0EGOqONG0AOrIF1xrAUQkMmUlAHe/090vB9YBLwB3mtn9ZvZbZvbSHVKqTGkMoCGEOkAlpa0mu/vVDSQi0Si7S8fMFgFXAv8VeBT4F4KEcEcokVWQ3uFxFtSnSSYstGssLiYAzQQSkaiU9ZHWzL4DnA58BfgVd99dfOgbZrbhGM+pA+4BssXrfMvdP37iIUevd3iChY2ZUK9xqAWgmUAiEo1y+zS+4O4/mHqHmWXdfczdu47xnDHgYncfLHYT3WdmP3T3B08k4Dj0Do3T1hBuT9fi5joAujUTSEQiUm4X0N8e5b4HjvcEDwwWf0wXv+blFJcDQ+OhtwDqM0masylNBRWRyBy3BWBmJwHLgXozOxcodYK3AA3TndzMksBG4DTgM+6+/sTCjUfv8DgvW9YS+nU6tBZARCI0XRfQLxEM/J4MfGrK/QPAx6Y7ubvngVeaWSvwHTM72903TT3GzK4Grgbo7OwsP/KIuHskLQBQAhCRaB03Abj7dcB1ZvZOd//2bC/i7n1mdjdwCbDpiMeuAa4B6OrqqrguopGJPGO5Aq0N0SSATTsPhn4dERGYvgvoCnf/KrDKzD585OPu/qmjPK303A5govjmXw+8BfjHEw04aqUa/Qsb0+QL4V5rcXMd+wa6w72IiEjRdF1AjcXvTbM491KC1kOSYLD5m+7+vVmcJ1alfXrbGjKTC8LCsqQly9B4nv7RCVrqqn59nYjEbLouoM8Xv//PmZ7Y3R8Dzp1lXBXjUAsg/ASwrLUegF19I7ScpAQgIuEqtxjcP5lZi5mlzewuM9tnZleEHVwlKNXmaYtgEHh5W5AAdvaOhH4tEZFy1wG81d37gbcT1AI6DfjTsIKqJJMtgAgGgU8utgB29ikBiEj4yk0Apa6itwE3uXvNTFXpHRonYdBSH36XTHtTlkwyoRaAiESi3FIQ3zOzp4AR4PeKM3xqomjNgeFxWhsyoRaCK0kkjGWtdexQC0BEIlBuOei/AF4LdLn7BDAEXBZmYJWid2gi9DpAUy1vq1cLQEQiMZMC92cQrAeY+pzr5zieitM7PE5bBP3/Jctb67l7y77IricitavcctBfAU4Ffg7ki3c7NZAADgyNs2LhtGWPTtgN67cDwfaT+wbGuO7+F0gnE7z/gsorjyEi1aHcFkAXcJa7V1yphrD1Do9zzsmtkV2vrT5obRwcmaC9KRvZdUWk9pQ7C2gTcFKYgVQidw/GACJYA1DSWhxvKK1AFhEJS7ktgHZgs5k9RLDRCwDu/o5QoqoQA2M5xvMFFkWaAIJr9WlzeBEJWbkJ4K/DDKJSlTZoX9wSXVfMgvo0RrANpYhImMpKAO7+UzNbCaxx9zvNrAFIhhta/LoHgqUOpf16o5BMGAsa0hwY0r4AIhKucmsB/Q7wLeDzxbuWA7eEFVSlKG3OsjjCBADQ3phl/5C6gEQkXOUOAv8B8DqgH8DdnwEWhxVUpSglgI7ihu1RWdSUoWdwjBqcdCUiESo3AYy5++RH0uJisKp/d+oeGCObStBSN5P1cieuvSnL6ESBofH89AeLiMxSuQngp2b2MYLN4d8C3AT8e3hhVYbu/lE6mrOYhV8HaKpFTcFMoP2DGgcQkfCUmwD+AtgHPA78N+AHwH8PK6hKsW9wLPL+fwjGAIDQN6ARkdpW7iyggpndAtzi7jVTqKa7f4xTO2azG+aJaWvMkDC1AEQkXMdtAVjgr82sB9gCbCnuBvZX0YQXr+6BsUjXAJQkExbsQayZQCISoum6gD5EMPvnVe6+0N0XAhcArzOzD4UeXYzGcnkOjkzQEVM9nkVNGbUARCRU0yWA/wK8z92fL93h7luBK4DfCDOwuE2uAYihBQCwqCnL/sFxTQUVkdBMlwDS7t5z5J3FcYDodkmJQffkIrBo1wCUtDdlGc8X2H2wJjZeE5EYTJcAjtcJXdUd1KU6QFGWgZhqSbHl8fTegViuLyLVb7pZQOeYWf9R7jcgno/GEbhh/XYe3LofgPue7eGxHQcjj+GkluDl3bJngDeeXvWLrkUkBsdNAO5e9QXfjmVgNIcBTdloVwGXNGRStNSl2KIWgIiEpNyFYFUnX3BueXQnoxNHL7dwYGiMBQ1pEhGvAp5qSUsdW/YoAYhIOGo2Afxo0x7++Bs/56sPbjvq490D8awCnmpJSx3PdA+SyxdijUNEqlPNJoCvPxxswn7jQ9tfMtWy4M6+gbHYZgCVLGmpYzxXYNuB4VjjEJHqVJMJ4MUDw9z7TA9rlzTx3L4hHn6h97DH+4YnyBU8thlAJVMHgkVE5lpNJoCbNryIGXz28vNozqb4+kPbD3u8tBNY3F1Ai1uymCkBiEg4ajIBPLj1AOeuaOW0xU28/Zyl3PbEHsZyhwaDJ/cCjrkLKJ1MsLq9kU07o5+GKiLVL7QEYGYrzOxuM9tsZk+Y2R+Fda2Z2jswyvK2BgDefMYShsbzPPz8oW6gfQNjNGVT1GfinwV7bmcbj77Yp5IQIjLnwmwB5IA/cfezgFcDf2BmZ4V4vbK4O939h2b4vO60drKpBHc9tXfymO6B0di7f0rWdbZxYGicbfs1ECwicyu0BODuu939keLtAeBJgs3kYzU4lmNkIj/5Bl+fSfLaUxfx46e6cfcgQQyMxT4AXLJuZSsAj2zvneZIEZGZiWQMwMxWAecC64/y2NVmtsHMNuzbF/5eM91HqfJ58RmL2bZ/mK09QzyyvY+xXIFlC+pDj6UcaxY305RNKQGIyJwLPQGYWRPwbeCP3f0ldYXc/Rp373L3ro6OjrDDYW9/MMNnyZQB3jefuYRUwvjUHU/zr3c9Q0MmyStWLAg9lnIkE8Y5Kxbw6Pa+uEMRkSoTagIwszTBm//X3P3mMK9VrqPV+V/WWs+H3rKW7z+2m58+vY8LT2snm4p/ALhkXWcbT+0ZYGgsF3coIlJFwpwFZMCXgCfd/VNhXWemDpV5PnyK5+9edCqvWb2I9qYsr169KI7Qjun8UxaSL/hkhVIRkbkQZgvgdQQ7il1sZj8vfl0a4vXK0j0wSjaVoKXu8CqfyYRx/VXnc+eH30A2XTmf/iFIAI2ZJHc91R13KCJSRUKrdezu9xHsG1ARblgfrPZd//wBGrMpbnzoxZgjKl82leTCNR38+Mlu/Fcdi7FCqYhUj5pbCTwwmqM5phr/J+LNZy5mT/8om3cfbX8eEZGZm3/vhCdoYDTHSTFt9D4bpZbLwOgEBvyfO57m4jOW8P4LOuMNTETmvRpsAUzQXDf/9rNvrkuzYmEDj+04qLIQIjInaioBjOcKjOUKNNfNz4bPus42ugfG2NE7EncoIlIFaioBDIxOANAyD1sAAK84eQHppLFRq4JFZA7UWAIIFlI1zdMWQF06ycuWLeCxHX3H3MtYRKRcNZUAhseDN83GzPxMABB0A41OFLh9897pDxYROY6aSgAjxU/NlVDnf7ZWdzTS2pDmpg3zZx2DiFSm2kwAFbbSdyYSZqzrbOO+Z3vY1afBYBGZvdpKAON5DMim5/c/e11nG+5w8yM74g5FROax+f1OOEMjE3my6QSJeV5KYWFjhgtOWci3Nu7QmgARmbWaSgCjE/l53f0z1bu7VvDC/mEefkFTQkVkdmoqAYyM5+f1APBUl778JBozSQ0Gi8iszd/5kLMwUkUtgFse3cUZS1v47s93cdayFrKppOoDiciM1F4LoEoSAEDXyjbG8wUe33Ew7lBEZB6qrQQwUT1dQACdCxtY3JzloRcOxB2KiMxDNZMA3L2quoAAzIzzT1nIjt4RrQkQkRmrmQQwkXfyBa+qBABw7oo20klj/fNqBYjIzNRMAiitAq6roi4gCMpavHJFK49u72XPwdG4wxGReaTmEkC1tQAALlq7mII7n/vpc3GHIiLzSO0kgPH5XwjuWBY2ZljX2cYND23XWICIlK1mEsBoFbcAAN50xmISBh/7zuMqDyEiZamZBDDZAqjSBNDWkOFjl57JT7bs44aHtscdjojMA7WTAKpgL4DpXHHBSi5c087Hv/sEP3x8d9zhiEiFq7kEUFelLQCARML4zOXrOGdFKx+48VH+9a5nGMtp60gRObqaSgB1VVAKejotdWmu/+3zufTlS/nUHU/zjv/7M7btH4o7LBGpQDVTDG60yuoAHc0N6w/1/b9m9SIWNqT55oYdXPaZn/HVqy7g7OULYoxORCpNTbUAqj0BHOn0k1r4/TeeSjaV4KM3P06hoNlBInJI7SSA8XxV9/8fy6KmLB/95TN5fOdBbtqovQNE5JCaSQDDE3kaqngG0PFc9splnLeyjU/e9jTjuULc4YhIhQgtAZjZl82s28w2hXWNmRgez1OfqZkhj8OYGR9402n0DI7x46f2xh2OiFSIMN8RrwX+H3B9iNcoi7szMp6r2RbADeu3ky84zXUpPn3nMxwYmgDQDmIiNS60FoC73wNURI3iofE8BadmEwBAMmGs62xjy54B+kcn4g5HRCpA7GMAZna1mW0wsw379u0L5Rq9Q+NAbScAgPM623Dg59v74g5FRCpA7AnA3a9x9y537+ro6AjlGgdHgk+89enaHAMoaW/O0rmwgY3belUwTkTiTwBR6B0OWgDVXAeoXOetbGPf4Bgv9qpstEitq4kE0DcctABqvQsI4OXLF5BOGhu39cYdiojELMxpoDcCDwCnm9kOM7sqrGtNp29YYwAldekkZy9bwGM7+iZLZItIbQpzFtD73H2pu6fd/WR3/1JY15pOqQWgLqDAeSvbGMsV+NETKhktUstqowtoZIJMKkEqURP/3Gmtam9kYWOGmzbsiDsUEYlRTbwj9g6Pq/tnioQZ6zpbuf+5/bx4YDjucEQkJjWRAA4OT9BQg4XgjmddZxtm8PWHtX2kSK2qiQQQtABqew3AkVobMlzyspO47v5tkwvlRKS21EQC6BuZ0ADwUXzoLWsZGs/x+Xu2xh2KiMSgNhLA8ITGAI5i7ZJm3nHOMq67/wX2HByNOxwRiVjVJ4BCwekbHlcL4Bj+5C2nk3fnf/3gybhDEZGIVX3H+MBYLqgEqkHglyjtIfz609q59Re7WNycZXVHk8pEi9SIqm8BHJwsA1H1uW7WLlrbQVtDmpsf3cnYhFYHi9SKqk8AfSMqBDeddDLBu85bQe/QON97XKuDRWpF1SeAXhWCK8sp7Y1ctLaDjdt6+YbWBojUhKpPAN39weyWpqy6gKbz5jOXsGZxE3/5nU088Nz+uMMRkZBVfQLYXZzeuKA+HXMklS+ZMN53fientDfyu1/dyPM9Q3GHJCIhqoEEMEJ7U4ZUsur/qXOiLp3kS7/5KpIJ47evfXhyNzURqT5V/664s2+UZa31cYcxr9z3bA/vWncy2/YPcfkXHuRrD26LOyQRCUHVJ4DdfSMsXVAXdxjzzqr2Rt561kls2tXP+ucPxB2OiISgqhOAu7Orb4SlC9QCmI3Xr2ln7ZImfvD4bjbv6o87HBGZY1WdAPpHcwyN51muLqBZSZjxrvNWUJ9J8oEbH2FoLBd3SCIyh6o6Aew+OALA0lZ1Ac1WUzbFr3et4IWeIf7qu0/EHY6IzKHqTgB9wRRQdQGdmNUdTXzw4jV8+5EdfGujtpEUqRZVnQB29gUtgGVqAZywP3zzGl69eiEfu/lx7n1mX9zhiMgcqOoEsPvgCMmEsbhZCeBEJRPG56/oYnVHI1dfv1FJQKQKVHcC6BvlpJY6kgmLO5SqsKAhzVeuuoCVixq48v8/zJfve55CweMOS0RmqaoL5OzUGoA5U9o7AODXu1bwzQ0v8onvbea2J/bwD+98Bae0N8YYnYjMRtW2ANydrT1DdC5siDuUqpNNJ7ni1Sv5tXOXs3l3P5d8+h4+c/ezDI9rmqjIfFK1CeC5fUPsGxjj/FMWxh1KVTIzulYt5M4PX8QbT+/gk7dt4Q3/dDdfvHcrI+PaVEZkPqjaLqAHnusB4DWnLoo5kup215PdXLR2MasWNXLnk3v52+8/yafueJr3dK3grWctYd3KNuq0HadIRareBLB1P8tb69UFFJGVixq56vWreb5niAe37ueGh7Zz7f0vkE0l6FrVxmtPbecNazo4e3kLZhqUF6kEVZkACgXngef2c/EZS/RmE7FT2hs5pb2R0Yk8L/QM8dy+QZ7rHuJnz+7nk7dtYXV7I7+2bjmXvXI5K5ScRWJVlQlgy94Beocn1P0To7p0kjOWtnDG0hYABsdyPLW7nx19I/zz7U/zz7c/TXtTlhUL61lQn578amvIsHZJM2cta2HlwgYSmsIrEppQE4CZXQL8C5AEvuju/xDm9SD49P9PP3qKVMJ4/WntYV9OytSUTdG1aiFdwBvWdPDUnn529Y3SPzJBd/8YIxN5RsbzjE7kKa0saMgkObmtnvamLA2ZFA2ZJA2ZJI3ZFMta61nd0cip7U0sb6vXWg+RWQgtAZhZEvgM8BZgB/Cwmd3q7pvDuF6h4OzsG+EL927l7i37+JtfPZuTtAagIi1szPDaU4+enHP5At0DY+zqG2FP/yh9wxPs6B1hIl9gPFdgPF8gX3CGp8w0yiQTLG2tI5tKkEklSCYSuDv5QvBVcCeZSJBNJahLJ8imkmRSCdJJI5lIkEoYdekk9ekk9ZkEDZkU6aRRcHCHggcpqT6dpLkuRUt9Ovhel6alLk06ZRQPYeqyuIRBKhFcJ5UMrgPBOR0vfg8YYBZUYKV4u3TsVEf+PPXYo/1sGGal89vkdcyMQsHJ+6HXyD24fiIBSTOSCVMXapULswVwPvCsu28FMLOvA5cBc54Azv3E7fQOH9q68P0XdHLFBZ1zfRmJQCqZYFlr/XF3cXN3hsbz9AyM0TMYfPWNTJAvOLm8MzaRm3wzNTPSieDNbmgsR9+wkysUyOWDN79SosjlnfFiktHa5sNNbV35lAyk12l6Rybe4L4gI08mY4z25gz3/tnFkccXZgJYDrw45ecdwAVHHmRmVwNXF38cNLMtJ3rhvy9+Ae1Az4meLySVHBtUdnyKbXYqOTao7PhCj83+fNZPPX22T4x9ENjdrwGuCePcZrbB3bvCOPeJquTYoLLjU2yzU8mxQWXHV+56IWoAAAcTSURBVOmxzfa5Ya4E3gmsmPLzycX7RESkAoSZAB4G1pjZKWaWAd4L3Bri9UREZAZC6wJy95yZfQC4jWAa6JfdPeo9BUPpWpojlRwbVHZ8im12Kjk2qOz4qjI286PNKxMRkapXtdVARUTk+JQARERqVFUkADO7xMy2mNmzZvYXR3k8a2bfKD6+3sxWVVBsHzazzWb2mJndZWYrKyW2Kce908zczCKdBldOfGb2nuLr94SZ3VApsZlZp5ndbWaPFn+3l0YU15fNrNvMNh3jcTOzfy3G/ZiZrYsirhnEd3kxrsfN7H4zO6dSYpty3KvMLGdm76qk2MzsjWb28+Lfwk/LOrEXV0PO1y+CAebngNVABvgFcNYRx/w+8Lni7fcC36ig2N4ENBRv/14lxVY8rhm4B3gQ6Kqw3+sa4FGgrfjz4gqK7Rrg94q3zwJeiCi2NwDrgE3HePxS4IcEC1FfDayP6ndaZnyvnfL7/OUo45sutim/+x8DPwDeVSmxAa0EVRY6iz+X9bdQDS2AyZIT7j4OlEpOTHUZcF3x9reAN1s0RU6mjc3d73b34eKPDxKsl4hCOa8bwN8A/wiMRhRXSTnx/Q7wGXfvBXD37gqKzYGW4u0FwK4oAnP3e4ADxznkMuB6DzwItJrZ0ihig+njc/f7S79Pov17KOe1A/gg8G0gqv9rQFmxvR+42d23F48vK75qSABHKzmx/FjHuHsOOAhEUSu6nNimuorg01kUpo2t2D2wwt2/H1FMU5Xz2q0F1prZz8zswWL12UqJ7a+BK8xsB8GnxQ9GE9q0Zvp/Mk5R/j1My8yWA/8Z+Le4YzmKtUCbmf3EzDaa2W+U86TYS0FIwMyuALqAi+KOBcDMEsCngCtjDuV4UgTdQG8k+KR4j5m93N37Yo0q8D7gWnf/32b2GuArZna2uxfiDmw+MLM3ESSA18cdyxSfBv7c3QsVWCU1BZwHvBmoBx4wswfd/enpnjTflVNyonTMDjNLETTJ91dIbJjZfwL+ErjI3cciiKuc2JqBs4GfFP+znwTcambvcPdZ1x6Zw/gg+PS63t0ngOfN7GmChPBwBcR2FXAJgLs/YGZ1BAXFIu06OIqKL9FiZq8Avgj8srtH8Xdari7g68W/h3bgUjPLufst8YYFBH8L+919CBgys3uAc4DjJoDIBn9CHBxJAVuBUzg0IPeyI475Aw4fBP5mBcV2LsGA4ppKe92OOP4nRDsIXM5rdwlwXfF2O0HXxqIKie2HwJXF22cSjAFYRK/dKo49WPg2Dh8EfijK/3dlxNcJPAu8Nuq4povtiOOuJcJB4DJetzOBu4r/NxuATcDZ051z3rcA/BglJ8zsE8AGd78V+BJBE/xZgoGU91ZQbJ8EmoCbip8strv7OyokttiUGd9twFvNbDOQB/7UI/jEWGZsfwJ8wcw+RDAgfKUX/1LDZGY3EnSJtRfHHz4OpItxf45gPOJSgjfZYeC3wo5phvH9FcH43GeLfw85j6gKZxmxxWa62Nz9STP7EfAYUCDYgfG401lBpSBERGpWNcwCEhGRWVACEBGpUUoAIiI1SglARKRGKQGIiMSk3AJ0U46f0+KHSgBSU8zsD83sSTP72nGOGZyD61xpZstO9DxS9a6luGBwOma2Bvgo8Dp3fxnwxyd6cSUAqTW/D7zF3S8P+TpXAkoAclx+lCJvZnaqmf2oWNPnXjM7o/jQnBc/VAKQmmFmnyMo4fxDMztYbH7/xMy2mtkfHuX4z5jZO4q3v2NmXy7e/m0z+7vi7f9R3BfgPjO70cw+UqwT3wV8rVifvT66f6VUgWuAD7r7ecBHgM8W75/z4ofzfiWwSLnc/XeLfzRvAj4AvLV4uxnYYmb/5kFdoZJ7gQuBWwkqZpbKJl9IUBPmVcA7CWqupIFHgI3u/q3iSuGPeDR1k6RKmFkTwZ4IpcoAANni9zkvfqgWgNSy77v7mLv3EBRpW3LE4/cCF5rZWQSbbewt1s5/DXA/8Drgu+4+6u4DwL9HGLtUpwTQ5+6vnPJ1ZvGxHcCt7j7h7s8TFHpbc6IXE6lVUyuv5jmiRezuOwl2WrqEYFe0e4H3AIPFN3yROeXu/QSVbd8Nk1t4lrbFvIXg0z9m1k7QJbT1RK6nBCByfA8SzLYoJYCPFL8D/Az4FTOrKzbd3z7leQMEXUsix1Qs8vYAcLqZ7TCzq4DLgavM7BfAExzabe42YH+x+OHdzEHxQ40BiBzfvcBb3f1ZM9sGLCzeh7s/bGa3ElRg3As8TrDbHATT+z5nZiPAa9x9JPLIpeK5+/uO8dBLBniL1WQ/XPyaE6oGKnICzKzJ3QfNrIGglXC1uz8Sd1wi5VALQOTEXFMcJK4j2JxGb/4yb6gFICJSozQILCJSo5QARERqlBKAiEiNUgIQEalRSgAiIjXqPwDtzovdTzaV8wAAAABJRU5ErkJggg==\n"
+ },
+ "metadata": {
+ "needs_background": "light"
+ }
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).\n",
+ " warnings.warn(msg, FutureWarning)\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "
"
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEHCAYAAACJN7BNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de7RkZX3m8e9TVeec7qah6VsQaLBbaS+NdzpEYmbGaBQwUVaWOja5iAZDVgaWGbPWGEiyiJKQiJOlExWiRMwijApIHO0YRiYGJxmNAZsgyK21AwLNRRvoC9DnUpff/LHfaqoPVafq9Nl1Dmfv57PWWV21a++33t27u59+33e/71ZEYGZmNleVha6AmZkVgwPFzMxy4UAxM7NcOFDMzCwXDhQzM8tFbaErsJDWrFkT69evX+hqmJktKrfccstjEbF2+vZSB8r69evZtm3bQlfDzGxRkXR/t+3u8jIzs1w4UMzMLBcOFDMzy4UDxczMcuFAMTOzXDhQzMwsFw4UMzPLhQPFzMxy4UAxM7NclHqm/DB94aYHum7/lZ85fp5rYmY2P9xCMTOzXDhQzMwsFw4UMzPLhQPFzMxy4UAxM7NcOFDMzCwXDhQzM8uFA8XMzHLhQDEzs1w4UMzMLBcOFDMzy4UDxczMcuFAMTOzXDhQzMwsFw4UMzPLhQPFzMxy4UAxM7NcOFDMzCwXDhQzM8uFA8XMzHLhQDEzs1w4UMzMLBcOFDMzy8VQA0XSaZK2S9oh6fwun49JuiZ9fpOk9R2fXZC2b5d06izK/ISkp4Z1TmZm1t3QAkVSFbgUOB3YBJwpadO03c4GdkfECcDHgUvSsZuALcCJwGnAZZKq/cqUtBlYOaxzMjOz3obZQjkZ2BER90bEFHA1cMa0fc4ArkyvrwPeKElp+9URMRkR9wE7Unk9y0xh89+BDw7xnMzMrIdhBsqxwIMd73embV33iYgGsBdYPcOxM5V5HrA1Ih6ZqVKSzpG0TdK2Xbt2zeqEzMyst0IMyks6Bngn8Ml++0bE5RGxOSI2r127dviVMzMriWEGykPAcR3v16VtXfeRVANWAI/PcGyv7a8GTgB2SPoRsEzSjrxOZDYigsv+7w52Pz21EF9vZrZghhko3wU2StogaZRskH3rtH22Amel1+8AboyISNu3pLvANgAbgZt7lRkRfx8Rz4uI9RGxHtifBvrn3e79dT769e3c+uDuhfh6M7MFUxtWwRHRkHQecANQBT4XEXdKugjYFhFbgSuAq1Jr4gmygCDtdy1wF9AAzo2IJkC3Mod1DodivN4EYN9EY4FrYmY2v4YWKAARcT1w/bRtF3a8niAb++h27MXAxYOU2WWf5YdS3zyMT2VBsm+8vlBVMDNbEIUYlH8uGZ9qAfCkWyhmVjIOlJwd6PJyC8XMSsaBkrP9qcvrqckGzVYscG3MzOaPAyVnE6mFEmShYmZWFg6UnO2fah547W4vMysTB0rO2mMoAPsmHChmVh4OlJyNu4ViZiXlQMlZO1Aq8uRGMyuXoU5sLKPxepNaRRw2VnMLxcxKxS2UnI3XmywdrXLEkprHUMysVBwoORufarJ0pMoRS0fYN+4uLzMrDwdKzg60UJaOuIViZqXiQMlZu4WypFZhqtFa6OqYmc0bB0rO2i2UaqVCgJdfMbPScKDkbHyqybLRKrWKAGi03Eoxs3JwoORsvJ51edWqWaA0m26hmFk5OFByNj7VZMlIleqBFooDxczKwRMbczZez7q8mqmny4FiZmXhFkrO9k8d3OXlMRQzKwsHSs7G602WdAzK+y4vMysLB0qOmq1gqtFi2Ujtmbu8PChvZiXhQMlR+1koS0crVCvZb63HUMysLBwoOWovXb90xPNQzKx8HCg5mjjQQql5HoqZlY4DJUf7O1oonodiZmXjQMlR5xhKzWMoZlYyDpQcPTOG0tHl5TEUMysJB0qOxuvZA7WWHrQ4pFsoZlYODpQcjU9lrZHsLq/U5eVBeTMrCQdKjtpjKMtGPShvZuXjQMnR+FTW5bXEa3mZWQk5UHL0zF1eVSoSFXkeipmVhwMlR51jKADVitzlZWal4UDJ0f56g9Fa5cD4Sa1ScaCYWWk4UHI0kZ6F0laryvNQzKw0HCg5mmy0WDLyzG9prSLfNmxmpTHUQJF0mqTtknZIOr/L52OSrkmf3yRpfcdnF6Tt2yWd2q9MSVdIuk3S7ZKuk7R8mOfWzVSjxUj1md/Sqru8zKxEhhYokqrApcDpwCbgTEmbpu12NrA7Ik4APg5cko7dBGwBTgROAy6TVO1T5gci4pUR8QrgAeC8YZ1bL1PNFqO1aS0UB4qZlcQwWygnAzsi4t6ImAKuBs6Yts8ZwJXp9XXAGyUpbb86IiYj4j5gRyqvZ5kRsQ8gHb8UmPd/yacaLUY7WigeQzGzMhlmoBwLPNjxfmfa1nWfiGgAe4HVMxw7Y5mS/hp4FHgJ8MlulZJ0jqRtkrbt2rVr9mc1g/q0FkrVYyhmViKFGpSPiPcCxwB3A+/qsc/lEbE5IjavXbs21++fah48huIuLzMrk2EGykPAcR3v16VtXfeRVANWAI/PcGzfMiOiSdYV9vY5n8Es1RvBSFpyBbJ5KE0HipmVxDAD5bvARkkbJI2SDbJvnbbPVuCs9PodwI0REWn7lnQX2AZgI3BzrzKVOQEOjKG8DbhniOfW1WSzxWjt4HkoXsvLzMqiNqyCI6Ih6TzgBqAKfC4i7pR0EbAtIrYCVwBXSdoBPEEWEKT9rgXuAhrAuanlQY8yK8CVko4ABNwG/Pawzq2XeqPFaEcLxWMoZlYmQwsUgIi4Hrh+2rYLO15PAO/scezFwMUDltkCXpdDlefk2bcNex6KmZVHoQblF1rdg/JmVmIOlBxNn4dS9TwUMysRB0qO6s0WI9NnynsMxcxKwoGSo8npM+XTbcPZjWtmZsU2UKBI+rKkX0x3U1kP02fK16oiAA+jmFkZDBoQlwG/AvxQ0kckvXiIdVq0nrWWV8XPlTez8hgoUCLiGxHxq8BrgB8B35D0L5LeK2lkmBVcLJqtoBVMW74+CxQ/V97MymDgLixJq4H3AO8DbgX+gixg/mEoNVtkphpZK2T6PBSAuvu8zKwEBprYKOl/AS8GrgLeGhGPpI+ukbRtWJVbTKaaWaAcvJZXaqE4UMysBAadKf9XaYb6AZLG0vNKNg+hXotOu4UyVjt4HgpAo+kxFDMrvkG7vP6ky7bv5FmRxa5+oIXSbVDeLRQzK74ZWyiSnkf2AKulkl5NtvAiwBHAsiHXbVFpB0q3MRR3eZlZGfTr8jqVbCB+HfCxju1PAr8/pDotSu0ur5FpjwAGt1DMrBxmDJSIuJJsWfi3R8TfzlOdFqWpri0Uz0Mxs/Lo1+X1axHxP4H1kn53+ucR8bEuh5XSgduGPQ/FzEqqX5fXYenX5cOuyGJXT6HheShmVlb9urw+k3798PxUZ/HqOoZyYB6Ku7zMrPgGXRzyo5KOkDQi6R8l7ZL0a8Ou3GLS7S6vZ+ahuIViZsU36DyUN0fEPuCXyNbyOgH4b8Oq1GI02eg9U953eZlZGQwaKO2usV8EvhQRe4dUn0Wr3UIZ8zwUMyupQZde+Zqke4Bx4LclrQUmhletxcfzUMys7AZdvv584GeBzRFRB54GzhhmxRabrmMonodiZiUyaAsF4CVk81E6j/mbnOuzaE11WcurIlGRB+XNrBwGXb7+KuCFwPeAZtocOFAO6NblBc88V97MrOgGbaFsBjZFhP9l7GGqy6A8ZN1e7vIyszIY9C6vO4DnDbMii129kWXt9BbKSFXu8jKzUhi0hbIGuEvSzcBke2NEvG0otVqEpppNqhUdGIhvq1bkLi8zK4VBA+VDw6xEEdSbcdCkxrZapeLbhs2sFAYKlIj4J0nPBzZGxDckLQOqw63a4jLVaB200nBbrSoHipmVwqBref0mcB3wmbTpWOArw6rUYjTVbB00B6Ut6/LyoLyZFd+gg/LnAq8D9gFExA+BnxpWpRajni2Uig4sbW9mVmSDBspkREy136TJjf5XskO92WKkSwvF81DMrCwGDZR/kvT7wFJJbwK+BPzd8Kq1+PRqoXgeipmVxaCBcj6wC/g+8FvA9cAfDqtSi1G92XrWHBRIg/Lu8jKzEhj0Lq+WpK8AX4mIXUOu06I02eg+KF/zPBQzK4kZWyjKfEjSY8B2YHt6WuOF81O9xaPe7DUo73koZlYO/bq8PkB2d9dPR8SqiFgF/AzwOkkf6Fe4pNMkbZe0Q9L5XT4fk3RN+vwmSes7Prsgbd8u6dR+ZUr6fNp+h6TPSRrpe/Y5murRQql6HoqZlUS/QPl14MyIuK+9ISLuBX4NePdMB0qqApcCpwObgDMlbZq229nA7og4Afg4cEk6dhOwBTgROA24TFK1T5mfJ1ti/+XAUuB9fc4tV71nyotG04PyZlZ8/QJlJCIem74xjaP0awGcDOyIiHvTLcdX8+yHcp0BXJleXwe8UZLS9qsjYjKF2Y5UXs8yI+L6SICbgXV96pereo+JjR5DMbOy6BcoU4f4GWSz6R/seL8zbeu6T0Q0gL3A6hmO7Vtm6ur6deDr3Sol6RxJ2yRt27Urv/sLphrd7/KqpjEUr/xvZkXX7y6vV0ra12W7gCVDqE8eLgP+OSL+X7cPI+Jy4HKAzZs35/avfK+lV9rdYM0Ianp2l5iZWVHMGCgRMZcFIB8Cjut4vy5t67bPzjT7fgXweJ9je5Yp6Y+AtWRzZebVTBMbAZrNoEvemJkVxjD/ifsusFHSBkmjZIPsW6ftsxU4K71+B3BjGgPZCmxJd4FtADaSjYv0LFPS+4BTyW4imPdR8JnGUADf6WVmhTfo81BmLSIaks4DbiBb6v5zEXGnpIuAbRGxFbgCuErSDuAJsoAg7XctcBfQAM6NiCZAtzLTV34auB/4Tjauz5cj4qJhnd90vcZQapVsmwPFzIpuaIEC2Z1XZMu0dG67sOP1BPDOHsdeDFw8SJlp+1DPpZ96M3rOQwF8p5eZFZ579XMQEUz1WssrdXnVPRfFzArOgZKD9vNOxmYYQ3ELxcyKzoGSg6nU+ug2U77qMRQzKwkHSg7qjSxQej1THvAzUcys8BwoOTjQQpmpy8vPRDGzgnOg5GCq0e7y8m3DZlZeDpQcTDaaACwZefbCAtWqJzaaWTk4UHIwUc9aKEtmvMvLYyhmVmwOlBy0WyhjXVooB5Ze8RiKmRWcAyUHkzO0UKpey8vMSsKBkoOJGVoo7YF6B4qZFZ0DJQftFkq3mfLPLF/vMRQzKzYHSg4mZrrLy11eZlYSDpQczNRCqUhUJQeKmRWeAyUHk2liY7cWCmRzUbw4pJkVnQMlBxP1NCjf4xm/tYq8fL2ZFZ4DJQftFspMgeIWipkVnQMlBxP1JrWKqHVZywuygXmPoZhZ0TlQcjDZaPVsnQDUqhUHipkVngMlB5ONZs8BeUhdXh5DMbOCc6DkYKLep4XiLi8zKwEHSg4mG62uy660VSvu8jKz4nOg5GCi3uwzhuK7vMys+BwoOejXQqlVRMNjKGZWcA6UHEzUm12Xrm/zbcNmVgYOlBz0a6GM+LZhMysBB0oOJvuMoVQ9U97MSsCBkoPJRqvvPBSPoZhZ0TlQctCvheJ5KGZWBg6UHEw0WiwZmanLq+IuLzMrPAdKDrIWygxdXtWshRLhUDGz4nKg5GCyTwul5scAm1kJOFDmqNFs0WjFjC2U0TS+4odsmVmROVDmqN/DtQBG03NSphoOFDMrLgfKHLUf/zvTbcPtSY+TDhQzKzAHyhy5hWJmlhlqoEg6TdJ2STsknd/l8zFJ16TPb5K0vuOzC9L27ZJO7VempPPStpC0Zpjn1WmQFkp7DMUtFDMrsqEFiqQqcClwOrAJOFPSpmm7nQ3sjogTgI8Dl6RjNwFbgBOB04DLJFX7lPlt4BeA+4d1Tt0M0kJpf+YWipkV2TBbKCcDOyLi3oiYAq4Gzpi2zxnAlen1dcAbJSltvzoiJiPiPmBHKq9nmRFxa0T8aIjn09WBQJnhtuF2C2Wq2ZyXOpmZLYRhBsqxwIMd73embV33iYgGsBdYPcOxg5Q5I0nnSNomaduuXbtmc2hXB7q8Brht2F1eZlZkpRuUj4jLI2JzRGxeu3btnMsbpIUy5kF5MyuBYQbKQ8BxHe/XpW1d95FUA1YAj89w7CBlzqt2C2WmiY0jHkMxsxIYZqB8F9goaYOkUbJB9q3T9tkKnJVevwO4MbIFr7YCW9JdYBuAjcDNA5Y5r9otlJmWXqlIjFYrDhQzK7ShBUoaEzkPuAG4G7g2Iu6UdJGkt6XdrgBWS9oB/C5wfjr2TuBa4C7g68C5EdHsVSaApPdL2knWarld0meHdW6dJgdooUA2jjLppVfMrMBqwyw8Iq4Hrp+27cKO1xPAO3scezFw8SBlpu2fAD4xxyrP2sQAYyiQBYpbKGZWZKUblM/boC2UsVrFd3mZWaE5UOZokDEUII2heB6KmRWXA2WO2i2U9npdvbjLy8yKzoEyRxONFmO1CtkE/95G3eVlZgXnQJmjyXpzxoUh28ZqFaZ8l5eZFZgDZY4mUwuln9Fa1V1eZlZoDpQ5mqg3+94yDKmF4kAxswJzoMzRU5MNlo+N9N1vtFah0Qo/V97MCsuBMkd7x+usWNp/fmj7LrD9k7512MyKyYEyR3v21zly6Wjf/drjLE9PNYZdJTOzBeFAmaOshTJYlxfAfgeKmRWUA2WO9o7XWbFs8EB52l1eZlZQDpQ5mKg3mWy0ZtVCcZeXmRWVA2UO9o7XAQYKlPbikR6UN7OicqDMwawCpeoWipkVmwNlDtqBcqTHUMzMHChzsWf/4C0U3+VlZkXnQJmD2XR5uYViZkXnQJmDA11eA0xsrEiMVOUxFDMrLAfKHOwdryPB4Uv6L70CsHysxk/2TQy5VmZmC8OBMgd7909x+FiNSmXmh2u1rVw2ys7d40OulZnZwnCgzMGgs+TbVi4b5cHd+4dYIzOzheNAmYO944MtDNl25GEj/HjfJJMND8ybWfE4UOZgz4ALQ7atXJaFz8N7PI5iZsXjQJmDQVcabmsHyk53e5lZATlQ5mDfrMdQsn09MG9mReRAOUQRMesWyhFLR6hVxINPuIViZsXjQDlE+6ea1Jsxq0CpSBxz5FK3UMyskBwoh+iZWfKDBwrAupVLPYZiZoXkQDlEjz01CcCRywa/bRjageIWipkVjwPlEN3x0D4AXnr04bM6bt3KZfzkyUnGpzwXxcyKxYFyiG7fuYcjl41w/Kplszpu8/NXAnDdv+0cRrXMzBaMA+UQ3bZzLy8/dgXSYOt4tZ3ywtVsfv5KLr1xBxN1t1LMrDgcKIdgfKrJD378JK9cd+Ssj5XEB970Ih7dN8GH/+4uHtnr8RQzK4bB1l23g9z1yF6areAV61bM+tgv3PQAEcFJx6/kizc/wBdvfoA1y0c5/WVHc/rLnsfJG1ZRqx6c81ONFjfe8xPuf/xpjjlyKT//kp9i+ZgvnZk9t/hfpUNw24N7AXjlcbNvoUDWSnn7Sev4+Zf8FN9/aC/3P/40192yk6v+9X5WLhvhTZuO4g0vOYpv/XAX//7Y09z24B72dwzir1k+xgdPfTHvOGndwEvndzNRb3L7zr0sHamyfs0yDl8yu1ugzcw6DTVQJJ0G/AVQBT4bER+Z9vkY8DfAScDjwLsi4kfpswuAs4Em8P6IuGGmMiVtAK4GVgO3AL8eEVPDOK/bd+7hqCPGOOqIJXMqZ9Vho/ynF60F1jLVaPGDHz/JXY/s46vfe5hrt2WD9tWK2HT0Ebzm+JUcv2oZj+wb53sP7OGDf3s7X751J7//lpfyill2vd39yD4u+PL3ufPhvdSbAcBIVbz6uJX8yS+/jBcdNbs718zMYIiBIqkKXAq8CdgJfFfS1oi4q2O3s4HdEXGCpC3AJcC7JG0CtgAnAscA35D0onRMrzIvAT4eEVdL+nQq+y+HcW4bjzqc561YmmuZo7UKLzt2BS87dgWNZouH94xTrVZYtWyUpaPVA/u9YM1y/uAtL+XabQ9y8d/fzds+9W02HX0EJz0/C5zVy0dZs3yM1ctHWXXYKEtHqkw1Wjy6b4JbH9jD3932MNvu381orcJrjl/Ji446nFYE9zz6JP/2wG7e/PF/5mdfuJqzfnY9r92wesa1ypqtoN5s0YpgtFp5VlfdoWiXWW+2qFZErVJhpKpZ3/xgVhZPTtS5d9fT3PnwPu54eC8PPL6fpyYbrFw2wvNXH8ZLjz6cTUevYONRy1kyUu1f4BwoIoZTsHQK8KGIODW9vwAgIv6sY58b0j7fkVQDHgXWAud37tveLx32rDKBjwC7gOdFRGP6d/eyefPm2LZtWx6n+yxfuOmBoZTbaaLe5Jb7d3PXI/t4eM84k41W32NesOYw3vXTx1GrVA4KKoCnJxvUWy2u+s79PLI3W2J/yUiFWqVCNXWtNZot6q2g0WzRmvZHpyIYq1UZrVUYq1UYSQHTikg/2RpozVb2uhVBpF8bPcpsG6k+Ey6jtaxOIzVRmSFo+v3RDvr/2e9bxhz/+vT7+9ev+LmeY//j5/b9/UqY+/cP+fdvjuX322Gu59eMYKL+zN/7JSMV1i4fY/2aw3ji6Snue+zpg7rLR6sVli+pcdhYlSvfezIvWLu83xl0JemWiNg8ffswu7yOBR7seL8T+Jle+6Qg2EvWZXUs8K/Tjj02ve5W5mpgT0Q0uux/EEnnAOekt09J2j6Lc5qNNcBjQyr7kN0PfDPfIp+T55mzMpwj+DwLYTvwrQHO8YW/N6eveX63jaUblI+Iy4HLh/09krZ1S/CiKcN5luEcwedZJAt1jsOch/IQcFzH+3VpW9d9UpfXCrLB+V7H9tr+OHBkKqPXd5mZ2RANM1C+C2yUtEHSKNkg+9Zp+2wFzkqv3wHcGFmn4VZgi6SxdPfWRuDmXmWmY76ZyiCV+dUhnpuZmU0ztC6vNCZyHnAD2S2+n4uIOyVdBGyLiK3AFcBVknYAT5AFBGm/a4G7gAZwbkQ0AbqVmb7y94CrJf0JcGsqeyENvVvtOaIM51mGcwSfZ5EsyDkO7S4vMzMrF6/lZWZmuXCgmJlZLhwoQyDpNEnbJe2QdP5C16cfScdJ+qakuyTdKel30vZVkv5B0g/TryvTdkn6RDq/2yW9pqOss9L+P5R0Vsf2kyR9Px3zCS3Q1HdJVUm3Svpaer9B0k2pXtekmz1IN4Rck7bfJGl9RxkXpO3bJZ3asf05cd0lHSnpOkn3SLpb0ikFvZYfSH9e75D0RUlLinA9JX1O0k8k3dGxbejXr9d3zEpE+CfHH7KbBf4deAEwCtwGbFroevWp89HAa9Lrw4EfAJuAjwLnp+3nA5ek128B/jcg4LXATWn7KuDe9OvK9Hpl+uzmtK/Ssacv0Ln+LvAF4Gvp/bXAlvT608Bvp9f/Bfh0er0FuCa93pSu6RiwIV3r6nPpugNXAu9Lr0eBI4t2LckmLt8HLO24ju8pwvUE/iPwGuCOjm1Dv369vmNWdV+IP/BF/gFOAW7oeH8BcMFC12uW5/BVsvXStgNHp21HA9vT688AZ3bsvz19fibwmY7tn0nbjgbu6dh+0H7zeF7rgH8E3gB8Lf2FegyoTb92ZHcSnpJe19J+mn492/s9V6472Vyu+0g33Ey/RgW6lu1VNlal6/M14NSiXE9gPQcHytCvX6/vmM2Pu7zy123Jma7LwDwXpa6AVwM3AUdFxCPpo0eBo9LrXuc40/adXbbPt/8BfBBoL34005I9By0LBHQuCzSbc59vG8jWtfvr1LX3WUmHUbBrGREPAX8OPAA8QnZ9bqF417NtPq5fr+8YmAPFDpC0HPhb4L9GxL7OzyL7b8uivcdc0i8BP4mIWxa6LkNWI+su+cuIeDXwNGmx1bbFfi0BUv/+GWQBegxwGHDaglZqnszH9TvU73Cg5G+QJWeecySNkIXJ5yPiy2nzjyUdnT4/GvhJ2j7bpXEeSq+nb59PrwPeJulHZM/NeQPZc3V6LdmT17JA820nsDMibkrvryMLmCJdS4BfAO6LiF0RUQe+THaNi3Y92+bj+vX6joE5UPI3yJIzzynpLo8rgLsj4mMdH3UujdO5nM1W4N3pDpPXAntTU/kG4M2SVqb/Qb6ZrB/6EWCfpNem73o387w0TkRcEBHrImI92TW5MSJ+ld5L9uSyLNA8nNpBIuJR4EFJL06b3ki24kRhrmXyAPBaSctSPdrnWajr2WE+rl+v7xjcfA+mleGH7M6LH5DdJfIHC12fAer7c2TN29uB76Wft5D1Mf8j8EPgG8CqtL/IHnT278D3gc0dZf0GsCP9vLdj+2bgjnTMp5g2aDzP5/t6nrnL6wVk/4DsAL4EjKXtS9L7HenzF3Qc/wfpPLbTcYfTc+W6A68CtqXr+RWyu3wKdy2BDwP3pLpcRXan1qK/nsAXycaF6mQtzrPn4/r1+o7Z/HjpFTMzy4W7vMzMLBcOFDMzy4UDxczMcuFAMTOzXDhQzMwsFw4UMzPLhQPFbB5IOkbSden1qyS9ZYBjXq+0zH6O9bhe0pF5lmnW5kAxmwcR8XBEtGdwv4ps0txC1OMtEbFnIb7bis+BYjYASe9ODzC6TdJVkt6aHtR0q6RvSDoq7feh9Pl30oOKfjNtX6/sQVCjwEXAuyR9T9K7JJ2c9r9V0r90LJvSr05r04OQ7kyrCt8vaU367CuSbkmfndNxzI8krUn1uVvSX6V9/o+kpfn/zlmZOFDM+pB0IvCHwBsi4pXA7wDfAl4b2Yq+V5Mti9/2CrLFJ08BLpR0TPuDiJgCLiR7wNOrIuIasuVD/kMq60LgTwes2h+RrUl1ItkikMd3fPYbEXES2TIb75e0usvxG4FL0/F7gLcP+L1mXdX672JWem8AvhQRjwFExBOSXg5ck1ZlHSV7qFXbVyNiHBiX9E3gZLL10XpZAVwpaSPZmmojA9br54BfTnX6uqTdHZ+9X9Ivp9fHkYXH49OOvy8i2vW6heyhTmaHzC0Us0PzSeBTEfFy4LfIFh9sm75AXr8F8/4Y+GZEvAx467SyZk3S68mWdz8ltahu7VHmZPnmEoUAAAEMSURBVMfrJv4Pps2RA8WsvxuBd7a7jSStImtVtJ8jcda0/c+QtCTt/3qypdA7PQkc3vG+s6z3zKJe3wb+c6rTm8lWFW6Xtzsi9kt6Cdnzw82GzoFi1kdE3AlcDPyTpNuAjwEfAr4k6Ray55N3up3suRz/CvxxRDw87fNvApvag/LAR4E/k3Qrs2slfJjsmRd3AO8ke2zrk8DXgZqku4GPpHqYDZ2XrzfLkaQPAU9FxJ/Pw3eNAc2IaEg6heyxv68a9vea9eI+U7PF63jgWkkVYAr4zQWuj5WcWyhmz3GS3kt2q3Knb0fEuQtRH7NeHChmZpYLD8qbmVkuHChmZpYLB4qZmeXCgWJmZrn4/zzO3B8pq8TlAAAAAElFTkSuQmCC\n"
+ },
+ "metadata": {
+ "needs_background": "light"
+ }
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).\n",
+ " warnings.warn(msg, FutureWarning)\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "
"
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEHCAYAAAC5u6FsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de5xdZX3v8c9377kmJCGEiJBEEiS1DfSipqi1py+PtBJra/o64iFeqaWlF2it7Tl9gW15UVrOKT09Wq3aliOcItUSRNvmWHqoCtrTWgODoHJp6shFgrSGkBuZ2957fueP9exkZzIze6+ZWZnMmu/79Rpn7Wdd9rOWMF+e51nrWYoIzMzMOlWZ7wqYmdnC4uAwM7NcHBxmZpaLg8PMzHJxcJiZWS5d812BE+H000+P9evXz3c1zMwWjPvvv//ZiFg92bpFERzr169nYGBgvqthZrZgSHpyqnXuqjIzs1wcHGZmlouDw8zMcnFwmJlZLg4OMzPLxcFhZma5ODjMzCwXB4eZmeXi4DAzs1wWxZPjJ8Indn7ruLK3vuJF81ATM7NiucVhZma5ODjMzCwXB4eZmeXi4DAzs1wcHGZmlouDw8zMcnFwmJlZLg4OMzPLxcFhZma5ODjMzCwXB4eZmeXi4DAzs1wcHGZmlkuhwSFpi6RdkgYlXTXJ+l5J29P6nZLWp/JVku6R9LykD03Y5+WSvp72+aAkFXkOZmZ2rMKCQ1IV+DDwemAT8BZJmyZsdhmwLyLOBd4P3JDKR4DfBv7LJIf+E+DngI3pZ8vc197MzKZSZIvjAmAwIh6LiDHgNmDrhG22Arek5TuACyUpIg5HxD+SBcgRks4ElkfElyMigI8BP1XgOZiZ2QRFBsca4KmWz7tT2aTbREQdOACsanPM3W2OaWZmBSrt4LikyyUNSBrYs2fPfFfHzKw0igyOp4F1LZ/XprJJt5HUBawA9rY55to2xwQgIm6MiM0RsXn16tU5q25mZlMpMjjuAzZK2iCpB9gG7JiwzQ7g0rR8MXB3GruYVEQ8AxyU9Mp0N9U7gb+Z+6qbmdlUuoo6cETUJV0J3AVUgZsj4mFJ1wEDEbEDuAm4VdIg8BxZuAAg6QlgOdAj6aeA10XEI8AvAX8O9AN/l37MzOwEKSw4ACLiTuDOCWXXtCyPAG+eYt/1U5QPAOfPXS3NzCyP0g6Om5lZMRwcZmaWi4PDzMxycXCYmVkuDg4zM8vFwWFmZrk4OMzMLBcHh5mZ5eLgMDOzXBwcZmaWi4PDzMxycXCYmVkuDg4zM8vFwWFmZrk4OMzMLBcHh5mZ5eLgMDOzXBwcZmaWi4PDzMxycXCYmVkuDg4zM8vFwWFmZrk4OMzMLBcHh5mZ5eLgMDOzXBwcZmaWi4PDzMxycXCYmVkuDg4zM8ul0OCQtEXSLkmDkq6aZH2vpO1p/U5J61vWXZ3Kd0m6qKX8PZIelvSQpL+U1FfkOZiZ2bEKCw5JVeDDwOuBTcBbJG2asNllwL6IOBd4P3BD2ncTsA04D9gCfERSVdIa4FeAzRFxPlBN25mZ2QlSZIvjAmAwIh6LiDHgNmDrhG22Arek5TuACyUpld8WEaMR8TgwmI4H0AX0S+oClgDfLvAczMxsgiKDYw3wVMvn3als0m0iog4cAFZNtW9EPA38IfAt4BngQET8fSG1NzOzSS2owXFJK8laIxuAs4Clkt4+xbaXSxqQNLBnz54TWU0zs1IrMjieBta1fF6byibdJnU9rQD2TrPvjwKPR8SeiKgBnwZ+aLIvj4gbI2JzRGxevXr1HJyOmZlBscFxH7BR0gZJPWSD2DsmbLMDuDQtXwzcHRGRyrelu642ABuBe8m6qF4paUkaC7kQeLTAczAzswm6ijpwRNQlXQncRXb3080R8bCk64CBiNgB3ATcKmkQeI50h1Ta7nbgEaAOXBERDWCnpDuAr6TyB4AbizoHMzM7nrL/wC+3zZs3x8DAQKHf8Ymd3zqu7K2veFGh32lmVhRJ90fE5snWLajBcTMzm38ODjMzy8XBYWZmuTg4zMwsFweHmZnlUtjtuIvFdw6NzHcVzMxOKAfHLL1n+4M88K39vP78M3n52SvnuzpmZoVzV9UsPXNghJFag099ZTff3j8839UxMyucg2OWDo3U+Z4zlwNwYLg2z7UxMyueg2OWDo3UOOvUfgBGao15ro2ZWfEcHLNQa4wzUhvnrBXZ22tH6+PzXCMzs+I5OGbh0EgdgDNTi2PULQ4zWwQcHLNwaCQb01h9Si8VwYhbHGa2CDg4ZqHZ4ljW10VvV5XRulscZlZ+Do5ZOJhaHMv6uunrrjBac4vDzMrPwTELE1sc7qoys8XAwTELzeBYfqTF4a4qMys/B8csHDrSVdVscTg4zKz8HByz0GxxnNLXRa/HOMxskXBwzMKhkRr93VW6qxX6PMZhZouEg2MWDo3UOaUvm2C412McZrZIdBQckj4t6Q2SHDQtDo3UWdYMjq4q9fGgPu5Wh5mVW6dB8BHgrcA3JP2+pJcUWKcF4+BIjWV93QD0dWeXcszjHGZWch0FR0R8LiLeBrwMeAL4nKQvSXqXpO4iK3gyOzRSZ3lqcfR1VQFPO2Jm5ddx15OkVcBPAz8LPAB8gCxIPltIzRaAQyO1o11VqcXhaUfMrOw6enWspL8CXgLcCvxkRDyTVm2XNFBU5U52h0bqLOvNGly9zRaHu6rMrOQ6fef4/4qIO1sLJPVGxGhEbC6gXgtC6+B4c4zDd1aZWdl12lX1e5OU/fNcVmShqTXGGa41jgyO93qMw8wWiWlbHJJeCKwB+iW9FFBatRxYUnDdTmrPt0xwCB7jMLPFo12L4yLgD4G1wPuA/5l+fg14b7uDS9oiaZekQUlXTbK+V9L2tH6npPUt665O5bskXdRSfqqkOyT9i6RHJb2qkxOda4cmBEfzripPO2JmZTdtiyMibgFukfSmiPhUngNLqgIfBn4M2A3cJ2lHRDzSstllwL6IOFfSNuAG4BJJm4BtwHnAWWS3/35XRDTI7ub6vxFxsaQe5qnl0/ouDoDuqtJbAN3iMLNya9dV9faI+AtgvaRfm7g+It43ze4XAIMR8Vg61m3AVqA1OLYC16blO4APSVIqvy0iRoHHJQ0CF0h6BPgRstuCiYgxYKzdSRbh6JTq2SWUlL0F0C0OMyu5dl1VS9PvU4Blk/xMZw3wVMvn3als0m0iog4cAFZNs+8GYA/wvyU9IOmjkpYyCUmXSxqQNLBnz542Vc3v+dGjM+M29XZXPMZhZqXXrqvqz9Lv3zkx1Wmri+yhw1+OiJ2SPgBcBfz2xA0j4kbgRoDNmzfHXFdkaCwLjiU9Ry9hX1fVz3GYWel1OsnhH0haLqlb0ucl7ZH09ja7PQ2sa/m8NpVNuo2kLmAFsHeafXcDuyNiZyq/gyxITriR9LxGf0/1SFlvV8VjHGZWep0+x/G6iDgI/ATZXFXnAv+1zT73ARslbUiD2NuAHRO22QFcmpYvBu6OiEjl29JdVxuAjcC9EfFvwFMtkyxeyLFjJifM8FgKju6W4OiuMObnOMys5Dp9cry53RuAT0bEgWwMe2oRUZd0JXAXUAVujoiHJV0HDETEDuAm4NY0+P0cWbiQtrudLBTqwBXpjiqAXwY+nsLoMeBdHZ7DnBpOXVKtwdFdrVBr1OajOmZmJ0ynwfEZSf8CDAO/KGk1MNJupzRNyZ0Tyq5pWR4B3jzFvtcD109S/iAw79OcDKeuqt6uo422nmqFWmPOh1PMzE4qnU6rfhXwQ8DmiKgBh8lumV20RmoN+rorVCpHW17d1Qo1d1WZWcl12uIA+G6y5zla9/nYHNdnwRgeaxxzRxVkDwGONRwcZlZunU6rfivwYuBBoDnWECzm4Kg1jhnfgOYYh4PDzMqt0xbHZmBTuuPJyIKjOZV6U3dXhfGAxnhQrUx/84CZ2ULV6e24DwEvLLIiC83IWOOYZzgga3EAbnWYWal12uI4HXhE0r3AaLMwIt5YSK0WgMm7qrJWxlhjnL4J68zMyqLT4Li2yEosRMO1Bqf0Hnv5epotDt9ZZWYl1lFwRMQXJZ0NbIyIz0laQvZQ36I1PNZg9Sm9x5Qd7aryUJCZlVenc1X9HNm8UH+WitYAf11UpRaCkZrHOMxscep0cPwK4NXAQYCI+AbwgqIqtRAMjU0yxtF1dIzDzKysOg2O0fTSJODITLaLuj8mux332ODocYvDzBaBToPji5LeC/RL+jHgk8D/Ka5aJ7/pu6oWdaaaWcl1GhxXkb157+vAz5NNXPhbRVXqZFdrjFNrxKRPjoPvqjKzcuv0rqpxSX8N/HVEzP17WBeYIy9xmuY5DjOzspq2xaHMtZKeBXYBu9Lb/66Zbr+ya06p3tfjMQ4zW3zadVW9h+xuqh+MiNMi4jTgFcCrJb2n8NqdpEbGjn+JE0CXg8PMFoF2wfEO4C0R8XizICIeA94OvLPIip3MhqfoqqpWRLUiD46bWam1C47uiHh2YmEa5+gupkonvyPB0XP85fM7Ocys7NoFx9gM15Xa8Fga45hkIsMevwXQzEqu3V1V3y/p4CTlAvoKqM+CMNVdVeCXOZlZ+U0bHBGxqCcynMrRrqqpgsNjHGZWXp0+AGgtml1Vk7c45BaHmZWag2MGprqrCrIWhwfHzazMHBwzMDLFA4DgMQ4zKz8HxwxM21XVVaFW9xiHmZWXg2MGhmsNuio6Mqlhqx6PcZhZyTk4ZmC4dvxLnJo8xmFmZefgmIGRWmPS8Q3wGIeZlZ+DYwaGJ3ltbFPzOY4Ij3OYWTkVGhyStkjaJWlQ0lWTrO+VtD2t3ylpfcu6q1P5LkkXTdivKukBSZ8psv5Tma6rqie9k6M+7uAws3IqLDgkVYEPA68HNgFvkbRpwmaXAfsi4lzg/cANad9NwDbgPGAL8JF0vKZ3A48WVfd2hmvjU3dVdfktgGZWbkW2OC4ABiPisYgYA24Dtk7YZitwS1q+A7hQklL5bRExmqZ0H0zHQ9Ja4A3ARwus+7RGxhr0d09+6Zp3WnmA3MzKqsjgWAM81fJ5dyqbdJuIqAMHgFVt9v0j4DeAaf8yS7pc0oCkgT175vZtt+3uqgI8X5WZldaCGhyX9BPAdyLi/nbbRsSNEbE5IjavXr16TusxNFafdIJDODrG4TurzKysigyOp4F1LZ/XprJJt5HUBawA9k6z76uBN0p6gqzr67WS/qKIyk8nu6tq8omFu/36WDMruSKD4z5go6QNknrIBrt3TNhmB3BpWr4YuDuy+1h3ANvSXVcbgI3AvRFxdUSsjYj16Xh3R8TbCzyHSQ3VGiyZ5jkOcFeVmZVXuxc5zVhE1CVdCdwFVIGbI+JhSdcBAxGxA7gJuFXSIPAcWRiQtrsdeASoA1dERKOouuY1NDZNcKS7qsZ8V5WZlVRhwQEQEXcCd04ou6ZleQR48xT7Xg9cP82xvwB8YS7qmUdjPBirj7OkZ/JL1+O7qsys5BbU4PjJYGisDjBli6PHz3GYWck5OHI6MqX6lHdVZZd01C0OMyspB0dOh1NwtGtxeIzDzMrKwZFTu66qakVUK3JwmFlpOThyGj7S4pj6voIev5PDzErMwZHTUJuuKsi6q9ziMLOycnDkNNRmcBzc4jCzcnNw5DRca45xTNNV1VXx7bhmVloOjpwOj3bWVTXq4DCzknJw5DTcyRiH3ztuZiXm4MhpqJO7qtziMLMSc3DkNFSr09NVoVrRlNu4xWFmZebgyGl4mplxm7p9O66ZlZiDI6ehsQZLpnhtbFOvg8PMSszBkdN0r41t6q5WaEQ4PMyslBwcOQ2NNVjaO/1rTHrTRIfNO7DMzMrEwZHT0FiD/jZdVc2p1YfSw4JmZmXi4Mipk8Hx5tTqzYcFzczKxMGR09BYfdpnOOBocLiryszKyMGR0/BYo+3geDM4mu/uMDMrEwdHTofHGixtFxzNMQ63OMyshBwcOWUtjum7qrq7HBxmVl4OjhzqjXHGGuNtB8d7U4vjsLuqzKyEHBw5DNXaz4wLR1scHhw3szJycOQw3MHb/+DoA4DuqjKzMnJw5NAMgqVtxji6KkL4riozKycHRw6HR7MgaNfikERPV8UtDjMrJQdHDsMdjnFAdkuuWxxmVkYOjhyGOnhtbFO3WxxmVlKFBoekLZJ2SRqUdNUk63slbU/rd0pa37Lu6lS+S9JFqWydpHskPSLpYUnvLrL+Ew2nFkR/9/RjHJANkHuuKjMro8KCQ1IV+DDwemAT8BZJmyZsdhmwLyLOBd4P3JD23QRsA84DtgAfScerA78eEZuAVwJXTHLMwuRqcVQrDHt2XDMroSJbHBcAgxHxWESMAbcBWydssxW4JS3fAVwoSan8togYjYjHgUHggoh4JiK+AhARh4BHgTUFnsMxDgzXAFjR39122153VZlZSRUZHGuAp1o+7+b4P/JHtomIOnAAWNXJvqlb66XAzsm+XNLlkgYkDezZs2fGJ9GqGRzLOwiO7mrlyF1YZmZlsiAHxyWdAnwK+NWIODjZNhFxY0RsjojNq1evnpPvPTBcY1lvF9WK2m7b313l0IiDw8zKp8jgeBpY1/J5bSqbdBtJXcAKYO90+0rqJguNj0fEpwup+RQODNVYsaR9awOyZz32D9UKrpGZ2YlXZHDcB2yUtEFSD9lg944J2+wALk3LFwN3R0Sk8m3prqsNwEbg3jT+cRPwaES8r8C6T+rAcK2j8Q3IBtCHaw1Gah7nMLNyaX9f6QxFRF3SlcBdQBW4OSIelnQdMBARO8hC4FZJg8BzZOFC2u524BGyO6muiIiGpB8G3gF8XdKD6aveGxF3FnUerfbnCI7m0+UHhmv0tXlHuZnZQlJYcACkP+h3Tii7pmV5BHjzFPteD1w/oewfgfYDDAU5MFzju844paNtm6+X3T9U44zlfUVWy8zshFqQg+PzJU9XVX9qZewfGiuySmZmJ5yDo0MRkQ2O9/d0tH3zIcH9wx4gN7NycXB0aKSWvf0v9xiH76wys5JxcHRo/3DW5ZTnrqrW/czMysLB0aHmU+OndvgcR0+1QndV7HOLw8xKxsHRoWaXU6ctDkms6O/xQ4BmVjoOjg7tzzHBYdOpS7o54K4qMysZB0eH8syM23Rqf7dbHGZWOg6ODh3pqupwjAOyFoeDw8zKxsHRoQPDNaoVsay384ftT13S4wcAzax0HBwdOjBcY3lfF9k8i505tb/bDwCaWek4ODqUZ4LDplOXdDM01mC07hlyzaw8HBwdOjBcY8WSzqYbaWpuf8CtDjMrEQdHhw4MjeVvcaTtPe2ImZWJg6NDB4ZrR4KgU82nzD3OYWZl4uDoQESw59Aopy3N11W1MnVV7TvsO6vMrDwcHB149vkxDo81WL9qSa79mkGz5/nRIqplZjYvHBwdeHLvYQDOXrU0134vXN5HT1eFJ/cOFVEtM7N54eDoQPMP/9k5WxyVitiwaimP7Xm+iGqZmc0LB0cHntx7mIpg7cp8wQGw4fSlPPbs4QJqZWY2PxwcHXhi7xBrVvbT05X/cp2zeinf2jtEvTFeQM3MzE48B0cHnnxuiLNPyze+0bTh9KXUx4Pd+4bnuFZmZvPDwdGBJ/cezj2+0XTO6ixwHnd3lZmVhIOjjf1DY+wfqrE+5x1VTRtOPwXA4xxmVhoOjjaad1S9aIYtjpVLulnR383jz/rOKjMrBwdHG08+lwXHTFsckthw+lJ3VZlZaTg42vjS4LMs6anOeIwDsnGOf3nmkO+sMrNScHBMY6TW4G+/9gxbzn8hfd3VGR/ndZvOYO/hMb6wa88c1s7MbH44OKbx94/8O4dG67zpZWtndZwLv+cMVi/r5RP3fmuOambzpdYYZ8+hUXbvG/ILumzR6vwF2jMgaQvwAaAKfDQifn/C+l7gY8DLgb3AJRHxRFp3NXAZ0AB+JSLu6uSYc+nTX9nNWSv6eNU5q2Z1nO5qhUs2r+MjXxjk6f3DrDm1f45qaEUbHw/e99l/5Zt7nuebe57n8WcPU2vEkfWrlvawZmU/3/3CZZx31grOX7Oc885aMasWqtnJrrDgkFQFPgz8GLAbuE/Sjoh4pGWzy4B9EXGupG3ADcAlkjYB24DzgLOAz0n6rrRPu2POicOjde5/Yh/veNXZVCqdv2d8Kpf84Dr+7B++yTtv2skfXPz9fP/aFXRV3eDrVK0xzmh9nNFag5Hm79o4o/UGw7UGB4frHBypcXC4xsGRevpd4/BoncOjDYbG6lQroloRXZVK+p0+V0VF2XJVolIRAv7t4AgPf/sgz6Vp8Vcv6+XlZ5/GC5b10lURB0fqHBiuse/wGJ/52jPcPrAbgO6q2HTmcl76opW8ePVSXrRqKetW9rO0t4uuirL/3wMaETTGg/H0u7k8Hseee0RWXmsE9UYw1hin3hinPh5I0N9dpb+nypLuLvp6Ktnn7qr/+bLCFNniuAAYjIjHACTdBmwFWv/IbwWuTct3AB+SpFR+W0SMAo9LGkzHo4NjzomlvV18+b0XUpujAe11py3hlnddwK9uf5A3/cmX6K6KJT3ZH5JK+oNVnRBQEcf+BZnw9yRtM+HzhK0mrp/sOMdvc/xOx3/PxPUzqGsH+zTGg9H6OI2Jf03b6Ouu0NddpberQm9XlZ5qhXGC8XHSH+f0c8xnWNJTZXw8aERwxvI+/uNLXoAEL159yrRvgIwIDo7UeXrfMMv6u/jKk/vYft9TDNfmrzurOwWi0j9WIlsW2d1+WVn2P8eUtXxW+nzkCEfWTX3MI8dQtv5ko5OvSoVdpZVLe/irX3r1nB+3yOBYAzzV8nk38IqptomIuqQDwKpU/uUJ+65Jy+2OCYCky4HL08fnJe2awTnkcTrwbGvB2wr+wpPQcddgEfI1yPg6nCTXQFfMeNezp1pR6BjHfIqIG4EbT9T3SRqIiM0n6vtORr4GvgZNvg7lvgZFdoI+Daxr+bw2lU26jaQuYAXZIPlU+3ZyTDMzK1CRwXEfsFHSBkk9ZIPdOyZsswO4NC1fDNwdWcf3DmCbpF5JG4CNwL0dHtPMzApUWFdVGrO4EriL7NbZmyPiYUnXAQMRsQO4Cbg1DX4/RxYEpO1uJxv0rgNXREQDYLJjFnUOOZ2wbrGTmK+Br0GTr0OJr4Em3tliZmY2Hd/obWZmuTg4zMwsFwfHLEnaImmXpEFJV813feaapJslfUfSQy1lp0n6rKRvpN8rU7kkfTBdi69JelnLPpem7b8h6dLJvutkJWmdpHskPSLpYUnvTuWL5jpI6pN0r6SvpmvwO6l8g6Sd6Vy3p5tWSDe2bE/lOyWtbznW1al8l6SL5ueMZk5SVdIDkj6TPi+6a0BE+GeGP2QD9N8EzgF6gK8Cm+a7XnN8jj8CvAx4qKXsD4Cr0vJVwA1p+ceBvyN7EPaVwM5UfhrwWPq9Mi2vnO9zy3ENzgRelpaXAf8KbFpM1yGdyylpuRvYmc7tdmBbKv9T4BfT8i8Bf5qWtwHb0/Km9O9JL7Ah/ftTne/zy3ktfg34BPCZ9HnRXQO3OGbnyLQqETEGNKdAKY2I+AeyO95abQVuScu3AD/VUv6xyHwZOFXSmcBFwGcj4rmI2Ad8FthSfO3nRkQ8ExFfScuHgEfJZjJYNNchnUvzNZbd6SeA15JNFwTHX4PmtbkDuHDidEIR8TjQOp3QSU/SWuANwEfTZ7HIrgG4q2q2JptWZc0U25bJGRHxTFr+N+CMtDzV9SjNdUrdDS8l+y/uRXUdUhfNg8B3yELvm8D+iKinTVrP55jphIDW6YQW7DUA/gj4DaA5id0qFt81cHDY7ETW9l4U93RLOgX4FPCrEXGwdd1iuA4R0YiIHyCbseEC4LvnuUonlKSfAL4TEffPd13mm4NjdhbrFCj/nrpeSL+/k8pLO1WMpG6y0Ph4RHw6FS+66wAQEfuBe4BXkXXDNR8kbj2fvNMJLQSvBt4o6QmybunXkr0baDFdA8DBMVuLdQqU1qliLgX+pqX8nemuolcCB1JXzl3A6yStTHcevS6VLQipX/om4NGIeF/LqkVzHSStlnRqWu4neyfOo2QBcnHabOI1yDOd0EkvIq6OiLURsZ7s3/W7I+JtLKJrcMR8j84v9B+yO2j+lay/9zfnuz4FnN9fAs8ANbK+2MvI+mk/D3wD+BxwWtpWZC/a+ibwdWBzy3F+hmwQcBB413yfV85r8MNk3VBfAx5MPz++mK4D8H3AA+kaPARck8rPIfujNwh8EuhN5X3p82Baf07LsX4zXZtdwOvn+9xmeD1ew9G7qhbdNfCUI2Zmlou7qszMLBcHh5mZ5eLgMDOzXBwcZmaWi4PDzMxycXCYmVkuDg6zOSTpLEl3pOUfkPTjHezzmuYU3VOs/2lJH5rLeprNhoPDbA5FxLcjovkU8Q+QPShoVioODrMWkt6ZXr70VUm3SvrJ9BKeByR9TtIZabtr0/p/Ti9l+rlUvl7SQ2kKmuuASyQ9KOkSSRek7R+Q9CVJL5lB/dZLujvV8fOSXpTK35y+96uS/iGVnafs5UsPpu03zt2VssWsq/0mZouDpPOA3wJ+KCKelXQa2VQjr4yIkPSzZFNq/3ra5fvIXma0FHhA0t82jxURY5KuIZtu5Mp0/OXAf4iIuqQfBf4b8Kac1fxj4JaIuEXSzwAfJHv/wzXARRHxdHNOKeAXgA9ExMdTkFVzfpfZpBwcZke9FvhkRDwLEBHPSfpeYHua/bYHeLxl+7+JiGFgWNI9ZFONPzjN8VcAt6T/8g+ylyHl9SrgP6XlW8neQgjwT8CfS7odaM7e+8/Ab6aXD306Ir4xg+8zO467qsym98fAhyLie4GfJ5u4rmniRG/tJn77XeCeiDgf+MkJx5qViPgFstbSOuB+Sasi4hPAG4Fh4E5Jr52r77PFzcFhdtTdwJslrQJIXVUrOPquhEsnbL9VUl/a/jVk0+y3OkT2jvKm1mP99Azr+CWyKb0B3gb8v1TXF0fEzoi4BtgDrJN0DvBYRHyQbKrv75vhd5odw8FhlkTEw8D1wBclfRV4H3At8ElJ9wPPTtjla2TvYvgy8LsR8e0J6+8BNjUHx8m6lf67pAeYeTfxLwPvkvQ14B3Au1P5/5D0dVAn3pEAAABmSURBVEkPkYXLV4H/DDyUXvd6PvCxGX6n2TE8rbrZDEi6Fng+Iv5wvutidqK5xWFmZrm4xWF2kpD0Lo52PTX9U0RcMR/1MZuKg8PMzHJxV5WZmeXi4DAzs1wcHGZmlouDw8zMcvn/VzXk9D3JraAAAAAASUVORK5CYII=\n"
+ },
+ "metadata": {
+ "needs_background": "light"
+ }
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).\n",
+ " warnings.warn(msg, FutureWarning)\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "