forked from pConst/basic_verilog
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspi_master.sv
298 lines (250 loc) · 9.57 KB
/
spi_master.sv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
//------------------------------------------------------------------------------
// spi_master.sv
// Konstantin Pavlov, [email protected]
//------------------------------------------------------------------------------
// INFO ------------------------------------------------------------------------
// Universal spi master
//
// * Supports following SPI bus modes
// mode 0 (CPOL = 0, CPHA = 0)
// mode 2 (CPOL = 1, CPHA = 0)
//
// * Spi clock can be made free-running (some slaves require that)
// * OE pin for bidirectional buffer connection, in case DO and DI pins are combined
//
// * Universal spi master successfully synthesize at clk speeds 200MHz and above
// * That means, that SPI clocks up to 100MHz are supported
//
/* --- INSTANTIATION TEMPLATE BEGIN ---
spi_master #(
.CPOL( 0 ),
.FREE_RUNNING_SPI_CLK( 0 ),
.MOSI_DATA_WIDTH( 8 ),
.WRITE_MSB_FIRST( 1 ),
.MISO_DATA_WIDTH( 8 ),
.READ_MSB_FIRST( 1 )
) SM1 (
.clk( ),
.nrst( ),
.spi_clk( ),
.spi_wr_cmd( ),
.spi_rd_cmd( ),
.spi_busy( ),
.mosi_data( ),
.miso_data( ),
.clk_pin( ),
.ncs_pin( ),
.mosi_pin( ),
.oe_pin( ),
.miso_pin( )
);
--- INSTANTIATION TEMPLATE END ---*/
module spi_master #( parameter
bit CPOL = 0, // Clock polarity for SPI interface
// 0 - SPI mode 0
// data updates on rising edge
// data reads on falling edge
// 1 - SPI mode 2
// data updates on falling edge
// data reads on rising edge
bit FREE_RUNNING_SPI_CLK = 0, // 0 - clk_pin is active only when ncs_pin = 0
// 1 - clk pin is always active
bit [5:0] MOSI_DATA_WIDTH = 8, // data word width in bits
bit WRITE_MSB_FIRST = 1, // 0 - LSB first
// 1 - MSB first
bit [5:0] MISO_DATA_WIDTH = 8, // data word width in bits
bit READ_MSB_FIRST = 1 // 0 - LSB first
// 1 - MSB first
)(
input clk, // system clock
input nrst, // reset (inversed)
input spi_clk, // prescaler clock
// spi_clk must be >= 2 clk cycles
// must be synchronous multiple of clk cycles
input spi_wr_cmd, // spi write command, shifting begins on rising edge
input spi_rd_cmd, // spi read command, shifting begins on rising edge
output logic spi_busy, // shifting is active
input [MOSI_DATA_WIDTH-1:0] mosi_data, // data for shifting out from master
output logic [MISO_DATA_WIDTH-1:0] miso_data, // shifted in data from slave
output logic clk_pin, // spi master's clock pin
output logic ncs_pin = 1, // spi master's chip select (inversed)
output logic mosi_pin = 0, // spi master's data in
output logic oe_pin = 0, // spi master's output enable
// in case of using bidirectional buffer for SDIO pin
input miso_pin // spi master's data in
);
// first extra state for getting command and buffering
// second extra state to initialize outputs
localparam WRITE_SEQ_START = 2;
localparam WRITE_SEQ_END = WRITE_SEQ_START+2*MOSI_DATA_WIDTH;
localparam READ_SEQ_START = WRITE_SEQ_END;
localparam READ_SEQ_END = READ_SEQ_START+2*MISO_DATA_WIDTH;
logic spi_clk_rise;
logic spi_clk_fall;
edge_detect ed_spi_clk (
.clk( clk ),
.nrst( nrst ),
.in( spi_clk ),
.rising( spi_clk_rise ),
.falling( spi_clk_fall ),
.both( )
);
logic spi_wr_cmd_rise;
logic spi_rd_cmd_rise;
edge_detect ed_cmds [1:0] (
.clk( {2{clk}} ),
.nrst( {2{nrst}} ),
.in( {spi_wr_cmd,spi_rd_cmd} ),
.rising( {spi_wr_cmd_rise,spi_rd_cmd_rise} ),
.falling( ),
.both( )
);
// no need to synchronize miso pin because that is a slave`s responsibility
// to hold stable signal and avoid metastability
// shifting out is always LSB first
// optionally reversing miso data if requested
logic [MOSI_DATA_WIDTH-1:0] mosi_data_rev;
reverse_vector #(
.WIDTH( MOSI_DATA_WIDTH )
) reverse_mosi_data (
.in( mosi_data[MOSI_DATA_WIDTH-1:0] ),
.out( mosi_data_rev[MOSI_DATA_WIDTH-1:0] )
);
logic clk_pin_before_inversion; // inversion is optional, see CPOL parameter
logic [7:0] sequence_cntr = 0;
logic rd_nwr = 0; // buffering data direction
logic [MOSI_DATA_WIDTH-1:0] mosi_data_buf = 0; // buffering mosi_data
logic [MISO_DATA_WIDTH-1:0] miso_data_buf = 0; // buffering miso_data
always_ff @(posedge clk) begin
if( ~nrst ) begin
clk_pin_before_inversion <= CPOL;
ncs_pin <= 1'b1;
mosi_pin <= 1'b0;
oe_pin <= 1'b0;
sequence_cntr[7:0] <= 0;
rd_nwr <= 0;
mosi_data_buf[MOSI_DATA_WIDTH-1:0] <= 0;
miso_data_buf[MISO_DATA_WIDTH-1:0] <= 0;
end else begin
if( FREE_RUNNING_SPI_CLK ) begin
if ( spi_clk_rise ) begin
clk_pin_before_inversion <= 1'b1;
end
if( spi_clk_fall ) begin
clk_pin_before_inversion <= 1'b0;
end
end else begin // FREE_RUNNING_SPI_CLK = 0
if ( ~ncs_pin ) begin
if ( spi_clk_rise ) begin
clk_pin_before_inversion <= 1'b1;
end
if( spi_clk_fall ) begin
clk_pin_before_inversion <= 1'b0;
end
end else begin // ncs_pin = 1
clk_pin_before_inversion <= CPOL;
end
end // if( FREE_RUNNING_SPI_CLK )
// WRITE =======================================================================
// sequence start condition
//*cmd_rise signals are NOT synchronous with spi_clk edges
if( sequence_cntr[7:0]==0 && (spi_wr_cmd_rise || spi_rd_cmd_rise) ) begin
if( spi_rd_cmd_rise ) begin
rd_nwr <= 1'b1;
end else begin
rd_nwr <= 1'b0;
end
// buffering mosi_data to avoid data change after shift_cmd issued
if( WRITE_MSB_FIRST ) begin
mosi_data_buf[MOSI_DATA_WIDTH-1:0] <= mosi_data_rev[MOSI_DATA_WIDTH-1:0];
end else begin
mosi_data_buf[MOSI_DATA_WIDTH-1:0] <= mosi_data[MOSI_DATA_WIDTH-1:0];
end
sequence_cntr[7:0] <= sequence_cntr[7:0] + 1'b1;
end
// second step of initialization, updating outputs synchronously with spi_clk edge
if( sequence_cntr[7:0]==1 && spi_clk_rise ) begin
ncs_pin <= 1'b0;
oe_pin <= 1'b1;
sequence_cntr[7:0] <= sequence_cntr[7:0] + 1'b1;
end
// clocking out data
if( sequence_cntr[7:0]>=WRITE_SEQ_START && sequence_cntr[7:0]<WRITE_SEQ_END ) begin
// we should omit this to start sequence on specific edge
if ( spi_clk_rise ) begin
sequence_cntr[7:0] <= sequence_cntr[7:0] + 1'b1;
end
if( spi_clk_fall ) begin
// changing mosi_pin
mosi_pin <= mosi_data_buf[0];
// shifting out data is alvays LSB first
mosi_data_buf[MOSI_DATA_WIDTH-1:0] <= {1'b0,mosi_data_buf[MOSI_DATA_WIDTH-1:1]};
sequence_cntr[7:0] <= sequence_cntr[7:0] + 1'b1;
end
end
// waiting for valid edge to switch direction
if( ~rd_nwr ) begin
// end of write transaction
// resetting shifter to default state
if( sequence_cntr[7:0]==WRITE_SEQ_END && spi_clk_fall ) begin
ncs_pin <= 1'b1;
mosi_pin <= 1'b0;
oe_pin <= 1'b0;
sequence_cntr[7:0] <= 0;
end
end else begin
if( sequence_cntr[7:0]==WRITE_SEQ_END && spi_clk_fall ) begin
//ncs_pin <= 1'b0;
mosi_pin <= 1'b0;
oe_pin <= 1'b0;
sequence_cntr[7:0] <= sequence_cntr[7:0] + 1'b1;
end
// READ ========================================================================
// clocking in data
if( sequence_cntr[7:0]>=READ_SEQ_START && sequence_cntr[7:0]<READ_SEQ_END ) begin
if ( spi_clk_rise ) begin
// shifting in data is alvays LSB first
miso_data_buf[MISO_DATA_WIDTH-1:0] <= {miso_pin,miso_data_buf[MOSI_DATA_WIDTH-1:1]};
sequence_cntr[7:0] <= sequence_cntr[7:0] + 1'b1;
end
// we should omit this to start sequence on specific edge
if( spi_clk_fall ) begin
sequence_cntr[7:0] <= sequence_cntr[7:0] + 1'b1;
end
end
// waiting for valid edge to end read transaction
if( sequence_cntr[7:0]==READ_SEQ_END && spi_clk_fall ) begin
ncs_pin <= 1'b1;
mosi_pin <= 1'b0;
oe_pin <= 1'b0;
sequence_cntr[7:0] <= 0;
end
end // if( ~rd_nwr )
end // if( nrst )
end // always
logic [MISO_DATA_WIDTH-1:0] miso_data_buf_rev;
reverse_vector #(
.WIDTH( MISO_DATA_WIDTH )
) reverse_miso_data (
.in( miso_data_buf[MISO_DATA_WIDTH-1:0] ),
.out( miso_data_buf_rev[MISO_DATA_WIDTH-1:0] )
);
always_comb begin
// CPOL==1 means output clock inversion
if( CPOL ) begin
// inversion
clk_pin = ~clk_pin_before_inversion;
end else begin
// no inversion
clk_pin = clk_pin_before_inversion;
end
// shifting in is always LSB first
// optionally reversing miso data if requested
if( READ_MSB_FIRST ) begin
miso_data[MISO_DATA_WIDTH-1:0] = miso_data_buf_rev[MISO_DATA_WIDTH-1:0];
end else begin
miso_data[MISO_DATA_WIDTH-1:0] = miso_data_buf[MISO_DATA_WIDTH-1:0];
end
spi_busy = (sequence_cntr[7:0] != 0);
end
endmodule